Кровь в большом круге кровообращения. Большой и малый круги кровообращения: схема

В нашем организме кровь непрерывно движется по замкнутой системе сосудов в строго определенном направлении. Это непрерывное движение крови называется кровообращением . Кровеносная система человека замкнутая и имеет 2 круга кровообращения: большой и малый. Основным органом, обеспечивающим движение крови, является сердце.

Кровеносная система состоит из сердца и сосудов . Сосуды бывают трех типов: артерии, вены, капилляры.

Сердце – полый мышечный орган (масса около 300 грамм) размером приблизительно с кулак, расположен в грудной полости слева. Сердце окружено околосердечной сумкой, образованной соединительной тканью. Между сердцем и околосердечной сумкой находится жидкость, уменьшающая трение. У человека четырехкамерное сердце. Поперечная перегородка делит его на левую и правую половину, каждая из которых разделена клапанами ни предсердие и желудочек. Стенки предсердий тоньше, чем стенки желудочков. Стенки левого желудочка толще, чем стенки правого, так как он совершает большую работу, выталкивая кровь в большой круг кровообращения. На границе между предсердиями и желудочками находятся створчатые клапаны, которые препятствуют обратному току крови.

Сердце окружено околосердечной сумкой (перикардом). Левое предсердие отделено от левого желудочка двустворчатым клапаном, а правое предсердие от правого желудочка – трехстворчатым клапаном.

К створкам клапанов со стороны желудочков прикреплены прочные сухожильные нити. Такая их конструкция не позволяет крови двигаться из желудочков в предсердие при сокращении желудочка. У основания легочной артерии и аорты находятся полулунные клапаны, не позволяющие крови поступать из артерий обратно в желудочки.

В правое предсердие поступает венозная кровь из большого круга кровообращения, в левое – артериальная из легких. Так как левый желудочек снабжает кровью все органы большого круга кровообращения, в левое – артериальная из легких. Так как левый желудочек снабжает кровью все органы большого круга кровообращения, то его стенки примерно в три раза толще стенок правого желудочка. Сердечная мышца представляет собой особый вид поперечно-полосатой мышцы, в котором мышечные волокна срастаются между собой концами и образуют сложную сеть. Такое строение мышцы увеличивает ее прочность и ускоряет прохождение нервного импульса (вся мышца реагирует одновременно). Сердечная мышца отличается от скелетных мышц способностью ритмично сокращаться, отвечая на импульсы, возникающие в самом сердце. Это явление называется автоматией.

Артерии – сосуды, по которым кровь движется от сердца. Артерии – это толстостенные сосуды, средний слой которых представлен эластичными и гладкой мускулатурой, поэтому артерии способны выдержать значительное давление крови и не разрываться, а только растягиваться.

Гладкая мускулатура артерий выполняет не только структурную роль, но ее сокращения способствуют быстрейшему току крови, так как мощности только одного сердца не хватило бы для нормальной циркуляции крови. Внутри артерий нет никаких клапанов, кровь течет быстро.

Вены – сосуды, несущие кровь к сердцу. В стенках вен также есть клапаны, препятствующие обратному току крови.

Вены, более тонкостенные, чем артерии, и в среднем слое меньше эластичных волокон и мышечных элементов.

Кровь по венам течет не совсем пассивно, окружающие мышцы совершают пульсирующие движения и прогоняют кровь по сосудам к сердцу. Капилляры – самые мелкие кровеносные сосуды, через них плазма крови обменивается с тканевой жидкостью питательными веществами. Стенка капилляров состоит из одного слоя плоских клеток. В мембранах этих клеток имеются многочленные мельчайшие отверстия, которые облегчают прохождение через стенку капилляров веществ, участвующих в обмене.

Движение крови
происходит по двум кругам кровообращения.

Большой круг кровообращения – это путь крови от левого желудочка до правого предсердия: левый желудочек аорта грудная аорта брюшная аорта артерии капилляры в органах (газообмен в тканях) вены верхняя (нижняя) полая вена правое предсердие

Малый круг кровообращения – путь от правого желудочка до левого предсердия: правый желудочек легочный ствол артерии правая (левая) легочная капилляры в легких газообмен в легких легочные вены левое предсердие

В малом круге кровообращения по легочным артериям движется венозная кровь, а по легочным венам после газообмена в легких – артериальная кровь.

Конечно, нет. Как всякая жидкость, кровь просто передает оказываемое на нее давление. При систоле она передает во все стороны возросшее давление, и от аорты по упругим стенкам артерий бежит волна пульсового расширения. Бежит она в среднем со скоростью порядка 9 метров в секунду. При поражении сосудов атеросклерозом эта скорость возрастает, и исследование ее представляет собой одно из важных диагностических измерений в современной медицине.

Сама кровь движется гораздо медленнее, причем скорость эта в разных частях сосудистой системы совершенно различна. От чего же зависит различная скорость движения крови в артериях, капиллярах и венах? На первый взгляд может показаться, что она должна зависеть от уровня давления в соответствующих сосудах. Однако это неверно.

Представим себе реку, которая то суживается, то расширяется. Мы прекрасно знаем, что в узких местах ее течение будет быстрее, а в широких - медленнее. Это и понятно: ведь мимо каждой точки берега за одно и то же время протекает одно и то же количество воды. Поэтому там, где река уже, вода течет быстрее, а в широких местах течение замедляется. То же самое относится и к кровеносной системе. Скорость течения крови в разных ее отделах определяется суммарной шириной русла этих отделов.

В самом деле, за секунду через правый желудочек проходит в среднем столько же крови, сколько через левый; столько же крови проходит в среднем через любую точку сосудистой системы. Если мы говорим, что у спортсмена сердце при одной систоле может выбрасывать в аорту более 150 см 3 крови, это значит, что такое же количество при той же систоле выбрасывается из правого желудочка в легочную артерию. Это значит также, что во время систолы предсердий, которая на 0,1 секунды предшествует систоле желудочков, указанное количество крови также «в один прием» перешло из предсердий в желудочки. Иными словами, если в аорту может выбрасываться сразу 150 см 3 крови, отсюда следует, что не только левый желудочек, но и каждая из трех других камер сердца может вмещать и разом выбрасывать около стакана крови.

Если через каждую точку сосудистой системы проходит в единицу времени одинаковый объем крови, то в связи с разным суммарным просветом русла артерий, капилляров и вен скорость перемещения отдельных частиц крови, ее линейная скорость будет совершенно различна. Быстрее всего кровь течет в аорте. Здесь скорость тока крови составляет 0,5 метра в секунду. Хотя аорта - самый большой сосуд тела, она представляет собой самое узкое место сосудистой системы. Каждая из артерии, на которые распадается аорта, в десятки раз меньше ее. Однако число артерий измеряется сотнями, и потому в сумме их просвет много шире просвета аорты. Когда же кровь доходит до капилляров, она совсем замедляет свое течение. Капилляр во много миллионов раз меньше, чем аорта, однако число капилляров измеряется многими миллиардами. Поэтому кровь в них течет в тысячу раз медленнее, чем в аорте. Ее скорость в капиллярах составляет около 0,5 мм в секунду. Это имеет колоссальное значение, ибо, если бы кровь быстро проносилась через капилляры, она не успевала бы отдать тканям кислород. Поскольку же она течет медленно, причем эритроциты движутся в один ряд, «гуськом», это создает наилучшие условия для контакта крови с тканями.

Полный оборот через оба круга кровообращения кровь совершает у человека и млекопитающих в среднем за 27 систол, для человека это 21-22 секунды.

За какое время кровь успевает обойти весь организм?

Сколько времени требуется крови, чтобы сделать круг по всему организму?

Доброго времени суток!

Среднестатистическое время сокращения сердца составляет 0,3 секунды. За этот промежуток времени сердце выталкивает 60 мл крови.

Таким образом, скорость продвижения крови через сердце равна 0,06 л/0,3 с = 0,2 л/с.

В организме человека (взрослого) находится, в среднем, около 5 литров крови.

Тогда, 5 литров протолкнется за 5 л/(0,2 л/с) = 25 с.

Большой и малый круги кровообращения. Анатомическое строение и основные функции

Большой и малый круги кровообращения были открыты Гарвеем в 1628 году. Позднее ученые многих стран делали важные открытия, касающиеся анатомического строения и функционирования кровеносной системы. И по сей день медицина движется вперед, изучая методы лечения и восстановления сосудов. Анатомия обогащается все новыми данными. Они раскрывают перед нами механизмы общего и регионарного кровоснабжения тканей и органов. У человека четырехкамерное сердце, которое заставляет кровь циркулировать по большому и малому кругам кровообращения. Этот процесс беспрерывный, благодаря ему абсолютно все клетки организма получают кислород и важные питательные вещества.

Значение крови

Большой и малый круги кровообращения доставляют кровь ко всем тканям, благодаря чему наш организм исправно функционирует. Кровь – связующий элемент, обеспечивающий жизнедеятельность каждой клеточки и каждого органа. К тканям поступает кислород и питательные компоненты, в том числе ферменты и гормоны, а из межклеточного пространства выводятся продукты обмена веществ. Кроме того, именно кровь обеспечивает постоянную температуру тела человека, защищая организм от болезнетворных микробов.

Из пищеварительных органов в плазму крови непрерывно поступают и разносятся ко всем тканям питательные вещества. Несмотря на тот факт, что человек постоянно употребляет пищу, содержащую большое количество солей и воды, в крови поддерживается постоянный баланс минеральных соединений. Это достигается путем выведения избытка солей через почки, легкие и потовые железы.

Сердце

От сердца отходят большой и малый круги кровообращения. Этот полый орган, состоит из двух предсердий и желудочков. Сердце располагается слева в грудной области. Его вес у взрослого человека, в среднем, составляет 300 г. Этот орган отвечает за перекачивание крови. В работе сердца выделяют три основные фазы. Сокращение предсердий, желудочков и пауза между ними. На это уходит менее одной секунды. За одну минуту человеческое сердце сокращается не менее 70 раз. Кровь движется по сосудам непрерывным потоком, постоянно перетекает через сердце из малого круга в большой, унося к органам и тканям кислород и принося в альвеолы легких углекислый газ.

Системный (большой) круг кровообращения

И большое, и малое круги кровообращения выполняют функцию газообмена в организме. Когда кровь возвращается из легких, она уже обогащена кислородом. Далее ее нужно доставить ко всем тканям и органам. Именно эту функцию выполняет большой круг кровообращения. Свое начало он берет в левом желудочке, подводя к тканям кровеносные сосуды, которые разветвляются до мелких капилляров и осуществляют газообмен. Заканчивается системный круг в правом предсердии.

Анатомическое строение большого круга кровообращения

Большой круг кровообращения берет свое начало в левом желудочке. Из него выходит в крупные артерии насыщенная кислородом кровь. Попадая в аорту и плечеголовной ствол, она с огромной скоростью устремляется к тканям. По одной крупной артерии кровь идет в верхнюю часть тела, а по второй - в нижнюю.

Плечеголовной ствол – это отделяемая от аорты крупная артерия. По ней богатая кислородом кровь идет вверх к голове и рукам. Вторая крупная артерия – аорта – доставляет кровь в нижнюю часть тела, к ногам и тканям туловища. Два этих основных кровеносных сосуда, как уже было сказано выше, многократно делятся на более мелкие капилляры, которые сеточкой пронизывают органы и ткани. Эти мельчайшие сосуды доставляют кислород и питательные вещества в межклеточное пространство. Из него в кровь поступает углекислый газ и прочие нужные организму продукты метаболизма. На обратном пути к сердцу капилляры вновь соединяются в более крупные сосуды – вены. Кровь в них течет медленнее и имеет темный оттенок. В конечном итоге все сосуды, идущие с нижней части тела, объединяются в нижнюю полую вену. А те, что идут от верхней части туловища и головы – в верхнюю полую вену. Оба этих сосуда впадают в правое предсердие.

Малый (легочный) круг кровообращения

Малый круг кровообращения берет свое начало в правом желудочке. Далее, совершив полный оборот, кровь переходит в левое предсердие. Главная функция малого круга - газообмен. Из крови выводится углекислый газ, который насыщает организм кислородом. Процесс газообмена осуществляются в альвеолах легких. Малые и большие круги кровообращения выполняют несколько функций, но основное их значение заключается в том, чтобы провести кровь по всему организму, охватывая все органы и ткани, при этом поддерживая теплообмен и процессы метаболизма.

Анатомическое устройство малого круга

Из правого желудочка сердца выходит венозная, бедная содержанием кислорода кровь. Она поступает в самую крупную артерию малого круга – легочный ствол. Он делится на два отдельных сосуда (правую и левую артерии). Это очень важная особенность малого круга кровообращения. Правая артерия приносит кровь к правому легкому, а левая, соответственно, к левой. Подходя к главному органу дыхательной системы, сосуды начинают делиться на более мелкие. Они разветвляются, пока не достигают размеров тонких капилляров. Они охватывают все легкое, увеличивая в тысячи раз площадь, на которой происходит газообмен.

К каждому мельчайшему альвеолу подходит кровеносный сосуд. От атмосферного воздуха кровь отделяет только тончайшая стеночка капилляра и легкого. Она настолько нежна и пориста, что кислород и прочие газы свободно могут циркулировать через эту стенку в сосуды и альвеолы. Таким образом осуществляется газообмен. Газ передвигается по принципу от большей концентрации к меньшей. Например, если в темной венозной крови очень мало кислорода, то он начинает поступать в капилляры из атмосферного воздуха. А вот с углекислым газом происходит наоборот, он переходит в альвеолы легкого, так как там его концентрация ниже. Далее сосуды снова объединяются в более крупные. В конечном итоге остаются всего четыре большие легочные вены. Они несут к сердцу обогащенную кислородом ярко красную артериальную кровь, которая перетекает в левое предсердие.

Время кровообращения

Промежуток времени, за который кровь успевает пройти по малому и большому кругу, называется временем полного кругооборота крови. Этот показатель строго индивидуальный, но в среднем на это уходит от 20 до 23 секунд в состоянии покоя. При мышечной активности, например, во время бега или прыжков, скорость кровотока возрастает в несколько раз, тогда полный оборот крови по обоим кругам может совершиться всего за 10 секунд, но такой темп организм долго выдержать не может.

Сердечный круг кровообращения

Большой и малый круги кровообращения обеспечивают в организме человека процессы газообмена, но кровь циркулирует и в сердце, причем по строгому маршруту. Этот путь называется «сердечный круг кровообращения». Начинается он двумя крупными венечными сердечными артериями от аорты. По ним кровь поступает во все части и слои сердца, а затем по мелким венам собирается в венозный венечный синус. Этот крупный сосуд открывается в правое сердечное предсердие своим широким устьем. Но некоторая часть мелких вен непосредственно выходит в полости правого желудочка и предсердия сердца. Вот так непросто устроена кровеносная система нашего организма.

полный круг кровообращения время

В разделе Красота и Здоровье на вопрос А сколько раз за сутки кровь вращается по телу? И сколько времени занимает одно Полное обращение крови? заданный автором Ўлия Кончаковская лучший ответ это Время полного кругооборота крови у человека составляет в сред­нем 27 систол сердца. При частоте сердечных сокращений 70-80 в минуту кругооборот крови происходит приблизительно за 20-23 с, однако скорость движения крови по оси сосуда больше, чем у его стенок. Поэтому не вся кровь совершает полный кругооборот так быстро и указанное время является минимальным.

Исследования на собаках показали, что 1/5 времени полного кругооборота крови приходится на прохождение крови по малому кругу кровообращения и 4/5 - по большому.

Стало быть за 1 минуту примерно 3 раза. За весь день считаем: 3*60*24 = 4320 раза.

У нас два круга кровообращения, один полный круг вращается 4-5 секунд. вот и считай!

Большой и малый круги кровообращения

Большой и малый круги кровообращения человека

Кровообращение - это движение крови по сосудистой системе, обеспечивающее газообмен между организмом и внешней средой, обмен веществ между органами и тканями и гуморальную регуляцию различных функций организма.

Система кровообращения включает сердце и кровеносные сосуды - аорту, артерии, артериолы, капилляры, венулы, вены и лимфатические сосуды. Кровь движется по сосудам благодаря сокращению сердечной мышцы.

Кровообращение совершается по замкнутой системе, состоящей из малого и большого кругов:

  • Большой круг кровообращения обеспечивает все органы и ткани кровью с содержащимися в ней питательными веществами.
  • Малый, или легочный, круг кровообращения предназначен для обогащения крови кислородом.

Круги кровообращения впервые были описаны английским ученым Уильямом Гарвеем в 1628 г. в труде «Анатомические исследования о движении сердца и сосудов».

Малый круг кровообращения начинается из правого желудочка, при сокращении которого венозная кровь попадает в легочный ствол и, протекая через легкие, отдает диоксид углерода и насыщается кислородом. Обогащенная кислородом кровь из легких по легочным венам поступает в левое предсердие, где заканчивается малый круг.

Большой круг кровообращения начинается из левого желудочка, при сокращении которого кровь, обогащенная кислородом, нагнетается в аорту, артерии, артериолы и капилляры всех органов и тканей, а оттуда по венулам и венам притекает в правое предсердие, где и заканчивается большой круг.

Самым крупным сосудом большого круга кровообращения является аорта, которая выходит из левого желудочка сердца. Аорта образует дугу, от которой ответвляются артерии, несущие кровь к голове (сонные артерии) и к верхним конечностям (позвоночные артерии). Аорта проходит вниз вдоль позвоночника, где от нее отходят ветви, несущие кровь к органам брюшной полости, к мышцам туловища и нижним конечностям.

Артериальная кровь, богатая кислородом, проходит по всему телу, доставляя клеткам органов и тканей необходимые для их деятельности питательные вещества и кислород, и в капиллярной системе превращается в кровь венозную. Венозная кровь, насыщенная углекислым газом и продуктами клеточного обмена, возвращается в сердце и из него поступает в легкие для газообмена. Наиболее крупными венами большого круга кровообращения являются верхняя и нижняя полые вены, впадающие в правое предсердие.

Рис. Схема малого и большого кругов кровообращения

Следует обратить внимание, как в большой круг кровообращения включены системы кровообращения печени и почек. Вся кровь из капилляров и вен желудка, кишечника, поджелудочной железы и селезенки поступает в воротную вену и проходит через печень. В печени воротная вена разветвляется на мелкие вены и капилляры, которые затем вновь соединяются в общий ствол печеночной вены, впадающей в нижнюю полую вену. Вся кровь органов брюшной полости до поступления в большой круг кровообращения протекает через две капиллярные сети: капилляры этих органов и капилляры печени. Воротная система печени играет большую роль. Она обеспечивает обезвреживание ядовитых веществ, которые образуются в толстом кишечнике при расщеплении невсосавшихся в тонком кишечнике аминокислот и всасываются слизистой толстой кишки в кровь. Печень, подобно всем остальным органам, получает и артериальную кровь через печеночную артерию, отходящую от брюшной артерии.

В почках также имеются две капиллярные сети: капиллярная сеть есть в каждом мальпигиевом клубочке, затем эти капилляры соединяются в артериальный сосуд, который вновь распадается на капилляры, оплетающие извитые канальцы.

Рис. Схема кровообращения

Особенностью кровообращения в печени и почках является замедление тока крови, обусловливающейся функцией этих органов.

Таблица 1. Отличие тока крови в большом и малом кругах кровообращения

Большой круг кровообращения

Малый круг кровообращения

В каком отделе сердца начинается круг?

В левом желудочке

В правом желудочке

В каком отделе сердца заканчивается круг?

В правом предсердии

В левом предсердии

Где происходит газообмен?

В капиллярах, находящихся в органах грудной и брюшной полостей, головном мозге, верхних и нижних конечностях

В капиллярах, находящихся в альвеолах легких

Какая кровь движется по артериям?

Какая кровь движется по венам?

Время движения крови по кругу

Снабжение органов и тканей кислородом и перенос углекислого газа

Насыщение крови кислородом и удаление из организма углекислого газа

Время кругооборота крови - время однократного прохождения частицы крови по большому и малому кругам сосудистой системы. Подробнее следующем разделе статьи.

Закономерности движения крови по сосудам

Основные принципы гемодинамики

Гемодинамика - это раздел физиологии, изучающий закономерности и механизмы движения крови по сосудам организма человека. При ее изучении используется терминология и учитываются законы гидродинамики - науки о движении жидкостей.

Скорость, с которой движется кровь но сосудам, зависит от двух факторов:

  • от разности давления крови в начале и конце сосуда;
  • от сопротивления, которое встречает жидкость на своем пути.

Разность давлений способствует движению жидкости: чем она больше, тем интенсивнее это движение. Сопротивление в сосудистой системе, уменьшающее скорость движения крови, зависит от ряда факторов:

  • длины сосуда и его радиуса (чем больше длина и меньше радиус, тем больше сопротивление);
  • вязкости крови (она в 5 раз больше вязкости воды);
  • трения частиц крови о стенки сосудов и между собой.

Показатели гемодинамики

Скорость кровотока в сосудах осуществляется по законам гемодинамики, общим с законами гидродинамики. Скорость кровотока характеризуется тремя показателями: объемной скоростью кровотока, линейной скоростью кровотока и временем кругооборота крови.

Объемная скорость кровотока - количество крови, протекающее через поперечное сечение всех сосудов данного калибра за единицу времени.

Линейная скорость кровотока - скорость движения отдельной частицы крови вдоль сосуда за единицу времени. В центре сосуда линейная скорость максимальна, а около стенки сосуда минимальна вследствие повышенного трения.

Время кругооборота крови - время, в течение которого кровь проходит по большому и малому кругам кровообращения.В норме составляетс. На прохождение через малый круг затрачивается около 1/5, а на прохождение через большой - 4/5 этого времени

Движущей силой кровотока но системе сосудов каждого из кругов кровообращения является разность давления крови (ΔР) в начальном участке артериального русла (аорта для большого круга) и конечном участке венозного русла (полые вены и правое предсердие). Разность давления крови (ΔР) в начале сосуда (Р1) и в конце его (Р2) является движущей силой тока крови через любой сосуд кровеносной системы. Сила градиента давления крови расходуется на преодоление сопротивления кровотоку (R) в системе сосудов и в каждом отдельном сосуде. Чем выше градиент давления крови в кругу кровообращения или в отдельном сосуде, тем больше в них объемный кровоток.

Важнейшим показателем движения крови по сосудам является объемная скорость кровотока, или объемный кровоток (Q), под которым понимают объем крови, протекающей через суммарное поперечное сечение сосудистого русла или сечение отдельного сосуда в единицу времени. Объемную скорость кровотока выражают в литрах на минуту (л/мин) или миллилитрах на минуту (мл/мин). Для оценки объемного кровотока через аорту или суммарное поперечное сечение любого другого уровня сосудов большого круга кровообращения используют понятие объемный системный кровоток. Поскольку за единицу времени (минуту) через аорту и другие сосуды большого круга кровообращения протекает весь объем крови, выброшенной левым желудочком за это время, синонимом понятия системный объемный кровоток является понятие минутный объем кровотока (МОК). МОК взрослого человека в покое составляет 4-5 л/мин.

Различают также объемный кровоток в органе. В этом случае имеют в виду суммарный кровоток, протекающий за единицу времени через все приносящие артериальные или выносящие венозные сосуды органа.

Таким образом, объемный кровоток Q = (P1 - Р2) / R.

В этой формуле выражена суть основного закона гемодинамики, утверждающего, что количество крови, протекающей через суммарное поперечное сечение сосудистой системы или отдельного сосуда в единицу времени, прямо пропорционально разности давления крови в начале и в конце сосудистой системы (или сосуда) и обратно пропорционально сопротивлению току крови.

Суммарный (системный) минутный кровоток в большом круге рассчитывается с учетом величин среднего гидродинамического давления крови в начале аорты P1, и в устье полых вен Р2. Поскольку в этом участке вен давление крови близко к 0, то в выражение для расчета Q или МОК подставляется значение Р, равное среднему гидродинамическому артериальному давлению крови в начале аорты: Q (МОК) =P/R.

Одно из следствий основного закона гемодинамики - движущая сила тока крови в сосудистой системе - обусловлено давлением крови, создаваемым работой сердца. Подтверждением решающего значения величины давления крови для кровотока является пульсирующий характер тока крови на протяжении сердечного цикла. Во время систолы сердца, когда давление крови достигает максимального уровня, кровоток увеличивается, а во время диастолы, когда давление крови минимально, кровоток ослабляется.

По мере продвижения крови по сосудам от аорты к венам давление крови уменьшается и скорость его уменьшения пропорциональна сопротивлению кровотоку в сосудах. Особенно быстро снижается давление в артериолах и капиллярах, так как они обладают большим сопротивлением кровотоку, имея малый радиус, большую суммарную длину и многочисленные ветвления, создающие дополнительное препятствие кровотоку.

Сопротивление кровотоку, создаваемое во всем сосудистом русле большого круга кровообращения, называют общим периферическим сопротивлением (ОПС). Следовательно, в формуле для расчета объемного кровотока символ R можно заменить его аналогом - ОПС:

Из этого выражения выводится ряд важных следствий, необходимых для понимания процессов кровообращения в организме, оценки результатов измерения кровяного давления и его отклонений. Факторы, влияющие на сопротивление сосуда, для тока жидкости, описываются законом Пуазейля, в соответствии с которым

Из приведенного выражения вытекает, что поскольку числа 8 и Π являются постоянными, L у взрослого человека изменяется мало, то величина периферического сопротивления кровотоку определяется изменяющимися значениями радиуса сосудов r и вязкости крови η).

Уже упоминалось о том, что радиус сосудов мышечного типа может быстро изменяться и оказывать существенное влияние на величину сопротивления кровотоку (отсюда их название - резистивные сосуды) и величину кровотока через органы и ткани. Поскольку сопротивление зависит от величины радиуса в 4-й степени, то даже небольшие колебания радиуса сосудов сильно сказываются на величинах сопротивления току крови и кровотока. Так, например, если радиус сосуда уменьшится с 2 до 1 мм, то сопротивление его увеличится в 16 раз и при неизменном градиенте давления кровоток в этом сосуде также уменьшится в 16 раз. Обратные изменения сопротивления будут наблюдаться при увеличении радиуса сосуда в 2 раза. При неизменном среднем гемодинамическом давлении кровоток в одном органе может увеличиваться, в другом - уменьшаться в зависимости от сокращения или расслабления гладкой мускулатуры приносящих артериальных сосудов и вен этого органа.

Вязкость крови зависит от содержания в крови числа эритроцитов (гематокрита), белка, липопротеинов в плазме крови, а также от агрегатного состояния крови. В нормальных условиях вязкость крови не изменяется столь быстро, как просвет сосудов. После кровопотери, при эритропении, гипопротеинемии вязкость крови понижается. При значительном эритроцитозе, лейкозах, повышенной агрегации эритроцитов и гиперкоагуляции вязкость крови способна существенно возрастать, что влечет за собой повышение сопротивления кровотоку, увеличение нагрузки на миокард и может сопровождаться нарушением кровотока в сосудах микроциркуляторного русла.

В устоявшемся режиме кровообращения объем крови, изгнанный левым желудочком и протекающий через поперечное сечение аорты, равен объему крови, протекающей через суммарное поперечное сечение сосудов любого другого участка большого круга кровообращения. Этот объем крови возвращается в правое предсердие и поступает в правый желудочек. Из него кровь изгоняется в малый круг кровообращения и затем через легочные вены возвращается в левое сердце. Поскольку МОК левого и правого желудочков одинаковы, а большой и малый круги кровообращения соединены последовательно, то объемная скорость кровотока в сосудистой системе остается одинаковой.

Однако во время изменения условий кровотока, например при переходе из горизонтального в вертикальное положение, когда сила тяжести вызывает временное накопление крови в венах нижней части туловища и ног, на короткое время МОК левого и правого желудочков могут стать различными. Вскоре внутрисердечные и экстракардиальные механизмы регуляции работы сердца выравнивают объемы кровотока через малый и большой круги кровообращения.

При резком уменьшении венозного возврата крови к сердцу, вызывающем уменьшение ударного объема, может понизиться артериальное давление крови. При выраженном его снижении может уменьшиться приток крови к головному мозгу. Этим объясняется ощущение головокружения, которое может наступить при резком переходе человека из горизонтального в вертикальное положение.

Объем и линейная скорость токи крови в сосудах

Общий объем крови в сосудистой системе является важным гомеостатическим показателем. Средняя величина его составляет для женщин 6-7%, для мужчин 7-8% от массы тела и находится в пределах 4-6 л; 80-85% крови из этого объема - в сосудах большого круга кровообращения, около 10% - в сосудах малого круга кровообращения и около 7% - в полостях сердца.

Больше всего крови содержится в венах (около 75%) - это указывает на их роль в депонировании крови как в большом, так и в малом кругу кровообращения.

Движение крови в сосудах характеризуется не только объемной, но и линейной скоростью кровотока. Под ней понимают расстояние, на которое перемещается частичка крови за единицу времени.

Между объемной и линейной скоростью кровотока существует взаимосвязь, описываемая следующим выражением:

где V - линейная скорость кровотока, мм/с, см/с; Q - объемная скорость кровотока; П - число, равное 3,14; r - радиус сосуда. Величина Пr 2 отражает площадь поперечного сечения сосуда.

Рис. 1. Изменения давления крови, линейной скорости кровотока и площади поперечного сечения в различных участках сосудистой системы

Рис. 2. Гидродинамические характеристики сосудистого русла

Из выражения зависимости величины линейной скорости от объемной в сосудах кровеносной системы видно, что линейная скорость кровотока (рис. 1.) пропорциональна объемному кровотоку через сосуд(ы) и обратно пропорциональна площади поперечного сечения этого сосуда(ов). Например, в аорте, имеющей наименьшую площадь поперечного сечения в большом круге кровообращения (3-4 см 2), линейная скорость движения крови наибольшая и составляет в покое околосм/с. При физической нагрузке она может возрасти в 4-5 раз.

По направлению к капиллярам суммарный поперечный просвет сосудов увеличивается и, следовательно, линейная скорость кровотока в артериях и артериолах уменьшается. В капиллярных сосудах, суммарная площадь поперечного сечения которых больше, чем в любом другом отделе сосудов большого круга (враз больше поперечного сечения аорты), линейная скорость кровотока становится минимальной (менее 1 мм/с). Медленный ток крови в капиллярах создает наилучшие условия для протекания обменных процессов между кровью и тканями. В венах линейная скорость кровотока увеличивается в связи с уменьшением площади их суммарного поперечного сечения по мере приближения к сердцу. В устье полых вен она составляетсм/с, а при нагрузках возрастает до 50 см/с.

Линейная скорость движения плазмы и форменных элементов крови зависит не только от типа сосуда, но и от их расположения в потоке крови. Различают ламинарный тип течения крови, при котором ноток крови можно условно разделить на слои. При этом линейная скорость движения слоев крови (преимущественно плазмы), близких или прилежащих к стенке сосуда, - наименьшая, а слоев в центре потока - наибольшая. Между эндотелием сосудов и пристеночными слоями крови возникают силы трения, создающие на эндотелии сосудов сдвиговые напряжения. Эти напряжения играют роль в выработке эндотелием сосудоактивных факторов, регулирующих просвет сосудов и скорость кровотока.

Эритроциты в сосудах (за исключением капилляров) располагаются преимущественно в центральной части потока крови и движутся в нем с относительно высокой скоростью. Лейкоциты, наоборот, располагаются преимущественно в пристеночных слоях потока крови и совершают катящиеся движения с небольшой скоростью. Это позволяет им связываться с рецепторами адгезии в местах механического или воспалительного повреждения эндотелия, прилипать к стенке сосуда и мигрировать в ткани для выполнения защитных функций.

При существенном увеличении линейной скорости движения крови в суженной части сосудов, в местах отхождения от сосуда его ветвей ламинарный характер движения крови может сменяться на турбулентный. При этом в потоке крови может нарушиться послойность перемещения ее частиц, между стенкой сосуда и кровью могут возникать большие силы трения и сдвиговых напряжений, чем при ламинарном движении. Развиваются вихревые потоки крови, возрастает вероятность повреждения эндотелия и отложения холестерина и других веществ в интиму стенки сосуда. Это способно привести к механическому нарушению структуры сосудистой стенки и инициированию развития пристеночных тромбов.

Время полного кругооборота крови, т.е. возврата частицы крови в левый желудочек после ее выброса и прохождения через большой и малый круги кровообращения, составляет в покосс, или примерно через 27 систол желудочков сердца. Приблизительно четверть этого времени затрачивается на перемещение крови по сосудам малого круга и три четверти - по сосудам большого круга кровообращения.

Большой и малый круги кровообращения. Скорость кровотока

За сколько кровь делает полный круг

и подростковая гинекология

и доказательная медицина

и медицинскому работнику

Кровообращение - это непрерывное движение крови по замкнутой сердечно-сосудистой системе, обеспечивающее обмен газов в легких и тканях тела.

Помимо обеспечения тканей и органов кислородом и удаления из них углекислоты, кровообращение доставляет к клеткам питательные вещества, воду, соли, витамины, гормоны и удаляет конечные продукты обмена веществ, а также поддерживает постоянство температуры тела, обеспечивает гуморальную регуляцию и взаимосвязь органов и систем органов в организме.

Система органов кровообращения состоит из сердца и кровеносных сосудов, пронизывающих все органы и ткани тела.

Кровообращение начинается в тканях, где совершается обмен веществ через стенки капилляров. Кровь, отдавшая кислород органам и тканям, поступает в правую половину сердца и направляется им в малый (легочной) круг кровообращения, где кровь насыщается кислородом, возвращается к сердцу, поступая в левую его половину, и вновь разносится по всему организму (большому кругу кровообращения).

Сердце - главный орган системы кровообращения. Оно представляет собой полый мышечный орган, состоящий из четырех камер: двух предсердий (правого и левого), разделенных межпредсердной перегородкой, и двух желудочков (правого и левого), разделенных межжелудочковой перегородкой. Правое предсердие сообщается с правым желудочком через трехстворчатый, а левое предсердие с левым желудочком - через двустворчатый клапан. Масса сердца взрослого человека в среднем около 250 г у женщин и около 330 г у мужчин. Длина сердцасм, поперечный размер 8-11 см и переднезадний - 6-8,5 см. Объем сердца у мужчин в среднем равенсм 3 , а у женщин см 3 .

Наружные стенки сердца образованы сердечной мышцей, которая по структуре сходна с поперечнополосатыми мышцами. Однако сердечная мышца отличается способностью автоматически ритмично сокращаться благодаря импульсам, возникающим в самом сердце независимо от внешних воздействий (автоматия сердца).

Функция сердца состоит в ритмичном нагнетании в артерии крови, приходящей к нему по венам. Сердце сокращается околораз в минуту в состоянии покоя организма (1 раз за 0,8 с). Более половины этого времени оно отдыхает - расслабляется. Непрерывная деятельность сердца складывается из циклов, каждый из которых состоит из сокращения (систола) и расслабления (диастола).

Различают три фазы сердечной деятельности:

  • сокращение предсердий - систола предсердий - занимает 0,1 с
  • сокращение желудочков - систола желудочков - занимает 0,3 с
  • общая пауза - диастола (одновременное расслабление предсердий и желудочков) - занимает 0,4 с

Таким образом, в течение всего цикла предсердия работают 0,1 с и отдыхают 0,7 с, желудочки работают 0,3 с и отдыхают 0,5 с. Этим объясняется способность сердечной мышцы работать, не утомляясь, в течение всей жизни. Высокая работоспособность сердечной мышцы обусловлена усиленным кровоснабжением сердца. Примерно 10 % крови, выбрасываемой левым желудочком в аорту, поступает в отходящие от нее артерии, которые питают сердце.

Артерии - кровеносные сосуды, несущие обогащенную кислородом кровь от сердца к органам и тканям (лишь легочная артерия несет венозную кровь).

Стенка артерии представлена тремя слоями: наружной соединительнотканной оболочкой; средней, состоящей из эластических волокон и гладких мышц; внутренней, образованной эндотелием и соединительной тканью.

У человека диаметр артерий колеблется от 0,4 до 2,5 см. Общий объем крови в артериальной системе составляет в среднем 950 мл. Артерии постепенно древовидно ветвятся на все более мелкие сосуды - артериолы, которые переходят в капилляры.

Капилляры (от лат. «капиллюс» - волос) - мельчайшие сосуды (средний диаметр не превышает 0,005 мм, или 5 мкм), пронизывающие органы и ткани животных и человека, имеющих замкнутую кровеносную систему. Они соединяют мелкие артерии - артериолы с мелкими венами - венулами. Через стенки капилляров, состоящие из клеток эндотелия, происходит обмен газов и других веществ между кровью и различными тканями.

Вены - кровеносные сосуды, несущие насыщенную углекислым газом, продуктами обмена веществ, гормонами и другими веществами кровь от тканей и органов к сердцу (исключение легочные вены, несущие артериальную кровь). Стенка вены значительно тоньше и эластичнее стенки артерии. Мелкие и средние вены снабжены клапанами, препятствующими обратному току крови в этих сосудах. У человека объем крови в венозной системе составляет в среднем 3200 мл.

Движение крови по сосудам впервые было описано в 1628 г. английским врачом В. Гарвеем.

Гарвей Вильям () - английский врач и естествоиспытатель. Создал и ввел в практику научных исследований первый экспериментальный метод - вивисекцию (живосечение).

В 1628 г. опубликовал книгу «Анатомические исследования о движении сердца и крови у животных», в которой описал большой и малый круги кровообращения, сформулировал основные принципы движения крови. Дата публикации этого труда считается годом рождения физиологии как самостоятельной науки.

У человека и млекопитающих кровь движется по замкнутой сердечно-сосудистой системе, состоящей из большого и малого кругов кровообращения (рис.).

Большой круг начинается от левого желудочка, через аорту разносит кровь по всему телу, в капиллярах отдает тканям кислород, забирает углекислый газ, превращается из артериальной в венозную и по верхней и нижней полым венам возвращается в правое предсердие.

Малый круг кровообращения начинается от правого желудочка, через легочную артерию разносит кровь к легочным капиллярам. Здесь кровь отдает углекислый газ, насыщается кислородом и по легочным венам течет к левому предсердию. Из левого предсердия через левый желудочек кровь вновь поступает в большой круг кровообращения.

Малый круг кровообращения - легочной круг - служит для обогащения крови кислородом в легких. Он начинается от правого желудочка и заканчивается левым предсердием.

Из правого желудочка сердца венозная кровь поступает в легочной ствол (общая легочная артерия), которая вскоре делится на две ветви,- несущие кровь к правому и левому легкому.

В легких артерии разветвляются на капилляры. В капиллярных сетях, оплетающих легочные пузырьки, кровь отдает углекислоту и получает взамен новый запас кислорода (легочное дыхание). Насыщенная кислородом кровь приобретает алый цвет, становится артериальной и поступает из капилляров в вены, которые, слившись в четыре легочные вены (по две с каждой стороны), впадают в левое предсердие сердца. В левом предсердии заканчивается малый (легочный) круг кровообращения, а поступившая в предсердие артериальная кровь переходит через левое атриовентрикулярное отверстие в левый желудочек, где начинается большой круг кровообращения. Следовательно, в артериях малого круга кровообращения течет венозная кровь, а в его венах - артериальная.

Большой круг кровообращения - телесный - собирает венозную кровь от верхней и нижней половины туловища и аналогично распределяет артериальную; начинается от левого желудочка и заканчивается правым предсердием.

Из левого желудочка сердца кровь поступает в самый крупный артериальный сосуд - аорту. Артериальная кровь содержит необходимые для жизнедеятельности организма питательные вещества и кислород и имеет ярко-алый цвет.

Аорта разветвляется на артерии, которые идут ко всем органам и тканям тела и переходят в толще их в артериолы и далее в капилляры. Капилляры в свою очередь собираются в венулы и далее в вены. Через стенку капилляров происходит обмен веществ и газообмен между кровью и тканями тела. Протекающая в капиллярах артериальная кровь отдает питательные вещества и кислород и взамен получает продукты обмена и углекислоту (тканевое дыхание). Вследствие этого поступающая в венозное русло кровь бедна кислородом и богата углекислотой и потому имеет темную окраску - венозная кровь; при кровотечении по цвету крови можно определить, какой сосуд поврежден - артерия или вена. Вены сливаются в два крупных ствола - верхнюю и нижнюю полые вены, которые впадают в правое предсердие сердца. Этим отделом сердца заканчивается большой (телесный) круг кровообращения.

В большом круге кровообращения по артериям течет артериальная кровь, по венам - венозная.

В малом круге, наоборот, по артериям от сердца течет венозная кровь, а по венам возвращается в сердце артериальная.

Дополнением к большому кругу является третий (сердечный) круг кровообращения , обслуживающий само сердце. Он начинается выходящими из аорты венечными артериями сердца и заканчивается венами сердца. Последние сливаются в венечный синус, впадающий в правое предсердие, а остальные вены открываются в полость предсердия непосредственно.

Движение крови по сосудам

Любая жидкость течет от места, где давление выше, туда, где оно ниже. Чем больше разность давлений, тем выше скорость течения. Кровь в сосудах большого и малого круга кровообращений также движется благодаря разности давлений, которую создает сердце своими сокращениями.

В левом желудочке и аорте давление крови выше, чем в полых венах (отрицательное давление) и в правом предсердии. Разность давлений в этих участках обеспечивает движение крови в большом круге кровообращения. Высокое давление в правом желудочке и легочной артерии и низкое в легочных венах и левом предсердии обеспечивают движение крови в малом круге кровообращения.

Самое высокое давление в аорте и крупных артериях (артериальное давление). Артериальное кровяное давление не является постоянной величиной [показать]

Кровяное давление - это давление крови на стенки кровеносных сосудов и камер сердца, возникающее в результате сокращения сердца, нагнетающего кровь в сосудистую систему, и сопротивления сосудов. Наиболее важным медицинским и физиологическим показателем состояния кровеносной системы является величина давления в аорте и крупных артериях - артериальное давление.

Артериальное кровяное давление не является постоянной величиной. У здоровых людей в состоянии покоя различают максимальное, или систолическое, давление крови - уровень давления в артериях во время систолы сердца около 120 мм ртутного столба, и минимальное, или диастолическое,- уровень давления в артериях во время диастолы сердца около 80 мм ртутного столба. Т.е. артериальное кровяное давление пульсирует в такт сокращений сердца: в момент систолы оно повышается домм рт. ст., а во время диастолы снижается домм рт. ст. Эти пульсовые колебания давления происходят одновременно с пульсовыми колебаниями артериальной стенки.

Пульс - периодическое толчкообразное расширение стенок артерий, синхронное с сокращением сердца. По пульсу определяют количество сокращений сердца в минуту. У взрослого человека частота пульса в среднем составляетударов в минуту. При физической нагрузке частота пульса может возрастать доударов. В местах, где артерии расположены на кости и лежат непосредственно под кожей (лучевая, височная), пульс легко прощупывается. Скорость распространения пульсовой волны около 10 м/с.

На величину артериального давления влияют:

  1. работа сердца и сила сердечного сокращения;
  2. величина просвета сосудов и тонус их стенок;
  3. количество циркулирующей в сосудах крови;
  4. вязкость крови.

Кровяное давление у человека измеряют в плечевой артерии, сопоставляя его с атмосферным. Для этого на плечо одевают резиновую манжетку, соединенную с манометром. В манжетку накачивают воздух, пока пульс на запястьи не исчезнет. Это означает, что плечевая артерия сжата большим давлением, и кровь через нее не течет. Затем, постепенно выпуская воздух из манжетки, следят за появлением пульса. В этот момент давление в артерии становится несколько выше, чем давление в манжетке, и кровь, а вместе с ней и пульсовая волна начинают доходить до запястья. Показания манометра в это время и характеризуют кровяное давление в плечевой артерии.

Стойкое повышение кровяного давления выше указанных цифр в состоянии покоя организма называется гипертонией, а его понижение - гипотонией.

Уровень кровяного давления регулируется нервными и гуморальными факторами (см. табл.).

(диастолическое)

Скорость движения крови зависит не только от разности давлений, но и от ширины кровеносного русла. Хотя аорта - самый широкий сосуд, но в организме она одна и через нее протекает вся кровь, которая выталкивается левым желудочком. Поэтому скорость здесь максимальнаямм/с (см. табл. 1). По мере разветвления артерий их диаметр уменьшается, однако общая площадь поперечного сечения всех артерий возрастает и скорость движения крови уменьшается, достигая в капиллярах 0,5 мм/с. Благодаря столь малой скорости течения крови в капиллярах кровь успевает отдать кислород и питательные вещества тканям и принять продукты их жизнедеятельности.

Замедление тока крови в капиллярах объясняется их огромным количеством (около 40 млрд.) и большим суммарным просветом (в 800 раз больше просвета аорты). Движение крови в капиллярах осуществляется за счет изменения просвета подводящих мелких артерий: их расширение усиливает кровоток в капиллярах, а сужение - уменьшает.

Вены на пути от капилляров по мере приближения к сердцу укрупняются, сливаются, их количество и суммарный просвет кровяного русла уменьшается, а скорость движения крови по сравнению с капиллярами возрастает. Из табл. 1 также видно, что 3/4 всей крови находится в венах. Это связано с тем, что тонкие стенки вен способны легко растягиваться, поэтому они мoгут содержать значительно больше крови, чем соответствующие артерии.

Основной причиной движения крови по венам служит разность давлений в начале и конце венозной системы, поэтому движение крови по венам происходит в направлении к сердцу. Этому способствуют присасывающее действие грудной клетки («дыхательный насос») и сокращение скелетной мускулатуры («мышечный насос»). Во время вдоха давление в грудной клетке уменьшается. При этом разность давлений в начале и в конце венозной системы увеличивается, и кровь по венам направляется к сердцу. Скелетные мышцы, сокращаясь, сжимают вены, что также способствует передвижению крови к сердцу.

Соотношение между скоростью движения крови, шириной кровеносного русла и давлением крови иллюстрирует рис. 3. Количество крови, протекающее за единицу времени через сосуды, равно произведению скорости движения крови на площадь поперечного сечения сосудов. Эта величина одинакова для всех частей кровеносной системы: сколько крови выталкивает сердце в аорту, столько ее протекает через артерии, капилляры и вены и столько же возвращается назад к сердцу, и равна минутному объему крови.

Перераспределение крови в организме

Если артерия, отходящая от аорты к какому-нибудь органу, благодаря расслаблению своих гладких мышц расширится, то орган будет получать больше крови. В то же время другие органы получат за счет этого меньше крови. Так происходит перераспределение крови в организме. Вследствие перераспределения к работающим органам притекает больше крови за счет органов, которые в данное время пребывают в покое.

Перераспределение крови регулируется нервной системой: одновременно с расширением сосудов в работающих органах кровеносные сосуды неработающих суживаются и артериальное давление остается неизменным. Но если расширятся все артерии, это приведет к падению артериального давления и к уменьшению скорости движения крови в сосудах.

Время кругооборота крови

Время кругооборота крови - это время, необходимое для того, чтобы кровь прошла через весь круг кровообращения. Для измерения времени кругооборота крови применяется ряд способов [показать]

Принцип измерения времени кругооборота крови заключается в том, что в вену вводят какое-либо вещество, не встречающееся обычно в организме, и определяют, через какой промежуток времени оно появляется в одноименной вене другой стороны или вызывает характерное для него действие. Например, в локтевую вену вводят раствор алкалоида лобелина, действующего через кровь на дыхательный центр продолговатого мозга, и определяют время от момента введения вещества до момента, когда появляется кратковременная задержка дыхания или кашель. Это происходит, когда молекулы лобелина, совершив кругооборот в кровеносной системе, подействуют на дыхательный центр и вызовут изменение дыхания или кашель.

В последние годы скорость кругооборота крови по обоим кругам кровообращения (или только по малому, или только по большому кругу) определяют с помощью радиоактивного изотопа натрия и счетчика электронов. Для этого несколько таких счетчиков помещают на разных частях тела вблизи крупных сосудев и в области сердца. После введения в локтевую вену радиоактивного изотопа натрия определяют время появления радиоактивного излучения в области сердца и исследуемых сосудов.

Время кругооборота крови у человека составляет в среднем примерно 27 систол сердца. Присокращениях сердца в минуту полный кругооборот крови происходит приблизительно засекунды. Не надо забывать, однако, что скорость течения крови по оси сосуда больше, чем у его стенок, а также, что не все сосудистые области имеют одинаковую протяженность. Поэтому не вся кровь совершает кругооборот так быстро, и указанное выше время является кратчайшим.

Исследования на собаках показали, что 1/5 времени полного кругооборота крови приходится на малый круг кровообращения и 4/5 - на большой круг.

Иннервация сердца. Сердце, как и другие внутренние органы, иннервируетея вегетативной нервной системой и получает двойную иннервацию. К сердцу подходят симпатические нервы, которые усиливают и ускоряют его сокращения. Вторая группа нервов - парасимпатические - действует на сердце противоположным образом: замедляет и ослабляет сердечные сокращения. Эти нервы регулируют работу сердца.

Кроме того, на работу сердца влияет гормон надпочечников - адреналин, который с кровью поступает в сердце и усиливает его сокращения. Регуляция работы органов с помощью веществ, переносимых кровью, называется гуморальной.

Нервная и гуморальная регуляции сердца в организме действуют согласованно и обеспечивают точное приспособление деятельности сердечно-сосудистой системы к потребностям организма и условиям окружающей среды.

Иннервация кровеносных сосудов. Кровеносные сосуды иниервируются симпатическими нервами. Возбуждение, распространяющееся по ним, вызывает сокращение гладких мышц в стенках сосудов и суживает сосуды. Если перерезать симпатические нервы, идущие к определенной части тела, соответствующие сосуды расширятся. Следовательно, по симпатическим нервам к кровеносным сосудам все время поступает возбуждение, которое держит эти сосуды в состоянии некоторого сужения - сосудистого тонуса. Когда возбуждение усилнвается, частота нервных импульсов возрастает и сосуды суживаются сильнее - сосудистый тонус повышается. Наоборот, при уменьшении частоты нервных импульсов вследствие торможения симпатических нейронов сосудистый тонус снижается и кровеносные сосуды расширяются. К сосудам некоторых органов (скелетных мышц, слюнных желез) кроме сосудосуживающих подходят также сосудорасширяющие нервы. Эти нервы возбуждаются и расширяют кровеносные сосуды органов во время их работы. На просвет сосудов влияют также вещества, которые разносятся кровью. Адреналин суживает кровеносные сосуды. Другое вещество - ацетилхолин, - выделяемое окончаниями некоторых нервов, расширяет их.

Регуляция деятельности сердечно-сосудистой системы. Кровоснабжение органов изменяется в зависимости от их потребностей благодаря описанному перераспределению крови. Но это перераспределение может быть эффективным только при условии, что давление в артериях не изменяется. Одной из основных функций нервной регуляции кровообращения является поддержание постоянного кровяного давления. Эта функция осуществляется рефлекторно.

В стенке аорты и сонных артерий имеются рецепторы, которые раздражаются сильнее, если кровяное давление превышает нормальный уровень. Возбуждение от этих рецепторов идет к сосудодвигательному центру, расположенному в продолговатом мозге, и тормозит его работу. От центра по симпатическим нервам к сосудам и сердцу начинает поступать более слабое возбуждение, чем раньше, и кровеносные сосуды расширяются, а сердце ослабляет свою работу. Вследствие этих изменений кровяное давление снижается. А если давление почему-либо упало ниже нормы, то раздражение рецепторов прекращается совсем и сосудо-двигательный центр, не получая тормозных влияний от рецепторов, усиливает свою деятельность: посылает к сердцу и сосудам больше нервных импульсов в секунду, сосуды суживаются, сердце сокращается, чаще и сильнее, кровяное давление повышается.

Гигиена сердечной деятельности

Нормальная деятельность человеческого организма возможна лишь при наличии хорошо развитой сердечно-сосудистой системы. Скорость кровотока будет определять степень кровоснабжения органов и тканей и скорость удаления продуктов жизнедеятельности. При физической работе потребность органов в кислороде возрастает одновременно с усилением и учащением сердечных сокращений. Такую работу может обеспечить только сильная сердечная мышца. Чтобы быть выносливым к разнообразной трудовой деятельности, важно тренировать сердце, увеличивать силу его мышцы.

Физический труд, физкультура развивают сердечную мышцу. Для обеспечения нормальной функции сердечно-сосудистой системы человек должен начинать свой день с утренней зарядки, особенно люди, профессии которых не связаны с физическим трудом. Для обогащения крови кислородом физические упражнения лучше выполнять на свежем воздухе.

Необходимо помнить, что чрезмерные физические и психические напряжения могут вызвать нарушение нормальной работы сердца, его заболевания. Особенно вредное влияние на сердечно-сосудистую систему оказывают алкоголь, никотин, наркотики. Алкоголь и никотин отравляют сердечную мышцу и нервную систему, вызывают резкие нарушения регуляции сосудистого тонуса и деятельности сердца. Они ведут к развитию тяжелых заболеваний сердечно-сосудистой системы и могут стать причиной внезапной смерти. У курящих и употребляющих алкоголь молодых людей чаще, чем у других, возникают спазмы сосудов сердца, вызывающие тяжелые сердечные приступы, иногда и смерть.

Первая помощь при ранениях и кровотечениях

Травмы часто сопровождаются кровотечением. Различают капиллярное, венозное и артериальное кровотечения.

Капиллярное кровотечение возникает даже при незначительном ранении и сопровождается медленным вытеканием крови из раны. Такую рану следует обработать раствором бриллиантового зеленого (зеленкой) для обеззараживания и наложить чистую марлевую повязку. Повязка останавливает кровотечение, способствует образованию тромба и не дает возможности микробам попасть в рану.

Венозное кровотечение характеризуется значительно большей скоростью вытекания крови. Вытекающая кровь имеет темный цвет. Для остановки кровотечения необходимо наложить тугую повязку ниже раны, т. е. дальше от сердца. После остановки кровотечения рану обрабатывают дезинфицирующим средством (3% р-р перекиси водорода, водка), перевязывают стерильной давящей повязкой.

При артериальном кровотечении из раны фонтанирует алая кровь. Это наиболее опасное кровотечение. При повреждении артерии конечности нужно поднять конечность как можно выше, согнуть ее и прижать пальцем раненную артерию в том месте, где она близко подходит к поверхности тела. Необходимо также выше места ранения, т. е. ближе к сердцу, наложить резиновый жгут (можно использовать для этого бинт, веревку) и туго его затянуть, чтобы полностью остановить кровотечение. Жгут нельзя держать затянутым более 2 ч. При его наложении необходимо прикрепить записку, в которой следует указать время наложения жгута.

Следует помнить, что венозное, а еще в большей степени артериальное кровотечение может привести к значительной потере крови и даже к смерти. Поэтому при ранении необходимо как можно скорее остановить кровотечение, а затем доставить пострадавшего в больницу. Сильная боль или испуг могут привести к тому, что человек потеряет сознание. Потеря сознания (обморок) является следствием торможения сосудодвигательного центра, падения кровяного давления и недостаточного снабжения головного мозга кровью. Потерявшему сознание необходимо дать понюхать какое-нибудь нетоксичное с сильным запахом вещество (например, нашатырный спирт), смочить лицо холодной водой или слегка похлопать его по щекам. При раздражении обонятельных или кожных рецепторов возбуждение от них поступает в головной мозг и снимает торможение сосудодвигательного центра. Кровяное давление повышается, головной мозг получает достаточное питание, и сознание возвращается.

Обратите внимание! Диагностика и лечение виртуально не проводятся! Обсуждаются только возможные пути сохранения вашего здоровья.

Стоимость 1 часаруб. (с 02:00 до 16:00, время московское)

С 16:00 до 02:р/час.

Реальный консультативный прием ограничен.

Ранее обращавшиеся пациенты могут найти меня по известным им реквизитам.

Заметки на полях

Нажми на картинку -

Просьба сообщать о неработающих ссылках на внешние страницы, включая ссылки, не выводящие прямо на нужный материал, запрашивающие оплату, требующие личные данные и т.д. Для оперативности вы можете сделать это через форму отзыва, размещенную на каждой странице.

Остался неоцифрованным 3-й том МКБ. Желающие оказать помощь могут заявить об этом на нашем форуме

В настоящее время на сайте готовится полная HTML-версия МКБ-10 - Международной классификации болезней, 10-я редакция.

Желающие принять участие могут заявить об этом на нашем форуме

Уведомления об изменениях на сайте можно получить через раздел форума «Компас здоровья» - Библиотека сайта «Островок здоровья»

Выделенный текст будет отправлен редактору сайта.

не должна использоваться для самостоятельной диагностики и лечения, и не может служить заменой очной консультации врача.

Администрация сайта не несёт ответственности за результаты, полученные в ходе самолечения с использованием справочного материала сайта

Перепечатка материалов сайта разрешается при условии размещения активной ссылки на оригинальный материал.

© 2008 blizzard. Все права защищены и охраняются законом.

Жизнь и здоровье человека во многом зависят от нормальной работы его сердца. Оно перекачивает по сосудам организма кровь, поддерживая жизнеспособность всех органов и тканей. Эволюционно строение сердца человека – схема, круги кровообращения, автоматизм циклов сокращений и расслаблений мышечных клеток стенок, работа клапанов – все подчинено выполнению основной задачи равномерной и достаточной циркуляции крови.

Строение сердца человека — анатомия

Орган, благодаря которому организм насыщен кислородом и питательными веществами, – анатомическое образование конусообразной формы, расположенное в грудной клетке, большей частью слева. Внутри органа полость, разделенная на четыре неравные части перегородками – это два предсердия и два желудочка. Первые собирают кровь из впадающих в них вен, а вторые выталкивают ее в исходящие из них артерии. В норме в правой части сердца (предсердии и желудочке) находится бедная кислородом кровь, а в левой – оксигенированная.

Предсердия

Правое (ПП). Имеет гладкую поверхность, объем 100-180 мл, включая дополнительное образование – правое ушко. Толщина стенок 2-3 мм. В ПП впадают сосуды:

  • верхняя полая вена,
  • сердечные вены – через венечный синус и точечные отверстия малых вен,
  • нижняя полая вена.

Левое (ЛП). Общий объем, включая ушко, составляет 100-130 мл, стенки также толщиной 2-3 мм. ЛП принимает кровь из четырех легочных вен.

Разделяет предсердия межпредсердная перегородка (МПП), которая в норме у взрослых не имеет никаких отверстий. С полостями соответствующих желудочков сообщаются посредством отверстий, снабженных клапанами. Справа – трехстворчатым трикуспидальным, слева – двухстворчатым митральным.

Желудочки

Правый (ПЖ) конусообразный, основание обращенную кверху. Толщина стенок до 5 мм. Внутренняя поверхность в верхней части более гладкая, ближе к верхушке конуса имеет большое количество мышечных тяжей-трабекул. В средней части желудочка имеются три отдельные сосочковые (папиллярные) мышцы, которые посредством сухожильных нитей-хорд удерживают створки трехстворчатого клапана от прогиба их в полость предсердия. Хорды отходят также и непосредственно от мышечного слоя стенки. В основании желудочка два отверстия с клапанами:

  • служащее выходом для крови в легочный ствол,
  • соединяющее желудочек с предсердием.

Левый (ЛЖ). Этот отдел сердца окружен наиболее внушительной стенкой, толщина которой составляет 11-14 мм. Полость ЛЖ также конусообразна и имеет два отверстия:

  • предсердно-желудочковое с двустворчатым митральным клапаном,
  • выход в аорту с трехстворчатым аортальным.

Мышечные тяжи в области верхушки сердца и папиллярные мышцы, поддерживающие створки митрального клапана здесь более мощные, чем аналогичные структуры в ПЖ.

Оболочки сердца

Для защиты и обеспечения движений сердца в грудной полости оно окружено сердечной сорочкой – перикардом. Непосредственно в стенке сердца три слоя – эпикард, эндокард, миокард.

  • Перикард называют сердечной сумкой, он неплотно прилежит к сердцу, внешний его листок соприкасается с соседними органами, а внутренний является наружным слоем стенки сердца – эпикардом. Состав — соединительная ткань. В полости перикарда для лучшего скольжения сердца в норме присутствует небольшое количество жидкости.
  • Эпикард также имеет соединительнотканную основу, скопления жира наблюдаются в области верхушки и по ходу венечных борозд, где располагаются сосуды. В других местах эпикард прочно связан с мышечными волокнами основного слоя.
  • Миокард составляет основную толщину стенки, особенно в самой нагруженной зоне — области левого желудочка. Расположенные в несколько слоев мышечные волокна идут как продольно, так и по кругу, обеспечивая равномерное сокращение. Миокард образует трабекулы в области верхушки обоих желудочков и папиллярные мышцы, от которых отходят сухожильные хорды к створкам клапанов. Мышцы предсердий и желудочков разделены плотной фиброзной прослойкой, которая также служит каркасом для предсердно-желудочковых (атриовентрикулярных) клапанов. Межжелудочковая перегородка состоит на 4/5 длины из миокарда. В верхней части, называемой мембранозной, ее основа соединительнотканная.
  • Эндокард – листок, покрывающий все внутренние структуры сердца. Он трехслойный, один из слоев контактирует с кровью и по строению аналогичен эндотелию сосудов, которые вступают и исходят из сердца. Также в эндокарде присутствует соединительная ткань, коллагеновые волокна, гладкомышечные клетки.

Все клапаны сердца образованы из складок эндокарда.

Сердце человека строение и функции

Нагнетание крови сердцем в сосудистое русло обеспечивается особенностями его строения:

  • мышца сердца способна к автоматическому сокращению,
  • проводящая система гарантирует постоянство циклов возбуждения и расслабления.

Как проходит сердечный цикл

Он состоит из трех последовательных фаз: общая диастола (расслабление), систола (сокращение) предсердий, систола желудочков.

  • Общая диастола – период физиологической паузы в работе сердца. В это время мышца сердца расслаблена, а клапаны между желудочками и предсердиями открыты. Из венозных сосудов кровь свободно наполняет полости сердца. Клапаны легочной артерии и аорты закрыты.
  • Систола предсердий возникает, когда автоматически возбуждается водитель ритма в синусовом узле предсердия. В конце этой фазы клапаны между желудочками и предсердиями закрываются.
  • Систола желудочков проходит в два этапа – изометрического напряжения и изгнания крови в сосуды.
  • Период напряжения начинается с асинхронного сокращения мышечных волокон желудочков до момента полного закрытия митрального и трикуспидального клапанов. Затем в изолированных желудочках начинает расти напряжение, повышается давление.
  • Когда оно становится выше, чем в артериальных сосудах, инициируется период изгнания — открываются клапаны, выпускающие кровь в артерии. В это время мышечные волокна стенок желудочков интенсивно сокращаются.
  • Затем давление в желудочках снижается, артериальные клапаны закрываются, что соответствует началу диастолы. В период полного расслабления открываются атриовентрикулярные клапаны.

Проводящая система, ее строение и работа сердца

Обеспечивает сокращение миокарда проводящая система сердца. Ее основной особенностью является автоматизм клеток. Они способны самовозбуждаться в определенном ритме в зависимости от электрических процессов, сопровождающих сердечную деятельность.

В составе проводящей системы связанные между собой синусовый и атриовентрикулярный узлы, нижележащие пучок и разветвления Гиса, волокна Пуркинье.

  • Синусовый узел. В норме генерирует первоначальный импульс. Расположен в области устья обеих полых вен. От него возбуждение переходит к предсердиям и передается атриовентрикулярному (АВ) узлу.
  • Атриовентрикулярный узел распространяет импульс к желудочкам.
  • Пучок Гиса – проводящий «мостик», расположенный в межжелудочковой перегородке, там же он разделяется на правую и левую ножки, передающие возбуждение желудочкам.
  • Волокна Пуркинье – конечный отдел проводящей системы. Они расположены у эндокарда и контактируют непосредственно с миокардом, заставляя его сокращаться.

Строение сердца человека: схема, круги кровообращения

Задача системы кровообращения, главным центром которой является сердце – доставка кислорода, питательных и биоактивных компонентов к тканям организма и элиминация продуктов обмена. Для этого в системе предусмотрен особый механизм – кровь движется по кругам кровообращения – малому и большому.

Малый круг

Из правого желудочка в момент систолы венозная кровь выталкивается в легочный ствол и поступает в легкие, где в микрососудах альвеол насыщается кислородом, становясь артериальной. Она оттекает в полость левого предсердия и поступает в систему большого круга кровообращения.


Большой круг

Из левого желудочка в систолу артериальная кровь по аорте и далее по сосудам разного диаметра попадает к различным органам, отдавая им кислород, передавая питательные и биоактивные элементы. В мелких тканевых капиллярах кровь превращается в венозную, так как насыщается продуктами обмена и углекислым газом. По системе вен она оттекает к сердцу, наполняя его правые отделы.


Природа немало потрудилась, создавая такой совершенный механизм, давая ему запасы прочности на долгие годы. Поэтому стоит внимательно к нему относиться, чтобы не создавать проблем кровообращению и собственному здоровью.

1. Значение системы кровообращения, общий план строения. Большой и малый круги кровообращения.

Система кровообращения - это непрерывное движение крови по замкнутой системе полостей сердца и сети кровеносных сосудов, которые обеспечивают все жизненно важные функции организма.

Сердце представляет собой первичный насос, который придает энергию движения крови. Это сложный пункт пересечения разных потоков крови. В нормальном сердце смешивания этих потоков не происходит. Сердце начинает сокращаться примерно через месяц после зачатия, и с этого момента его работа не прекращается до последнего мгновения жизни.

За время, равное средней продолжительности жизни, сердце осуществляет 2,5 млрд. сокращений, и при этом оно перекачивает 200 млн. литров крови. Это уникальный насос, который имеет размер с мужской кулак, а средний вес у мужчины составляет 300г, а у женщины - 220г. Сердце имеет вид тупого конуса. Длина его составляет 12-13 см, ширина 9-10,5 см, а передне-задний размер равен 6-7см.

Система кровеносных сосудов составляет 2 круга кровообращения.

Большой круг кровообращения начинается в левом желудочке аортой. Аорта обеспечивает доставку артериальной крови к различным органам и тканям. При этом от аорты отходят параллельные сосуды, которые приносят кровь к разным органам: артерии переходят в артериоллы, а артериоллы - в капилляры. Капилляры обеспечивают всю сумму обменных процессов в тканях. Там кровь становится венозной, она оттекает от органов. Она притекает к правому предсердию по нижней и верхней полой венам.

Малый круг кровообращения начинается в правом желудочке лёгочным стволом, который делится на правую и левую легочную артерии. Артерии несут венозную кровь к легким, где будет происходить газообмен. Отток крови из легких осуществляется по легочным венам (2 от каждого лёгкого),которые несут артериальную кровь в левое предсердие. Основная функция малого круга- транспортная, кровь доставляет клеткам кислород, питательные вещества, воду, соль, а из тканей выводит углекислый газ и конечные продукты обмена.

Кровообращение - это самое важное звено в процессах газообмена. С кровью транспортируется тепловая энергия - это теплообмен с окружающей средой. За счет функции кровообращения происходит перенос гормонов и других физиологически активных веществ. Это обеспечивает гуморальную регуляцию деятельности тканей и органов. Современные представления о системе кровообращения были изложены Гарвеем, который в 1628 году опубликовал трактат о движении крови у животных. Он пришел к выводу о замкнутости системы кровообращения. Используя метод пережатия кровеносных сосудов, он установилнаправленность движения крови . От сердца, кровь движется по артериальным сосудам, по венам, кровь движется к сердцу. Деление строится по направлению течения, а не по содержанию крови. Также были описаны основные фазы сердечного цикла. Технический уровень не позволял в то время обнаружить капилляры. Открытие капилляров было сделано позднее (Мальпиге), который подтвердил предположения Гарвея о замкнутости кровеносной системы. Гастро-васкулярная система- это система каналов, связанных с основной полостью у животных.

2. Плацентарное кровообращение. Особенности кровообращения новорожденного.

Система кровообращения плода во многом отличается от таковой новорожденного. Это определяется как анатомическими, так и функциональными особенностями организма плода, отражающими его адаптационные процессы в период внутриутробной жизни.

Анатомические особенности сердечно-сосудистой системы плода прежде всего заключаются в существовании овального отверстия между правым и левым предсердиями и артериального протока, соединяющего легочную артерию с аортой. Это позволяет значительной массе крови миновать нефункиионирующие легкие. Кроме того, имеется сообщение между правым и левым желудочками сердца. Кровообращение плода начинается в сосудах плаценты, откуда кровь, обогащенная кислородом и содержащая все необходимые питательные вещества, поступает в вену пуповины. Затем артериальная кровь через венозный (аранциев) проток попадает в печень. Печень плода представляет собой своеобразное депо крови. В депонировании крови наибольшую роль играет ее левая доля. Из печени через тот же венозный проток кровь поступает в нижнюю полую вену, а оттуда — в правое предсердие. В правое предсердие поступает также кровь из верхней полой вены. Между местом впадения нижней и верхней полых вен находится заслонка нижней полой вены, которая разделяет оба кровотока Эта заслонка направляет ток крови нижней полой вены из правого предсердия в левое через функционирующее овальное отверстие. Из левого предсердия кровь поступает в левый желудочек, а оттуда — в аорту. Из восходящей дуги аорты кровь попадает в сосуды головы и верхней части туловища. Венозная кровь, поступающая в правое предсердие из верхней полой вены, оттекает в правый желудочек, а из него — в легочные артерии. Из легочных артерий только небольшая часть крови поступает в нефункциони-рующие легкие. Основная масса крови из легочной артерии через артериальный (боталлов) проток направляется в нисходящую дугу аорты. Кровь нисходящей дуги аорты снабжает нижнюю половину туловища и нижние конечности. После этого кровь, бедная кислородом, через ветви подвздошных артерий поступает в парные артерии пуповины и через них — в плаценту. Объемные распределения крови в фетальном кровообращении выглядят следующим образом: приблизительно половина общего объема крови из правых отделов сердца поступает через овальное отверстие в левые отделы сердца, 30 % через артериальный (боталлов) проток сбрасывается в аорту, 12 % попадает в легкие. Такое распределение крови имеет очень большое физиологическое значение с точки зрения получения отдельными органами плода крови, богатый кислородом, а именно чисто артериальная кровь содержится только в вене пуповины, в венозном протоке и сосудах печени; смешанная венозная кровь, содержащая достаточное количество кислорода, находится в нижней полой вене и восходящей дуге аорты, поэтому печень и верхняя часть туловища у плода снабжаются артериальной кровью лучше, чем нижняя половина тела. В дальнейшем по мере прогрессирования беременности происходит небольшое сужение овального отверстия и уменьшение размеров нижней полой вены. Вследствие этого во второй половине беременности дисбаланс в распределении артериальной крови несколько уменьшается.

Физиологические особенности кровообращения плода важны не только с точки зрения снабжения его кислородом. Не меньшее значение фетальное кровообращение имеет и для осуществления важнейшего процесса выведения из организма плода СО2 и других продуктов обмена. Описанные выше анатомические особенности кровообращения плода создают предпосылки к осуществлению очень короткого пути выведения С02 и продуктов обмена: аорта — артерии пуповины — плацента. Сердечно-сосудистая система плода обладает выраженными адаптационными реакциями на острые и хронические стрессовые ситуации, обеспечивая тем самым бесперебойное снабжение крови кислородом и необходимыми питательными веществами, а также выведение из его организма СО2 и конечных продуктов обмена веществ. Это обеспечивается наличием различных механизмов нейрогенного и гуморального характера, которые регулируют частоту сердечных сокращений, ударный объем сердца, периферическую констрикцию и дилатацию артериального протока и других артерий. Кроме того, система кровообращения плода находится в тесной взаимосвязи с гемодинамикой плаценты и матери. Эта взаимосвязь отчетливо видна, например, при возникновении синдрома сдавления нижней полой вены. Сущность этого синдрома заключается в том, что у некоторых женщин в конце беременности происходит сдавление маткой нижней полой вены и, по-видимому, частично аорты. В результате этого в положении женщины на спине у нее происходит перераспределение крови, при этом большое количество крови задерживается в нижней полой вене, а артериальное давление в верхней части туловища снижается. Клинически это выражается в возникновении головокружения и обморочного состояния. Сдавление нижней полой вены беременной маткой приводит к нарушениям кровообращения в матке, что в свою очередь немедленно отражается на состоянии плода (тахикардия, усиление двигательной активности). Таким образом, рассмотрение патогенеза синдрома сдавления нижней полой вены наглядно демонстрирует наличие тесной взаимосвязи сосудистой системы матери, гемодинамики плаценты и плода.

3. Сердце, его гемодинамические функции. Цикл деятельности сердца, его фазы. Давление в полостях сердца, в разные фазы сердечного цикла. Частота сокращений сердца и продолжительность в различные возрастные периоды.

Сердечный цикл — это период времени, в течении которого происходит полное сокращение и расслабление всех отделов сердца. Сокращение - систола, расслабление - диастола. Продолжительность цикла будет зависеть от частоты сердечных сокращений. В норме частота сокращений колеблется от 60 до 100 ударов в минуту, но средняя частота составляет 75 ударов в минуту. Чтобы определить длительность цикла делим 60с на частоту.(60с / 75 с=0,8с).

Сердечный цикл состоит из 3х фаз:

Систола предсердий - 0,1 с

Систола желудочка - 0,3 с

Общая пауза 0,4 с

Состояние сердца в конце общей паузы : створчатые клапаны находятся в открытом состоянии, полулунные клапаны закрыты и кровь поступает из предсердий в желудочки. К концу общей паузы желудочки наполнены на 70-80% кровью. Сердечный цикл начинается с

систолы предсердий . В это время происходит сокращение предсердий, что необходимо для завершения наполнения желудочков кровью. Именно сокращение миокарда предсердий и повышение давления крови в предсердиях - в правом до 4-6 мм рт ст, а в левом до 8-12 мм рт ст. обеспечивает нагнетание дополнительной крови в желудочки и систола предсердий завершает наполнение желудочков кровью. Кровь обратно поступать не может, так как сокращаются кольцевые мышцы. В желудочках будет находится конечный диастолический объем крови . В среднем он составляет 120-130 мл, но у людей занимающихся физической нагрузкой до 150-180 мл, что обеспечивает более эффективную работу, этот отдел переходит в состояние диастолы. Далее идет систола желудочков.

Систола желудочков - наиболее сложная фаза сердечного цикла, продолжительностью 0,3 с. В систоле выделяют период напряжения , он длится 0,08 с и период изгнания . Каждый период подразделяется на 2 фазы -

период напряжения

1. фаза асинхронного сокращения - 0,05 с

2. фазы изометрического сокращения - 0,03 с. Это фаза изовалюмического сокращения.

период изгнания

1. фаза быстрого изгнания 0,12с

2. фаза медленного 0,13 с.

Наступает фаза изгнания конечный систолический объем протодиастолический период

4. Клапанный аппарат сердца, его значение. Механизм работы клапанов. Изменение давления в различных отделах сердца в разные фазы сердечного цикла.

В сердце принято различать атрио-вентрикулярные клапаны, расположенные между предсердиями и желудочками - в левой половине сердца это двухстворчатый, в правой - трёхстворчатый клапан, состоящий из трёх створок. Клапаны открываются в просвет желудочков и пропускают кровь из предсердий в желудочек. Но при сокращении клапан закрывается и возможность крови поступать обратно в предсердие утрачивается. В левом - величина давления намного больше. Более надежными являются структуры с меньшим числом элементов.

У места выхода крупных сосудов - аорта и легочный ствол — находятся полулунные клапаны, представленные тремя кармашками. При наполнении крови в кармашках, происходит закрытие клапанов, поэтому обратного движения крови не происходит.

Назначением клапанного аппарата сердца является обеспечение одностороннего тока крови. Поражение створок клапана приводит к недостаточности клапана. При этом наблюдается обратный ток крови в результате неплотного соединения клапанов, что нарушает гемодинамику. Границы сердца меняются. Получаются признаки развития недостаточности. Вторая проблема, связанная с областью клапанов, стенозирование клапанов - (стенозируется, например, венозное кольцо) - просвет уменьшается.Когда говорят о стенозе, значит говорят либо об атрио-вентрикулярных клапанах, либо о месте отхождения сосудов. Над полулунными клапанами аорты, из её луковицы, отходят коронарные сосуды. У 50% людей кровоток правой больше чем в левой, у 20% кровоток больше в левой чем в правой, 30 % имеют одинаковый отток как в правой, так и в левой коронарной артерии. Развитие анастомозов между бассейнами коронарных артерий. Нарушение кровотоков коронарных сосудов сопровождается ишемией миокарда, стенокардии, а полная закупорка приводит к омертвлению - инфаркту. Венозный отток крови идет по поверхностной системе вен, так называемый коронарный синус. Имеются также вены, которые непосредственно открываются в просвет желудочка и правого предсердия.

Систола желудочков начинается с фазы асинхронного сокращения. Часть кардиомиоцитов оказываются возбужденными и вовлекаются в процесс возбуждения. Но возникающее напряжение в миокарде желудочков обеспечивает повышение давления в нем. Эта фаза заканчивается закрытием створчатых клапанов и полость желудочков оказывается замкнутой. Желудочки наполнены кровью и полость их замкнута, а кардиомиоциты продолжают развивать состояние напряжения. Длина кардиомиоцита не может изменится. Это связано со свойствами жидкости. Жидкости не сжимают. При замкнутом пространстве, когда происходит напряжение кардиомиоциттов сжать жидкость невозможно. Длина кардиомиоцитов не меняется. Фаза изометрического сокращения. Сокращение при низменной длине. Эту фазу называют изовалюмической фазой. В эту фазу не меняется объем крови. Пространство желудочков замкнуто, повышается давление, в правом до 5-12 мм рт.ст. в левом 65-75 мм.рт.ст, при этом давление желудочков станет больше диастолического давления в аорте и легочном стволе и превышение давления в желудочках над давлением крови в сосудах приводит к открытию полулунных клапанов. Полулунные клапаны открываются и кровь начинает поступать в аорту и легочный ствол.

Наступает фаза изгнания , при сокращении желудочков кровь выталкивается в аорту, в легочный ствол, изменяется длина кардиомиоцитов, давлении повышает и на высоте систолы в левом желудочке 115-125 мм, в правом 25-30мм. Вначале фаза быстрого изгнания, а затем изгнание становится более медленным. За время систолы желудочков выталкивается 60 - 70 мл крови и вот это количество крови - систолический объем. Систолический объем крови =120-130 мл, т.е. в желудочках в конце систолы остается еще достаточный объем крови - конечный систолический объем и это своеобразный резерв, чтобы если потребуется - увеличить систолический выброс. Желудочки завершают систолу и в них начинается расслабление. Давление в желудочках начинает падать и кровь, которая выброшена в аорту, легочный ствол устремляется обратно в желудочек, но на своем пути она встречает кармашки полулунного клапана, которые наполняюсь закрывают клапан. Этот период получил название протодиастолический период - 0,04с. Когда полулунные клапаны закрылись, створчатые клапаны тоже закрыты, начинается период изометрического расслабления желудочков. Он длится 0,08с. Здесь происходит спад напряжения без изменения длины. Это вызывает понижение давления. В желудочках скопилась кровь. Кровь начинает давить на атрио-вентрикялрыне клапаны. Происходит их открытие в начале диастолы желудочков. Наступает период наполнения крови кровью - 0,25 с, при этом выделяют фазу быстрого наполнения - 0,08 и фазу медленного наполнения - 0,17 с. Кровь свободно из предсердий поступает в желудочек. Это пассивный процесс. Желудочки на 70-80% будут наполняться кровью и завершится наполнение желудочков уже следующей систолой.

5. Систолический и минутный объем крови, методы определения. Возрастные изменения этих объемов.

Сердечный выброс- это количество крови, выталкиваемое сердцем в единицу времени. Различают:

Систолический (за время 1 систолы);

Минутный объем крови (или МОК) - определяется двумя параметрами, а именно систолическим объемом и частотой сердечных сокращений.

Величина систолического объема в покое составляет 65-70 мл, и является одинаковой для правого и левого желудочков. В покое желудочки выталкивают 70 % конечного диастолического объема, и к концу систолы в желудочках остается 60-70 мл крови.

V сист ср.=70мл, ν ср=70 уд/мин,

V мин=V сист * ν= 4900 мл в мин ~ 5 л/мин.

Непосредственно определить V мин трудно, для этого используется инвазивный метод.

Был предложен косвенный метод на основе газообмена.

Метод Фика (метод определения МОК).

МОК= О2 мл/мин / А - V(О2) мл/л крови.

  1. Потребление О2 за минуту составляет 300 мл;
  2. Содержание О2 в артериальной крови = 20 об %;
  3. Содержание О2 в венозной крови = 14 об %;
  4. Артерио-венозная разница по кислороду = 6 об % или 60 мл крови.

МОК= 300 мл/60мл/л = 5л.

Величина систолического объема может быть определена как V мин/ν. Систолический объем зависит от силы сокращений миокарда желудочков, от величины наполнения кровью желудочков в диастолу.

Закон Франка-Старлинга устанавливает, что систола - функция диастолы.

Величина минутного объема определяется изменением ν и систолическим объемом.

При физической нагрузке величина минутного объема может возрастать до 25-30 л, систолический объем возрастает до 150 мл, ν достигает 180-200 ударов в минуту.

Реакции физически тренированных людей касаются прежде всего изменения систолического объема, нетренированных - частоты, у детей лишь за счет частоты.

Распределение МОК.

Аорта и крупные артерии

Мелкие артерии

Артериоллы

Капилляры

Итого - 20 %

Мелкие вены

Крупные вены

Итого - 64%

Малый круг

6. Современные представления о клеточной структуре миокарда. Виды клеток в миокарде. Нексусы, их роль в проведении возбуждения.

Сердечная мышца имеет клеточное строение и клеточное строение миокарда было установлено еще в 1850 году Келликером, но длительное время считалось, что миокард представляет собой сеть - сенцидий. И только электронная микроскопия подтвердила, что каждый кардиомиоцит имеет свою собственную мембрану и отделен от других кардиомиоцитов. Область контактов кардиомиоцитов - это вставочные диски. В настоящее время клетки сердечной мышцы подразделяют на клетки рабочего миокарда - кардиомиоциты рабочего миокрада предсердий и желудочков и на клетки проводящей системы сердца. Выделяют:

-P клетки - пейсмейкерные

-переходные клетки

-клетки Пуркинье

Клетки рабочего миокарда принадлежат исчерченным мышечным клеткам и кардиомиоциты имеют вытянутую форму, длин достигает 50мкм, диаметр - 10-15 мкм. Волокна состоят из миофибрилл, наименьшей рабочей структурой которых является саркомер. Последний имеет толстые - миозиновые и тонкие - актиновые ветви. На тонких нитях имеются регуляторные белки - тропанин и тропомиозин. В кардииомиоцитах имеются также продольная система L трубочек и поперечные T трубочки. Однако Т трубочки, в отличии от Т-трубочек скелетных мышц, отходят на уровне мембран Z (в скелетных - на границе диска A и I). Соседние кардиомиоциты соединяются с помощью вставочного диска- область контакта мембран. При этом структура вставочного диска неоднородная. ВО вставочном диске можно выделить область щели(10-15Нм). Вторая зона плотного контакта - десмосомы. В области десмосом наблюдается утолщение мембраны, здесь же проходят тонофибриллы(нити связывающие соседние мембраны). Десмосомы имеют протяженность 400нм. Есть плотные контакты, они получили название нексусов, при котором происходит слияние наружных слоев соседних мембран, сейчас обнаружены - конексоны - скрепление за счет специальных белко - конексинов. Нексусы - 10-13%, эта область имеет очень низкое электрическое сопротивление 1,4 Ома на кВ.см. Это обеспечивает возможность передачи электрического сигнала с одной клетки на др. и поэтому кардиомиоциты включаются одновременно в процесс возбуждения. Миокард - функциональный сенсидий. Кардиомиоциты изолированы друг от друга и контактируют в области вставочных дисков, где соприкасаются мембраны соседних кардиомиоциов.

7. Автоматия сердца. Проводящая система сердца. Градиент автоматии. Опыт Станниуса. 8. Физиологические свойства сердечной мышцы. Рефрактерная фаза. Соотношение фаз потенциала действия, сокращения и возбудимости в разные фазы сердечного цикла.

Кардиомиоциты изолированы друг от друга и контактируют в области вставочных дисков, где соприкасаются мембраны соседних кардиомиоциов.

Коннесксоны- это соединение в мембране соседних клеток. Образуются эти структуры за счет белков коннексинов. Коннексон окружают 6 таких белков, внутри коннексона образуется канал, который позволяет проходит ионам, таким таким образом электрический ток распространяется от одной клетки к другой. “f область имеет сопротивление 1,4 ом на см2(низкое). Возбуждение охватывает кардиомиоциты одновременно. Они функционирую как функциональный сенсициы. Нексусы очень чувствительны к недостатку кислорода, к действию катехоламинов, к стрессовым ситуациям, к физической нагрузке. Это может вызывать нарушение проведения возбуждения в миокарде. В экспериментальных условиях нарушение плотных контактов можно получить при помещении кусочков миокарда в гипертонический раствор сахарозы. Для ритмической деятельности сердца важна проводящая система сердца - эта система состоит из комплекса мышечных клеток, образующих пучки и узлы и клетки проводящей системы отличаются от клеток рабочего миокарда - они бедны миофибриллами, богаты саркоплазмой и содержат высокое содержание гликогена. Эти особенности при световой микроскопии делают их более светлыми с малой поперечной исчерченностью и они были названы атипическими клетками.

В состав проводящей системы входят:

1. Синоатриальный узел (или узел Кейт-Фляка), расположенный в правом предсердии у места впадения верхней полой вены

2. Атриовентрикулярный узел(или узел Ашоф-Тавара), который лежит в правом предсердии на границе с желудочком — это задняя стенка правого предсердия

Эти два узла связаны внутрипредсердными трактами.

3. Предсердные тракты

Передний - с ветвью Бахмена (к левому предсердию)

Средний тракт (Венкебаха)

Задний тракт (Тореля)

4. Пучок Гисса (отходит от атриовентрикулярного узла. Проходит через фиброзную ткань и обеспечивает связь миокарда предсердия с миокардом желудочка. Проходит в межжелудочковую перегородку, где разделяется на правую и илевую ножку пучка Гисса)

5. Правая и левая ножки пучка Гисса (они идут вдоль межжелудочковой перегородки. Левая ножка имеет две ветви - переднюю и заднюю. Конечными разветвлениями будут являться волокна Пуркинье).

6. Волокна Пуркинье

В проводящей системе сердца, которая образована видоизмененными типами мышечных клеток, имеются три вида клеток: пейсмейкерные (P), переходные клетки и клетки Пуркинье.

1. P-клетки . Находятся в сино-артриальном узле, меньше в атриовентрикулярном ядре. Это самые мелкие клетки, в них мало т - фибрилл и митохондрий, т-система отсутствует, l. система развита слабо. Основной функцией этих клеток является генерация потенциала действия за счет врожденного свойства медленной диастолической деполяризации. В них происходит периодическое снижение мембранного потенциала, которое приводит их к самовозбуждению.

2. Переходные клетки осуществляют передачу возбуждения в области атривентрикуярного ядра. Они обнаруживаются между P клетками и клетками Пуркинье. Эти клетки вытянутой формы, у них отсутствует саркоплазматический ретикулум. Эти клетки облают замедленной скоростью проведения.

3. Клетки Пуркинье широкие и короткие, в них больше миофибрилл, лучше развит саркоплазматический ретикулум, T-система отсутствует.

9. Ионные механизмы возникновения потенциала действия в клетках проводящей системы. Роль медленных Са-каналов. Особенности развития медленной диастолической деполяризации в истинных и латентных водителях ритма. Отличия потенциала действия в клетках проводящей системы сердца и рабочих кардиомиоцитах.

В клетках проводящей системы есть отличительные особенности потенциала.

1. Сниженный мембранный потенциал в диастолический период(50-70мВ)

2. Четвертая фаза не является стабильной и отмечается постепенное снижение мембранного потенциала к пороговому критическому уровню деполяризации и в диастолу постепенно медленно продолжает снижаться достигая критического уровня деполяризации при котором произойдет самовозбуждение П-клеток. В P-клетках происходит усиление проникновения ионов натрия и снижение выхода ионов калия. Повышается проницаемость ионов кальция. Эти сдвиги в ионном составе приводят к тому, что мембранный потенциал в P-клетках снижается до порогового уровня и p-клетка самовозбуждается обеспечивая возникновение потенциала действия. Плохо выражена фаза Плато. Фаза ноль плавно переходи ТВ процесс реполяризации, который восстанавливает диастолический мембранный потенциал, а дальше цикл повторяется вновь и P-клетки переходят в состояние возбуждения. Наибольшой возбудимостью обладают клетки сино-атриального узла. Потенциал в нем особо низок и скорость диастолической деполяризации наиболее высок.. Это будет влиять на частоту возбуждения. P- клетки синусного узла генерируют частоту до 100 ударов в мин. Нервная система(симпатическая система) подавляют действие узла(70 ударов). Симпатическая система может повышать автоматию. Гуморальные факторы- адреналин, норадреналин. Физические факторы - механический фактор - растяжение, стимулируют автоматию, согревание, тоже увеличивает автоматию. Все это применяется в медицине. На этом основано мероприятие прямого и непрямого массажа сердца. Область атриовентрикулярного узла тоже обладает автоматией. Степень автоматии атриовентрикулярного узла выражена значительно меньше и как правило она в 2 раза меньше, чем в синусном узле - 35-40. В проводящей системе желудочков импульсы тоже могут возникать(20-30 в минуту). ПО ходу проводящей системы возникает постипенное снижение уровня автоматии, что получило название градиента автоматии. Синусный узел - центр автоматии первого порядка.

10. Морфологические и физиологические особенности рабочей мышцы сердца. Механизм возникновения возбуждения в рабочих кардиомиоцитах. Анализ фаз потенциала действия. Длительность ПД, соотношение его с периодами рефрактерности.

Потенциал действия миокарда желудочков длится около 0,3 с (более чем в 100 раз дольше, чем ПД скелетной мышцы). Во время ПД мембрана клетки становится невосприимчивой к действию других раздражителей, т. е. рефрактерной. Соотношения между фазами ПД миокарда и величиной его возбудимости показаны на рис. 7.4. Различают период абсолютны рефрактерности (продолжается 0,27 с, т. е. несколько короче длительности ПД; период относи-тельны рефрактерности, во время которого сердечная мышца может ответить сокращением лишь на очень сильные раздражения (продолжается 0,03 с), и короткий период супернормальной возбу-димости, когда сердечная мышца может отвечать сокращением на подпороговые раздражения.

Сокращение (систола) миокарда продолжается около 0,3 с, что по времени примерно совпадает с рефрактерной фазой. Следова-тельно, в период сокращения сердце неспособно реагировать на другие раздражители. Наличие длительной рефрактерной фазы пре-пятствует развитию непрерывного укорочения (тетануса) сердечной мышцы, что привело бы к невозможности осуществления сердцем нагнетательной функции.

11. Реакция сердца на дополнительное раздражение. Экстрасистолы, их виды. Компенсаторная пауза, ее происхождение.

Рефрактерный период сердечной мышцы длится и совпадает по времени столько, сколько длится сокращение. Вслед за относительной рефрактерностью имеется небольшой период повышенной возбудимости - возбудимость становится выше исходного уровня - супер нормальная возбудимость. В эту фазу сердце особо чувствительно к воздействию других раздражителей(смогут возникать др. раздражители или экстрасистолы- внеочередные систолы). Наличие длительного рефрактерного периода должно оградить сердце от повторных возбуждений. Сердце выполняет насосную функцию. Промежуток между нормальным и внеочередным сокращением укорачивается. Пауза может быть нормальной или удлиненной. Удлиненную паузу называют компенсаторной. Причина экстрасистолов - возникновение других очагов возбуждения - атриовентрикулярный узел, элементы желудочковой части проводящей системы, клетки рабочего миокарда, Это может быть связано с нарушением кровоснабжением, нарушением проведения в сердечной мышцей, но все дополнительные очаги - эктопические очаги возбуждения. В зависимости от локализации - разные экстрасистолы - синусные, предсредные, атриовентрикулярные. Экстрасистолы желудочка сопровождаются удлиненной компенсаторнйо фазой. 3 дополнительное раздражение - причина внеочередного сокращения. Вовремя экстрасистола сердце утрачивает возбудимость. К ним приходит очередной импульс из синусного узла. Пауза нужна для восстановления нормального ритма. Когда в сердце происходит сбой сердце пропускает одно нормальное сокращение и дальше возвращается к нормальному ритму.

12. Проведение возбуждения в сердце. Атриовентрикулярная задержка. Блокады проводящей системы сердца.

Проводимость - способность проводить возбуждение. Скорость проведения возбуждения в разных отделах неодинакова. В миокарде предсердий - 1 м/c и время проведения возбуждения занимает 0,035 с

Скорость проведения возбуждения

Миокард - 1 м/c 0,035

Aтриовентрикулярный узел 0,02 - 0-05 м/с. 0,04 с

Проведение система желудочков - 2-4,2 м/с. 0,32

В сумме от синусного узла до миокарда желудочка - 0,107 с

Миокард желудочка - 0,8-0,9 м/с

Нарушение проведения сердца приводит к развитию блокад - синусной, атривентрикулярной, пучка Гисса и его ножек. Синусный узел может выключится.. Включится ли атривентрикулярный узел как водитель ритма? Синусные блокады встречаются редко. Больше в атриовентрикулярных узлах. Удлинение задержки(больше 0,21с) возбуждение доходит до желудочка, хоть и замедленно. Выпадение отдельных возбуждений, которые возникают в синусном узле (Например, из трёх доходит только два - это вторая степень блокады. Третья степень блокады, когда предсердия и желудочки работают несогласованно. Блокада ножек и пучка - это блокада желудочков. Чаще встречаются блокады ножек пучка Гисса и соответственно один желудочек запаздывает за другим).

13. Электромеханическое сопряжение в сердечной мышце. Роль ионов Са в механизмах сокращения рабочих кардиомиоцитов. Источники ионов Са. Законы «Все или ничего», «Франка-Старлинга». Явление потенциации (феномен «лестницы»), его механизм.

Кардиомиоциты включают фибриллы, саркомеры. Есть продольные трубочки и Т трубочки наружной мембраны, котоыре входят внутрь на уровне мембраны я. Они широкие. Сократительная фугкция кардиомиоцитов связана с белками миозином и актином. На тонких актиновых белках - система тропонин и тропомиозин. Это не дает головкам миозин сцепляется с головками миозина. Снятие блокировки - ионами кальция. По т трубочкам открываются кальцевые каналы. Повышение кальция в саркоплазме снимает тормозной эффект актина и миозина. Мостики миозина перемещают тонике нити к центру. Миокард подчиняется в сократительной функции 2м законам - все или ничего. Сила сокращения зависит от исходной длины кардиомиоцитов - Франк и Старалинг. Если миоциты предварительно растянуты, то они отвечают большей силой сокращения. Растяжение зависит от наполнения кровью. Чем больше- тем сильней. Этот закон формулируют как - систола есть функция диастолы. Это важный приспособительный механизм. Это синхронизирует работу правого и левого желудочка.

14. Физические явления, связанные с работой сердца. Верхушечный толчок.

ерхушечный толчок представляет собой ритмическую пульсацию в пятом межреберье на 1 см внутрь от средней ключичной линии, обусловленное ударами верхушки сердца .

В диастолу желудочки имеют форму неправильного косого конуса. В систолу они приобретают форму более правильного конуса, при этом анатомическая область сердца удлиняется, верхушка приподнимается и происходит поворот сердца с лева направо. Основание сердца несколько опускается. Эти изменения формы сердца, делают возможным касание сердца в области грудной стенки. Этому же способствует гидродинамический эффект при отдаче крови.

Верхушечный толчок лучше определяется в горизонтальном положении при небольшом повороте на левый бок. Исследуют верхушечный толчок методом пальпации, помещая ладонь правой руки параллельно межреберью. При этом определяют следующие свойства толчка : локализация, площадь (1,5-2 см2), высоту или амплитуду колебания и силу толчка.

При увеличении массы правого желудочку иногда наблюдается пульсация над всей областью проекции сердца, тогда говорят о сердечном толчке.

При работе сердца возникают звуковые проявления в форме тонов сердца. Для исследования тонов сердца используют метод аускультации и графической регистрации тонов с использованием микрофона и усилителе фонокардиографа.

15. Тоны сердца, их происхождение, компоненты, особенности тонов сердца у детей. Методы исследования тонов сердца (аускультация, фонокардиография).

Первый тон появляется в систолу желудочку, поэтому называется систолическим. По своим свойствам он глухой, протяжный, низкий. Его продолжительность составляет от 0,1 до 0,17 с. Главной причиной появления первого фона является процесс закрытия и вибрации створок атриовентрикулярных клапанов, а так же сокращение миокардов желудочков и возникновение турбулентного движения крови в легочном стволе и аорте.

На фонокардиограмме. 9-13 колебаний. Выделяют низкоамплитудный сигнал, затем высокоамплитудные колебания створок клапана и низкоамплитудный сосудистый сегмент. У дете этот тон короче 0,07-0,12 с

Второй тон возникает через 0,2 с после первого. Он короткий, высокий. Длится 0,06 - 0,1 с. Связан с закрытием полулунных клапанов аорты и легочного ствола в начале диастолы. Поэтому он получил название диастолического тона. При расслаблении желудочков, кровь стремится обратно в желудочки, но на своем пути встречает полулунные клапаны, что создает второй тон.

На фонокардиограмме ему соответствуют 2-4 колебания. В норме на фазе вдоха иногда можно выслушать расщепление второго тона. В фазе вдоха приток крови к правому желудочку становится ниже из-за понижения внутригрудного давления и систола правого желудочка длится несколько дольше, чем левого, поэтому пульмонарный клапан закрывается чуть медленнее. На выдохе они закрываются одновременно.

При патологии расщепление присутствует и на фазе вдоха и на фазе выдоха.

Третий тон возникает через 0,13 с после второго. Он связан с колебаниями стенок желудочка в фазу быстрого наполнения их кровью. На фонокардиограмме фиксируются 1-3 колебания. 0,04с.

Четвертый тон . Связан с систолой предсердия. Он записывается в форме низкочастотных колебаний, которые могут сливаться с систолой сердца.

При выслушивании тона определяют их силу, ясность, тембр, частоту, ритм, наличие или отсутствие шума.

Предложено выслушивать тоны сердца в пяти точках.

Первый тон лучше выслушивает в области проекции верхушки сердца в 5 правом межреберьи на 1 см вглубь. Трехстворчатый клапан выслушивается в нижней трети грудины посередине.

Второй тон лучше выслушивается во втором межреберьи справа для клапана аорты и втором межреберьи слева для клапана легочной артерии.

Пятая точка Готкена - место прикрепления 3-4 ребра к грудине слева . Эта точка соответствует проекции на грудную стенку аортального и вентрального клапанов.

При выслушивании можно выслушивать и шумы. Появление шума связано либо с сужением клапанных отверстий, что обозначают как стеноз, либо с поражением створок клапанов и неплотным их смыканием, тогда возникает недостаточность клапанов. По времени появления шумов они могут быть систолическими и диаст.

16. Электрокардиограмма, происхождение ее зубцов. Интервалы и сегменты ЭКГ. Клиническое значение ЭКГ. Возрастные особенности ЭКГ.

Охват возбуждением огромного количества клеток рабочего мио-карда вызывает появление отрицательного заряда на поверхности этих клеток. Сердце становится мощным электрогенератором. Ткани тела, обладая сравнительно высокой электропроводностью, позво-ляют регистрировать электрические потенциалы сердца с поверх-ности тела. Такая методика исследования электрической активности сердца, введенная в практику В. Эйнтховеном, А. Ф. Самойловым, Т. Льюисом, В. Ф. Зелениным и др., получила название электро-кардиографии, а регистрируемая с ее помощью кривая называется электрокардиограммой (ЭКГ). Электрокардиография широко при-меняется в медицине как диагностический метод, позволяющий оценить динамику распространения возбуждения в сердце и судить о нарушениях сердечной деятельности при изменениях ЭКГ.

В настоящее время пользуются специальными приборами — электрокардиографами с электронными усилителями и осциллогра-фами. Запись кривых производят на движущейся бумажной ленте. Разработаны также приборы, при помощи которых записывают ЭКГ во время активной мышечной деятельности и на расстоянии от обследуемого. Эти приборы — телеэлектрокардиографы — основаны на принципе передачи ЭКГ на расстояние с помощью радиосвязи. Таким способом регистрируют ЭКГ у спортсменов во время сорев-нований, у космонавтов в космическом полете и т. д. Созданы приборы для передачи электрических потенциалов, возникающих при деятельности сердца, по телефонным проводам и записи ЭКГ в специализированном центре, находящемся на большом расстоянии от пациента.

Вследствие определенного положения сердца в грудной клетке и своеобразной формы тела человека электрические силовые линии, возникающие между возбужденными (—) и невозбужденными (+) участками сердца, распределяются по поверхности тела неравно-мерно. По этой причине в зависимости от места приложения элек-тродов форма ЭКГ и вольтаж ее зубцов будут различны. Для регистрации ЭКГ производят отведение потенциалов от конечностей и поверхности грудной клетки. Обычно используют три так назы-ваемых стандартных отведения от конечностей: I отведение: правая рука — левая рука; II отведение: правая рука — левая нога; III отведение: левая рука — левая нога (рис. 7.5). Кроме того, регистрируют три униполярных усиленных отведения по Гольдбергеру: aVR; aVL; aVF. При регистрации усиленных отведений два электрода, используемые для регистрации стандартных отведений, объединяются в один и регистрируется разность потенциалов между объединенными и активными электродами. Так, при aVR активным является электрод, наложенный на правую руку, при aVL — на левую руку, при aVF — на левую ногу. Вильсоном предложена регистрация шести грудных отведений.

Формирование различных компонентов ЭКГ:

1) Зубец P - отражает деполяризацию предсердий. Длительность 0,08-0,10 сек, амплитуда 0,5-2 мм.

2) Интервал PQ - проведение ПД по проводящей системе сердца от СА до АВ узла и далее до миокарда желудочков, включая атриовентрикулярную задержку. Длительность 0,12-0,20 сек.

3) Зубец Q - возбуждение верхушки сердца и правой сосочковой мышцы. Длительность 0-0,03 сек, амплитуда 0-3 мм.

4) Зубец R - возбуждение основной массы желудочков. Длительность 0,03-0,09, амплитуда 10-20 мм.

5) Зубец S - окончание возбуждения желудочков. Длительность 0-0,03 сек, амплитуда 0-6 мм.

6) Комплекс QRS - охват возбуждением желудочков. Длительность 0,06-0,10 сек

7) Сегмент ST - отражает процесс полного охвата возбуждением желудочков. Продолжительность сильно зависит от ЧСС. Смешение данного сегмента вверх или вниз более, чем на 1 мм, может указывать на ишемию миокарда.

8) Зубец Т - реполяризация желудочков. Длительность 0,05-0,25 сек, амплитуда 2-5 мм.

9) Интервал Q-T - продолжительность цикла деполяризации-реполяризации желудочков. Длительность 0,30-0,40 сек.

17. Способы отведения ЭКГ у человека. Зависимость величины зубцов ЭКГ в различных отведениях от положения электрической оси сердца (правило треугольника Эйнтговена).

В целом сердце так же можно рассматривать как электрический диполь (отрицательно заряженное основание, положительно заряженная верхушка). Линия, которая соединяет участки сердца с максимальной разностью потенциалов - электрическая линия сердца . При проекции совпадает с анатомической осью. При работе сердца возникает электрическое поле. Силовые лини этого электрического поля распространяются в теле человека как в объемном проводнике. Разные участки тела будут получать разный заряд.

Ориентация электрического поля сердца приводит к тому, что верхняя половина туловища, правая рука, голова и шея имеют отрицательный заряд. Нижняя половина туловища, обе ноги и левая рука имеют положительный заряд.

Если поместить на поверхность тела электроды, то будет зарегистрирована разность потенциалов . Для регистрации разности потенциалов существуют различные системы отведений .

Отведением называется электрическая цепь, имеющая разность потенциалов и соединенная с электрокардиографом . Запись электрокардиограммы осуществляют по 12 отведениям. Это 3 стандартных двухполюсных отведения. Затем 3 усиленных однополюсных отведения и 6 грудных.

Стандартные отведения .

1 отведение. Правое и левое предплечья

2 отведение. Правая рука - левая голень.

3 отведение. Левая рука - левая нога.

Однополюсные отведения . Измеряют величину потенциалов в одной точке по отношению к другим.

1 отведение. Правая рука - левая рука + левая нога (АВР)

2 отведение. АВЛ Левая рука - правая рука правая нога

3. Отведение АВФ левая нога - правая рука +левая рука.

Грудные отведения . Они являются однополюсными.

1 отведение. 4 межреберье справа от грудины.

2 отведение. 4 межреберье слева от грудины.

4 отведение. Проекция верхушки сердца

3 отведение. Середина между вторым и четвертым.

4 отведение. 5 межреберье по передней подмышечной линии.

6 отведение. 5 межреберье по средней подмышечной линии.

Изменение электродвижущей силы сердца во время цикла, записанное на кривой называется электрокардиограммой . Электрокардиограмма отражает определенную последовательность возникновения возбуждения в разных отделах сердца и представляет собой комплекс зубцов и горизонтально расположенных между ними сегментов.

18. Нервная регуляция сердца. Характеристика влияний симпатической нервной системы на сердце. Усиливающий нерв И.П.Павлова.

Нервная экстракардиальная регуляция. Эта регуляция осуще-ствляется импульсами, поступающими к сердцу из ЦНС по блуж-дающим и симпатическим нервам.

Подобно всем вегетативным нервам, сердечные нервы образованы двумя нейронами. Тела первых нейронов, отростки которых состав-ляют блуждающие нервы (парасимпатический отдел автономной нервной системы), расположены в продолговатом мозге (рис. 7.11). Отростки этих нейронов заканчиваются в интрамуральных ганглиях сердца. Здесь находятся вторые нейроны, отростки которых идут к проводящей системе, миокарду и коронарным сосудам.

Первые нейроны симпатической части автономной нервной систе-мы, передающие импульсы к сердцу, расположены в боковых рогах пяти верхних сегментов грудного отдела спинного мозга. Отростки этих нейронов заканчиваются в шейных и верхних грудных симпати-ческих узлах. В этих узлах находятся вторые нейроны, отростки ко-торых идут к сердцу. Большая часть симпатических нервных волокон, иннервирующих сердце, отходит от звездчатого узла.

ри продолжительном раздражении блуждающего нерва прекра-тившиеся вначале сокращения сердца восстанавливаются, несмотря на продолжающееся раздражение. Это явление называют

И. П. Павлов (1887) обнаружил нервные волокна (усиливающий нерв), усиливающие сердечные сокращения без заметного учащения ритма (положительный инотропный эффект).

Инотропный эффект «усиливающего» нерва хорошо виден при регистрации внутрижелудочкового давления электроманометром. Выраженное влияние «усиливающего» нерва на сократимость мио-карда проявляется особенно при нарушениях сократимости. Одной из таких крайних форм нарушения сократимости является альтернация сердечных сокращений, когда одно «нормальное» сокращение миокарда (в желудочке развивается давление, превышающее дав-ление в аорте и осуществляется выброс крови из желудочка в аорту) чередуется со «слабым» сокращением миокарда, при котором дав-ление в желудочке в систолу не достигает давления в аорте и выброса крови не происходит. «Усиливающий» нерв не только уси-ливает обычные сокращения желудочков, но и устраняет альтерна-цию, восстанавливая неэффективные сокращения до обычных (рис. 7.13). По мнению И. П. Павлова, эти волокна являются специально тро-фическими, т. е. стимулирующими процессы обмена веществ.

Совокупность приведенных данных позволяет представить вли-яние нервной системы на ритм сердца как корригирующее, т. е. ритм сердца зарождается в его водителе ритма, а нервные влияния ускоряют или замедляют скорость спонтанной деполяризации клеток водителя ритма, ускоряя или замедляя таким образом частоту сер-дцебиений.

В последние годы стали известны факты, свидетельствующие о возможности не только корригирующих, но и пусковых влияний нервной системы на ритм сердца, когда сигналы, приходящие по нервам, инициируют сокращения сердца. Это можно наблюдать в опытах с раздражением блуждающего нерва в режиме, близком к естественной импульсации в нем, т. е. «залпами» («пачками») им-пульсов, а не непрерывным потоком, как это делалось традиционно. При раздражении блуждающего нерва «залпами» импульсов сердце сокращается в ритме этих «залпов» (каждому «залпу» соответствует одно сокращение сердца). Меняя частоту и характеристику «залпов», можно управлять ритмом сердца в широких пределах.

19. Характеристика влияний блуждающих нервов на сердце. Тонус центров блуждающих нервов. Доказательство его наличия, возрастные изменения тонуса блуждающих нервов. Факторы, поддерживающие тонус блуждающих нервов. Феномен «ускользания» сердца из-под влияния вагуса. Особенности влияния правого и левого блуждающих нервов на сердце.

Влияние на сердце блуждающих нервов впервые изучили братья Вебер (1845). Они установили, что раздражение этих нервов тормозит работу сердца вплоть до полной его остановки в диастолу. Это был первый случай обнаружения в организме тормозящего влияния нервов.

При электрическом раздражении периферического отрезка пере-резанного блуждающего нерва происходит урежение сердечных со-кращений. Это явление называется отрицательным хронотропным эффектом. Одновременно отмечается уменьшение амплитуды со-кращений — отрицательный инотропный эффект.

При сильном раздражении блуждающих нервов работа сердца на некоторое время прекращается. В этот период возбудимость мышцы сердца понижена. Понижение возбудимости мышцы сердца называется отрицательным батмотропным эффектом. Замедле-ние проведения возбуждения в сердце называется отрицательным дромотропным эффектом. Нередко наблюдается полная блокада проведения возбуждения в предсердно-желудочковом узле.

При продолжительном раздражении блуждающего нерва прекра-тившиеся вначале сокращения сердца восстанавливаются, несмотря на продолжающееся раздражение. Это явление называют ускольза-нием сердца из-под влияния блуждающего нерва.

Влияние на сердце симпатических нервов впервые было изучено братьями Цион (1867), а затем И. П. Павловым. Ционы описали учащение сердечной деятельности при раздражении сим-патических нервов сердца (положительный хронотропный эф-фект); соответствующие волокна они назвали nn. accelerantes cordis (ускорители сердца).

При раздражении симпатических нервов ускоряется спонтанная деполяризация клеток — водителей ритма в диастолу, что ведет к учащению сердечных сокращений.

Раздражение сердечных ветвей симпатического нерва улучшает проведение возбуждения в сердце (положительный дромотропный эффект) и повышает возбудимость сердца (положительный батмотропный эффект). Влияние раздражения симпатического нерва наблюдается после большого латентного периода (10 с и более) и продолжается еще долго после прекращения раздражения нерва.

20. Молекулярно-клеточные механизмы передачи возбуждения с вегетативных (автономных) нервов на сердце.

Химический механизм передачи нервных импульсов в сердце. При раздражении периферических отрезков блуждающих нервов в их окончаниях в сердце выделяется АХ, а при раздражении сим-патических нервов — норадреналин. Эти вещества являются непос-редственными агентами, вызывающими торможение или усиление деятельности сердца, и поэтому получили название медиаторов (пе-редатчиков) нервных влияний. Существование медиаторов было по-казано Леви (1921). Он раздражал блуждающий или симпатический нерв изолированного сердца лягушки, а затем переносил жидкость из этого сердца в другое, тоже изолированное, но не подвергавшееся нервному влиянию — второе сердце давало такую же реакцию (рис. 7.14, 7.15). Следовательно, при раздражении нервов первого сердца в питающую его жидкость переходит соответствующий ме-диатор. На нижних кривых можно видеть эффекты, вызываемые перенесенным раствором Рингера, находившимся в сердце во время раздражения.

АХ, образующийся в окончаниях блуждающего нерва, быст-ро разрушается ферментом холинэстеразой, присутствующим в крови и клетках, поэтому АХ оказывает только местное дейст-вие. Норадреналин разрушается значительно медленнее, чем АХ, и потому действует дольше. Этим объясняется то, что после прекращения раздражения симпатического нерва в течение неко-торого времени сохраняются учащение и усиление сердечных со-кращений.

Получены данные, свидетельствующие о том, что при возбуж-дении наряду с основным медиаторным веществом в синаптическую щель поступают и другие биологически активные вещества, в час-тности пептиды. Последние обладают модулирующим действием, изменяя величину и направленность реакции сердца на основной медиатор. Так, опиоидные пептиды угнетают эффекты раздражения блуждающего нерва, а пептид дельта-сна усиливает вагусную брадикардию.

21. Гуморальная регуляция сердечной деятельности. Механизм действия истинных, тканевых гормонов и метаболических факторов на кардиомиоциты. Значение электролитов в работе сердца. Эндокринная функция сердца.

Изменения работы сердца наблюдаются при действии на него ряда биологически активных веществ, циркулирующих в крови.

Катехоламины (адреналин, норадреналин) увеличивают си-лу и учащают ритм сердечных сокращений, что имеет важное биологическое значение. При физических нагрузках или эмоцио-нальном напряжении мозговой слой надпочечников выбрасывает в кровь большое количество адреналина, что приводит к усилению сердечной деятельности, крайне необходимому в данных условиях.

Указанный эффект возникает в результате стимуляции катехоламинами рецепторов миокарда, вызывающей активацию внутри-клеточного фермента аденилатциклазы, которая ускоряет образова-ние 3",5"-циклического аденозинмонофосфата (цАМФ). Он акти-вирует фосфорилазу, вызывающую расщепление внутримышечного гликогена и образование глюкозы (источника энергии для сокра-щающегося миокарда). Кроме того, фосфорилаза необходима для активации ионов Са 2+ — агента, реализующего сопряжение воз-буждения и сокращения в миокарде (это также усиливает положи-тельное инотропное действие катехоламинов). Помимо этого, кате-холамины повышают проницаемость клеточных мембран для ионов Са 2+ , способствуя, с одной стороны, усилению поступления их из межклеточного пространства в клетку, а с другой — мобилизации ионов Са 2+ из внутриклеточных депо.

Активация аденилатциклазы отмечается в миокарде и при дей-ствии глюкагона — гормона, выделяемого α -клетками панкреа-тических островков, что также вызывает положительный инотропный эффект.

Гормоны коры надпочечников, ангиотензин и серотонин также увеличивают силу сокращений миокарда, а ти-роксин учащает сердечный ритм. Гипоксемия, гиперкапния и ацидоз угнетают сократительную активность миокарда.

Миоциты предсердий образуют атриопептид, или натрийуретический гормон. Стимулируют секрецию этого гормона растяжение предсердий притекающим объемом крови, изменение уровня натрия в крови, содержание в крови вазопрессина, а также влияния экстракардиальных нервов. Натрийуретический гормон обладает ши-роким спектром физиологической активности. Он сильно повышает экскрецию почками ионов Na + и Сl - , подавляя их реабсорбцию в канальцах нефронов. Влияние на диурез осуществляется также за счет увеличения клубочковой фильтрации и подавления реабсорбции воды в канальцах. Натрийуретический гормон подавляет секрецию ренина, ингибирует эффекты ангиотензина II и альдостерона. На-трийуретический гормон расслабляет гладкие мышечные клетки мел-ких сосудов, способствуя тем самым снижению артериального дав-ления, а также гладкую мускулатуру кишечника.

22. Значение центров продолговатого мозга и гипоталамуса в регуляции работы сердца. Роль лимбической системы и коры больших полушарий в механизмах приспособления сердца к внешним и внутренним раздражениям.

Центры блуждающих и симпатических нервов являются второй ступенью иерархии нервных центров, регулирующих работу сердца. Интегрируя рефлекторные и нисходящие из высших отделов голо-вного мозга влияния, они формируют сигналы, управляющие дея-тельностью сердца, в том числе определяющие ритм его сокращений. Более высокая ступень этой иерархии — центры гипоталамической области. При электрическом раздражении различных зон гипотала-муса наблюдаются реакции сердечно-сосудистой системы, по силе и выраженности намного превосходящие реакции, возникающие в естественных условиях. При локальном точечном раздражении не-которых пунктов гипоталамуса удавалось наблюдать изолированные реакции: изменение ритма сердца, или силы сокращений левого желудочка, или степени расслабления левого желудочка и т. д. Таким образом, удалось выявить, что в гипоталамусе имеются струк-туры, способные регулировать отдельные функции сердца. В есте-ственных условиях эти структуры не работают изолированно. Ги-поталамус представляет собой интегративный центр, который может изменять любые параметры сердечной деятельности и состояние любых отделов сердечно-сосудистой системы с тем, чтобы обеспечить потребности организма при поведенческих реакциях, возникающих в ответ на изменение условий окружающей (и внутренней) среды.

Гипоталамус является лишь одним из уровней иерархии центров, регулирующих деятельность сердца. Он — исполнительный орган, обеспечивающий интегративную перестройку функций сердечно-со-судистой системы (и других систем) организма по сигналам, посту-пающим из расположенных выше отделов мозга — лимбической системы или новой коры. Раздражение определенных структур лим-бической системы или новой коры наряду с двигательными реак-циями изменяет функции сердечно-сосудистой системы: артериаль-ное давление, частоту сердечных сокращений и т. д.

Анатомическая близость в коре большого мозга центров, ответ-ственных за возникновение двигательных и сердечно-сосудистых реакций, способствует оптимальному вегетативному обеспечению поведенческих реакций организма.

23. Движение крови по сосудам. Факторы, определяющие непрерывное движение крови по сосудам. Биофизические особенности разных отделов сосудистого русла. Резистивные, емкостные и обменные сосуды.

Особенности системы кровообращения:

1)замкнутость сосудистого русла, в который включен насосный орган сердце;

2)эластичность сосудистой стенки (эластичность артерий больше эластичности вен, однако емкость вен превышает емкость артерий);

3)разветвленность кровеносных сосудов (отличие от других гидродинамических систем);

4)разнообразие диаметра сосудов (диаметр аорты равен 1,5 см, а капилляров 8-10 мкм);

5)в сосудистой системе циркулирует жидкость-кровь, вязкость которой в 5 раз выше вязкости воды.

Типы кровеносных сосудов:

1)магистральные сосуды эластического типа: аорта, крупные артерии, отходящие от нее; в стенке много эластических и мало мышечных элементов, вследствие этого данные сосуды обладают эластичностью и растяжимостью; задача данных сосудов состоит в преобразовании пульсирующего кровотока в плавный и непрерывный;

2)сосуды сопротивления или резистивные сосуды- сосуды мышечного типа, в стенке высокое содержание гладкомышечных элементов, сопротивление которых меняет просвет сосудов, а следовательно и сопротивление кровотоку;

3)обменные сосуды или «обменные герои» представлены капиллярами, которые обеспечивают протекание процесса обмена веществ, выполнение дыхательной функции между кровью и клетками; количество функционирующих капилляров зависит от функциональной и метаболической активности в тканях;

4)сосуды шунта или артериовенулярные анастомозы напрямую связывают артериоллы и венулы; если данные шунты открыты, то кровь сбрасывается из артериолл в венулы, минуя капилляры, если же закрыты, то кровь идет из артериолл в венулы через капилляры;

5)емкостные сосуды представлены венами, для которых характерна большая растяжимость, но малая эластичность, данные сосуды вмещают до 70 % всей крови, существенно влияют на величину венозного возврата крови к сердцу.

24. Основные параметры гемодинамики. Формула Пуазейля. Характер движения крови по сосудам, его особенности. Возможность применения законов гидродинамики для объяснения движения крови по сосудам.

Движение крови подчиняется законам гидродинамики, а именно происходит из области большего давления в область меньшего.

Количество крови, протекающей через сосуд прямо пропорционально разнице давлений и обратно пропорционально сопротивлению:

Q=(p1—p2) /R= ∆p/R,

где Q-кровоток, p-давление, R-сопротивление;

Аналог закона Ома для участка электрической цепи:

где I-сила тока, E-напряжение, R-сопротивление.

Сопротивление связано с трением частиц крови о стенки сосудов, что обозначается как внешнее трение, также существует и трение между частицами- внутреннее трение или вязкость.

Закон Гагена Пуазеля:

где η- вязкость, l- длина сосуда, r- радиус сосуда.

Q=∆pπr 4 /8ηl.

Этими параметрами определяется количество протекающей крови через поперечное сечение сосудистого русла.

Для движения крови имеет значение не абсолютные величины давлений, а разница давлений:

р1=100 мм рт ст, р2=10 мм рт ст, Q =10 мл/с;

р1=500 мм рт ст, р2=410 мм РТ ст, Q=10 мл/с.

Физическая величина сопротивления кровотока выражается в [Дин*с/см 5 ]. Были введены относительные единицы сопротивления:

Если р= 90 мм рт ст, Q= 90 мл/с, то R= 1 - единица сопротивления.

Величина сопротивления в сосудистом русле зависит от расположения элементов сосудов.

Если рассматриваются величины сопротивлений, возникающих в последовательно соединенных сосудах, то общее сопротивление будет равно сумме сосудов в отдельных сосудах:

В сосудистой системе кровоснабжение осуществляется за счет ветвей, отходящих от аорты и идущих параллельно:

R=1/R1 + 1/R2+…+ 1/Rn,

то есть общее сопротивление равно сумме величин обратных сопротивлению в каждом элементе.

Физиологические процессы подчиняются общим физическим законам.

25. Скорость движения крови в различных отделах сосудистой системы. Понятие об объемной и линейной скорости движения крови. Время кругооборота крови, методы его определения. Возрастные изменения времени кругооборота крови.

Движение крови оценивается определением объемной и линейной скорости кровотока.

Объемная скорость - количество крови, проходящей через поперечное сечение сосудистого русла в единицу времени: Q = ∆p / R , Q = Vπr 4 . В покое МОК = 5 л / мин, объемная скорость кровотока на каждом сечении сосудистого русла будет постоянна (через все сосуды в мин проходи 5 л), однако каждый орган получает разное количество крови, вследствие этого Q распределяется в % соотношении, для отдельного органа необходимо знать давление в артерии, вене, по которым осуществляется кровоснабжение, а также давление внутри самого органа.

Линейная скорость - скорость движения частиц вдоль стенки сосуда: V = Q / πr 4

По направлению от аорты суммарная площадь сечения возрастает, достигает максимума на уровне капилляров, суммарный просвет которых в 800 раз больше просвета аорты; суммарный просвет вен в 2 раза больше суммарного просвета артерий, так как каждую артерию сопровождают две вены, поэтому линейная скорость больше.

Кровоток в сосудистой системе ламинарный, каждый слой движется параллельно другому слою, не смешиваясь. Пристеночные слои испытывают большое трение, в результате скорость стремится к 0, по направлению к центру сосуда скорость возрастает, достигая в осевой части максимального значения. Ламинарный кровоток бесшумный. Звуковые явления возникают в том случае, когда ламинарный кровоток переходит в турбулентный (возникают завихрения) : Vc = R * η / ρ * r, где R - число Рейнольдса, R = V * ρ * r / η. Если R > 2000 , то поток переходит в турбулентный, что наблюдается при сужении сосудов, при возрастании скорость в местах разветвления сосудов или возникновении препятствий на пути. Турбулентный кровоток имеет шумы.

Время кругооборота крови - время, за которое кровь проходит полный круг (и малый, и большой).Составляет 25 с, что приходится на 27 систол (1/5 на малый - 5с, 4/5 на большой - 20с). В норме циркулирует 2,5 л крови, гругооборот25с, что достаточно для обеспечения МОК.

26. Кровяное давление в различных отделах сосудистой системы. Факторы, определяющие величину кровяного давления. Инвазивный (кровавый) и неинвазивный (бескровный) методы регистрации кровяного давления.

Кровяное давление- давление крови на стенки сосудов и камер сердца, является важным энергетическим параметром, ибо это фактор, обеспечивающий движение крови.

Источник энергии - сокращение мускулатуры сердца, выполняющего насосную функцию.

Различают:

Артериальное давление;

Венозное давление;

Внутрисердечное давление;

Капиллярное давление.

Величина давления крови отражает ту величину энергии, которая отражает энергию движущегося потока. Эта энергия складывается из потенциальной, кинетической энергии и потенциальной энергии тяжести:

E = P+ ρV 2 /2 + ρgh,

где P - потенциальная энергия, ρV 2 /2 - кинетическая энергия, ρgh - энергия столба крови или потенциальная энергия тяжести.

Наиболее важным является показатель артериального давления, отражающий взаимодействие многих факторов, тем самым являющийся интегрированным показателем, отражающим взаимодействие следующих факторов:

Систолический объем крови;

Частота и ритм сокращений сердца;

Эластичность стенок артерий;

Сопротивление резистивных сосудов;

Скорость крови в емкостных сосудах;

Скорость циркулирующей крови;

Вязкость крови;

Гидростатическое давление столба крови: P = Q * R.

27. Артериальное давление (максимальное, минимальное, пульсовое, среднее). Влияние различных факторов на величину артериального давления. Возрастные изменения артериального давления у человека.

В артериальном давлении различают боковое и конечное давление. Боковое давление - давление крови на стенки сосудов, отражает потенциальную энергию движения крови. Конечное давление - давление, отражающее сумму потенциальной и кинетической энергии движения крови.

По мере движения крови происходит снижение обоих видов давлений, так как энергия потока тратится на преодоление сопротивления, при этом максимальное снижение происходит там, где суживается сосудистое русло, где необходимо преодолеть наибольшее сопротивление.

Конечное давление больше бокового на 10-20 мм рт ст. Разность называют ударным или пульсовым давлением .

Артериальное давление не является стабильным показателем, в естественных условиях меняется во время сердечного цикла, в артериальном давлении различают:

Систолическое или максимальное давление (давление, устанавливающееся в период систолы желудочков);

Диастолическое или минимальное давление, которое возникает в конце диастолы;

Разность между величиной систолического и диастолического давлений - пульсовое давление;

Среднее артериальное давление, отражающее движение крови, если бы пульсовые колебания отсутствовали.

В разных отделах давление будет принимать различные значения. В левом предсердии систолическое давление равно 8-12 мм рт ст, диастолическое равно 0, в левом желудочке сист = 130 , диаст = 4, в аорте сист =110-125 мм рт ст, диаст = 80-85, в плечевой артерии сист = 110-120, диаст = 70-80, на артериальном конце капилляров сист 30-50, но здесь отсутствуют колебания, на венозном конце капилляров сист = 15-25, мелких венах сист = 78-10 (в среднем 7,1), в полых венах сист = 2-4, в правом предсердии сист = 3-6 (в среднем 4,6), диаст = 0 или «-», в правом желудочке сист = 25-30, диаст = 0-2, в легочном стволе сист = 16-30, диаст = 5-14, в легочных венах сист = 4-8.

В большом и малом круге происходит постепенное снижение давления, которое отражает расход энергии, идущей на преодоление сопротивления. Среднее давление не является средним арифметическим, например, 120 на 80, среднее 100 - неверное данное, так как продолжительность систолы и диастолы желудочков различна по времени. Для расчета среднего давления были предложены две математические формулы:

Ср р = (р сист + 2*р дисат)/3, (например, (120 + 2*80)/3 = 250/3 = 93 мм рт ст), смещено в сторону диастолического или минимального.

Ср р = р диаст + 1/3 * р пульсовое, (например, 80 + 13 = 93 мм рт ст.)

28. Ритмические колебания артериального давления (волны трех порядков), связанные с работой сердца, дыханием, изменением тонуса сосудо-двигательного центра и, в патологии, с изменением тонуса артерий печени.

Давление крови в артериях не является постоянным: оно непре-рывно колеблется в пределах некоторого среднего уровня. На кривой артериального давления эти колебания имеют различный вид.

Волны первого порядка (пульсовые) самые частые. Они синхро-низированы с сокращениями сердца. Во время каждой систолы пор-ция крови поступает в артерии и увеличивает их эластическое растяжение, при этом давление в артериях повышается. Во время диастолы поступление крови из желудочков в артериальную систему прекращается и происходит только отток крови из крупных артерий: растяжение их стенок уменьшается и давление снижается. Колебания давления, постепенно затухая, распространяются от аорты и легоч-ной артерии на все их разветвления. Наибольшая величина давления в артериях (систолическое, или максимальное, давление) наблю-дается во время прохождения вершины пульсовой волны, а наи-меньшая (диастолическое, или минимальное, давление) — во время прохождения основания пульсовой волны. Разность между систоли-ческим и диастолическим давлением, т. е. амплитуда колебаний давления, называется пульсовым давлением. Оно создает волну пер-вого порядка. Пульсовое давление при прочих равных условиях пропорционально количеству крови, выбрасываемой сердцем при каждой систоле.

В мелких артериях пульсовое давление снижается и, следова-тельно, разница между систолическим и диастолическим давлением уменьшается. В артериолах и капиллярах пульсовые волны арте-риального давления отсутствуют.

Кроме систолического, диастолического и пульсового артериаль-ного давления определяют так называемое среднее артериальное давление. Оно представляет собой ту среднюю величину давления, при которой в отсутствие пульсовых колебаний наблюдается такой же гемодинамический эффект, как и при естественном пульсирую-щим давлении крови, т. е. среднее артериальное давление — это равнодействующая всех изменений давления в сосудах.

Продолжительность понижения диастолического давления боль-ше, чем повышения систолического, поэтому среднее давление ближе к величине диастолического давления. Среднее давление в одной и той же артерии представляет собой более постоянную величину, а систолическое и диастолическое изменчивы.

Кроме пульсовых колебаний, на кривой АД наблюдаются волны второго порядка, совпадающие с дыхательными движениями: поэ-тому их называют дыхательными волнами: у человека вдох сопро-вождается понижением АД, а выдох — повышением.

В некоторых случаях на кривой АД отмечаются волны третьего порядка. Это еще более медленные повышения и понижения дав-ления, каждое из которых охватывает несколько дыхательных волн второго порядка. Указанные волны обусловлены периодическими изменениями тонуса сосудодвигательных центров. Они наблюдаются чаще всего при недостаточном снабжении мозга кислородом, напри-мер при подъеме на высоту, после кровопотери или отравлениях некоторыми ядами.

Кроме прямого, применяют косвенные, или бескровные, способы определения давления. Они основываются на измерении давления, которому нужно подвергнуть стенку данного сосуда извне, чтобы прекратить по нему ток крови. Для такого исследования применяют сфигмоманометр Рива-Роччи. Обследуемому наклады-вают на плечо полую резиновую манжету, которая соединена с резиновой грушей, служащей для нагнетания воздуха, и с мано-метром. При надувании манжета сдавливает плечо, а манометр показывает величину этого давления. Для измерения давления крови с помощью этого прибора, по предложению Н. С. Короткова, вы-слушивают сосудистые тоны, возникающие в артерии к периферии от наложенной на плечо манжеты.

При движении крови в несдавленной артерии звуки отсутствуют. Если давление в манжете поднять выше уровня систолического АД, то манжета полностью сдавливает просвет артерии и кровоток в ней прекращается. Звуки при этом также отсутствуют. Если теперь постепенно выпускать воздух из манжеты (т. е. проводить деком-прессию), то в момент, когда давление в ней станет чуть ниже уровня систолического АД, кровь при систоле преодолевает сдав-ленный участок и прорывается за манжету. Удар о стенку артерии порции крови, движущейся через сдавленный участок с большой скоростью и кинетической энергией, порождает звук, слышимый ниже манжеты. Давление в манжете, при котором появляются пер-вые звуки в артерии, возникает в момент прохождения вершины пульсовой волны и соответствует максимальному, т. е. систоличе-скому, давлению. При дальнейшем снижении давления в манжете наступает момент, когда оно становится ниже диастолического, кровь начинает проходить по артерии как во время вершины, так и основания пульсовой волны. В этот момент звуки в артерии ниже манжеты исчезают. Давление в манжете в момент исчезновения звуков в артерии соответствует величине минимального, т. е. ди-астолического, давления. Величины давления в артерии, определен-ные по способу Короткова и зарегистрированные у этого же человека путем введения в артерию катетера, соединенного с электромано-метром, существенно не отличаются друг от друга.

У взрослого человека среднего возраста систолическое давление в аорте при прямых измерениях равно 110—125 мм рт.ст. Значи-тельное снижение давления происходит в мелких артериях, в артериолах. Здесь давление резко уменьшается, становясь на артери-альном конце капилляра равным 20—30 мм рт.ст.

В клинической практике АД определяют обычно в плечевой артерии. У здоровых людей в возрасте 15—50 лет максимальное давление, измеренное способом Короткова, составляет 110—125 мм рт.ст. В возрасте старше 50 лет оно, как правило, повышается. У 60-летних максимальное давление равно в среднем 135—140 мм рт.ст. У новорожденных максимальное артериальное давление 50 мм рт.ст., но уже через несколько дней становится 70 мм рт.ст. и к концу 1-го месяца жизни — 80 мм рт.ст.

Минимальное артериальное давление у взрослых людей среднего возраста в плечевой артерии в среднем равно 60—80 мм рт.ст., пульсовое составляет 35—50 мм рт.ст., а среднее — 90—95 мм рт.ст.

29. Давление крови в капиллярах и венах. Факторы, влияющие на венозное давление. Понятие о микроциркуляции. Транскапиллярный обмен.

Капилляры представляют собой тончайшие сосуды, диамет-ром 5—7 мкм, длиной 0,5—1,1 мм. Эти сосуды пролегают в меж-клеточных пространствах, тесно соприкасаясь с клетками органов и тканей организма. Суммарная длина всех капилляров тела чело-века составляет около 100 000 км, т. е. нить, которой можно было бы 3 раза опоясать земной шар по экватору. Физиологическое значение капилляров состоит в том, что через их стенки осущест-вляется обмен веществ между кровью и тканями. Стенки капилляров образованы только одним слоем клеток эндотелия, снаружи которого находится тонкая соединительнотканная базальная мембрана.

Скорость кровотока в капиллярах невелика и составляет 0,5— 1 мм/с. Таким образом, каждая частица крови находится в капил-ляре примерно 1 с. Небольшая толщина слоя крови (7—8 мкм) и тесный контакт его с клетками органов и тканей, а также непре-рывная смена крови в капиллярах обеспечивают возможность обмена веществ между кровью и тканевой (межклеточной) жидкостью.

В тканях, отличающихся интенсивным обменом веществ, число капилляров на 1 мм 2 поперечного сечения больше, чем в тканях, в которых обмен веществ менее интенсивный. Так, в сердце на 1 мм 2 сечения в 2 раза больше капилляров, чем в скелетной мышце. В сером веществе мозга, где много клеточных элементов, капил-лярная сеть значительно более густая, чем в белом.

Различают два вида функционирующих капилляров. Одни из них образуют кратчайший путь между артериолами и венулами (магистральные капилляры). Другие представляют собой боковые ответвления от первых: они отходят от артериального конца маги-стральных капилляров и впадают в их венозный конец. Эти боковые ответвления образуют капиллярные сети. Объемная и линейная скорость кровотока в магистральных капиллярах больше, чем в боковых ответвлениях. Магистральные капилляры играют важную роль в распределении крови в капиллярных сетях и в других фе-номенах микроциркуляции.

Давление крови в капиллярах измеряют прямым способом: под контролем бинокулярного микроскопа в капилляр вводят тончайшую канюлю, соединенную с электроманометром. У человека давление на артериальном конце капилляра равно 32 мм рт.ст., а на венозном — 15 мм рт.ст., на вершине петли капилляра ногтевого ложа — 24 мм рт.ст. В капиллярах почечных клубочков давление достигает 65— 70 мм рт.ст., а в капиллярах, оплетающих почечные канальцы, — всего 14—18 мм рт.ст. Очень невелико давление в капиллярах лег-ких — в среднем 6 мм рт.ст. Измерение капиллярного давления про-изводят в положении тела, при котором капилляры исследуемой обла-сти находятся на одном уровне с сердцем. В случае расширения артериол давление в капиллярах повышается, а при сужении понижается.

Кровь течет лишь в «дежурных» капиллярах. Часть капилляров выключена из кровообращения. В период интенсивной деятельности органов (например, при сокращении мышц или секреторной активности желез), когда обмен веществ в них усиливается, количество функционирующих капилляров значительно возрастает.

Регулирование капиллярного кровообращения нервной системой, влияние на него физиологически активных веществ — гормонов и ме-таболитов — осуществляются при воздействии их на артерии и артериолы. Сужение или расширение артерий и артериол изменяет как количество функционирующих капилляров, распределение крови в ветвящейся капиллярной сети, так и состав крови, протекающей по капиллярам, т. е. соотношение эритроцитов и плазмы. При этом об-щий кровоток через метартериолы и капилляры определяется сокра-щением гладких мышечных клеток артериол, а степень сокращения прекапиллярных сфинктеров (гладких мышечных клеток, располо-женных у устья капилляра при его отхождении от метаартериол) оп-ределяет, какая часть крови пройдет через истинные капилляры.

В некоторых участках тела, например в коже, легких и почках, имеются непосредственные соединения артериол и венул — артериовенозные анастомозы. Это наиболее короткий путь между артериолами и венулами. В обычных условиях анастомозы закрыты и кровь проходит через капиллярную сеть. Если анастомозы откры-ваются, то часть крови может поступать в вены, минуя капилляры.

Артериовенозные анастомозы играют роль шунтов, регулирую-щих капиллярное кровообращение. Примером этого является изме-нение капиллярного кровообращения в коже при повышении (свыше 35°С) или понижении (ниже 15°С) температуры окружающей среды. Анастомозы в коже открываются и устанавливается ток крови из артериол непосредственно в вены, что играет большую роль в про-цессах терморегуляции.

Структурной и функциональной единицей кровотока в мелких со-судах является сосудистый модуль — относительно обособленный в гемодинамическом отношении комплекс микрососудов, снабжающий кровью определенную клеточную популяцию органа. При этом имеет место специфичность васкуляризации тканей различных органов, что проявляется в особенностях ветвления микрососудов, плотности капилляризации тканей и др. Наличие модулей позволяет регулировать локальный кровоток в отдельных микроучастках тканей.

Микроциркуляция — собирательное понятие. Оно объеди-няет механизмы кровотока в мелких сосудах и теснейшим образом связанный с кровотоком обмен жидкостью и растворенными в ней газами и веществами между сосудами и тканевой жидкостью.

Движение крови в венах обеспечивает наполнение полостей сер-дца во время диастолы. Ввиду небольшой толщины мышечного слоя стенки вен гораздо более растяжимы, чем стенки артерий, поэтому в венах может скапливаться большое количество крови. Даже если давление в венозной системе повысится всего на несколько милли-метров, объем крови в венах увеличится в 2—3 раза, а при повы-шении давления в венах на 10 мм рт.ст. вместимость венозной системы возрастет в 6 раз. Вместимость вен может также изменяться при сокращении или расслаблении гладкой мускулатуры венозной стенки. Таким образом, вены (а также сосуды малого круга крово-обращения) являются резервуаром крови переменной емкости.

Венозное давление. Давление в венах у человека можно изме-рить, вводя в поверхностную (обычно локтевую) вену полую иглу и соединяя ее с чувствительным электроманометром. В венах, на-ходящихся вне грудной полости, давление равно 5—9 мм рт.ст.

Для определения венозного давления необходимо, чтобы данная вена располагалась на уровне сердца. Это важно потому, что к величине кровяного давления, например в венах ног в положении стоя, присоединяется гидростатическое давление столба крови, на-полняющего вены.

В венах грудной полости, а также в яремных венах давление близко к атмосферному и колеблется в зависимости от фазы дыхания. При вдохе, когда грудная клетка расширяется, давление понижается и становится отрицательным, т. е. ниже атмосферного. При выдохе происходят противоположные изменения и давление повышается (при обычном выдохе оно не поднимается выше 2—5 мм рт.ст.). Ранение вен, лежащих вблизи грудной полости (например, яремных вен), опасно, так как давление в них в момент вдоха является отрицательным. При вдохе возможно поступление атмосферного воздуха в полость вен и развитие воздушной эмболии, т. е. перенос пузырьков воздуха кровью и последующая закупорка ими артериол и капилляров, что может привести к смерти.

30. Артериальный пульс, его происхождение, характеристика. Венный пульс, его происхождение.

Артериальным пульсом называют ритмические колебания стенки артерии, обусловленные повышением давления в период сис-толы. Пульсацию артерий можно легко обнаружить прикосновением к любой доступной ощупыванию артерии: лучевой (a. radialis), височ-ной (a. temporalis), наружной артерии стопы (a. dorsalis pedis) и др.

Пульсовая волна, или колебательное изменения диаметра или объема артериальных сосудов, обусловлена волной повышения дав-ления, возникающей в аорте в момент изгнания крови из желудоч-ков. В это время давление в аорте резко повышается и стенка ее растягивается. Волна повышенного давления и вызванные этим рас-тяжением колебания сосудистой стенки с определенной скоростью распространяются от аорты до артериол и капилляров, где пульсовая волна гаснет.

Скорость распространения пульсовой волны не зависит от скорости движения крови. Максимальная линейная скорость течения крови по артериям не превышает 0,3—0,5 м/с, а скорость распространений пульсовой волны у людей молодого и среднего возраста при нормаль-ном артериальном давлении и нормальной эластичности сосудов равна в аорте 5,5 —8,0 м/с, а в периферических артериях — 6,0—9,5 м/с. С возрастом по мере понижения эластичности сосудов скорость рас-пространения пульсовой волны, особенно в аорте, увеличивается.

Для детального анализа отдельного пульсового колебания произ-водят его графическую регистрацию при помощи специальных прибо-ров — сфигмографов. В настоящее время для исследования пульса ис-пользуют датчики, преобразующие механические колебания сосуди-стой стенки в электрические изменения, которые и регистрируют.

В пульсовой кривой (сфигмограмме) аорты и крупных ар-терий различают две основные части — подъем и спад. Подъем кривой — анакрота — возникает вследствие повышения АД и вызванного этим растяжения, которому подвергаются стенки артерий под влиянием крови, выброшенной из сердца в начале фазы изгна-ния. В конце систолы желудочка, когда давление в нем начинает падать, происходит спад пульсовой кривой — катакрота. В тот момент, когда желудочек начинает расслабляться и давление в его полости становится ниже, чем в аорте, кровь, выброшенная в ар-териальную систему, устремляется назад к желудочку; давление в артериях резко падает и на пульсовой кривой крупных артерий появляется глубокая выемка — инцизура. Движение крови обратно к сердцу встречает препятствие, так как полулунные клапаны под влиянием обратного тока крови закрываются и препятствуют по-ступлению ее в сердце. Волна крови отражается от клапанов и создает вторичную волну повышения давления, вызывающую вновь растяжение артериальных стенок. В результате на сфигмограмме появляется вторичный, или дикротический, подъем. Формы кривой пульса аорты и отходящих непосредственно от нее крупных сосудов, так называемого центрального пульса, и кривой пульса перифери-ческих артерий несколько отличаются (рис. 7.19).

Исследование пульса, как пальпаторное, так и инструментальное, посредством регистрации сфигмограммы дает ценную информацию о функционировании сердечно-сосудистой системы. Это исследование позволяет оценить как сам факт наличия биений сердца, так и частоту его сокращений, ритм (ритмичный или аритмичный пульс). Колебания ритма могут иметь и физиологический характер. Так, «дыхательная аритмия», проявляющаяся в увеличении частоты пуль-са на вдохе и уменьшении при выдохе, обычно выражена у молодых людей. Напряжение (твердый или мягкий пульс) определяют по величине усилия, которое необходимо приложить для того, чтобы пульс в дистальном участке артерии исчез. Напряжение пульса в определенной мере отображает величину среднего АД.

Венный пульс. В мелких и средних венах пульсовые колебания давления крови отсутствуют. В крупных венах вблизи сердца от-мечаются пульсовые колебания — венный пульс, имеющий иное происхождение, чем артериальный пульс. Он обусловлен затрудне-нием притока крови из вен в сердце во время систолы предсердий и желудочков. Во время систолы этих отделов сердца давление внутри вен повышается и происходят колебания их стенок. Удобнее всего записывать венный пульс яремной вены.

На кривой венного пульса — флебограмме — различают три зубца: а, с, v (рис. 7.21). Зубец а совпадает с систолой правого предсердия и обусловлен тем, что в момент систолы предсердия устья полых вей зажимаются кольцом мышечных волокон, вслед-ствие чего приток крови из вен в предсердия временно приостанав-ливается. Во время диастолы предсердий доступ в них крови ста-новится вновь свободным, и в это время кривая венного пульса круто падает. Вскоре на кривой венного пульса появляется неболь-шой зубец c . Он обусловлен толчком пульсирующей сонной артерии, лежащей вблизи яремной вены. После зубца c начинается падение кривой, которое сменяется новым подъемом — зубцом v . Последний обусловлен тем, что к концу систолы желудочков предсердия на-полнены кровью, дальнейшее поступление в них крови невозможно, происходят застой крови в венах и растяжение их стенок. После зубца v наблюдается падение кривой, совпадающее с диастолой желудочков и поступлением в них крови из предсердий.

31. Местные механизмы регуляции кровообращения. Характеристика процессов, протекающих в отдельном участке сосудистого русла или органе (реакция сосудов на изменение скорости кровотока, давления крови, влияние продуктов метаболизма). Миогенная ауторегуляция. Роль эндотелия сосудов в регуляции местного кровообращения.

При усиленной функции любого органа или ткани возрастает ин-тенсивность процессов метаболизма и повышается концентрация продуктов обмена (метаболитов) — оксида углерода (IV) СО 2 и угольной кислоты, аденозиндифосфата, фосфорной и молочной кис-лот и других веществ. Увеличивается осмотическое давление (вслед-ствие появления значительного количества низкомолекулярных про-дуктов), уменьшается величина рН в результате накопления водород-ных ионов. Все это и ряд других факторов приводят к расширению сосудов в работающем органе. Гладкая мускулатура сосудистой стен-ки очень чувствительна к действию этих продуктов обмена.

Попадая в общий кровоток и достигая с током крови сосудодвигательного центра, многие из этих веществ повышают его тонус. Возникающее при центральном действии указанных веществ генерализованное повышение тонуса сосудов в организме приводит к увеличению системного АД при значительном возрастании кровотока через работающие органы.

В скелетной мышце в состоянии покоя на 1 мм 2 поперечного сечения приходится около 30 открытых, т. е. функционирующих, капилляров, а при максимальной работе мышцы число открытых капилляров на 1 мм 2 возрастает в 100 раз.

Минутный объем крови, нагнетаемый сердцем при интенсивной физической работе, может увеличиться не более чем в 5—6 раз, поэтому возрастание кровоснабжения работающих мышц в 100 раз возможно лишь вследствие перераспределения крови. Так, в период пищеварения наблюдается усиленный приток крови к пищевари-тельным органам и уменьшение кровоснабжения кожи и скелетной мускулатуры. Во время умственного напряжения усиливается кро-воснабжение мозга.

Напряженная мышечная работа ведет к сужению сосудов пище-варительных органов и усиленному притоку крови к работающим скелетным мышцам. Приток крови к этим мышцам возрастает в результате местного сосудорасширяющего действия продуктов об-мена, образующихся в работающих мышцах, а также вследствие рефлекторного расширения сосудов. Так, при работе одной руки сосуды расширяются не только в этой, но и в другой руке, а также в нижних конечностях.

Высказано предположение, что в сосудах работающего органа то-нус мышц понижается не только вследствие накопления продуктов об-мена, но и в результате воздействия механических факторов: сокра-щение скелетных мышц сопровождается растяжением сосудистых стенок, уменьшением сосудистого тонуса в данной области и, следова-тельно, значительным увеличением местного кровообращения.

Кроме продуктов обмена, накапливающихся в работающих орга-нах и тканях, на мышцы сосудистой стенки влияют и другие гумораль-ные факторы: гормоны, ионы и т. д. Так, гормон мозгового вещества надпочечников адреналин вызывает резкое сокращение гладких мышц артериол внутренних органов и вследствие этого значительный подъем системного АД. Адреналин усиливает также сердечную дея-тельность, однако сосуды работающих скелетных мышц и сосуды го-ловного мозга под влиянием адреналина не суживаются. Таким обра-зом, выброс в кровь большого количества адреналина, образующегося при эмоциональных напряжениях, значительно повышает уровень си-стемного АД и одновременно улучшает кровоснабжение мозга и мышц и тем самым приводит к мобилизации энергетических и пластических ресурсов организма, необходимых в чрезвычайных условиях, при ко-торых возникает эмоциональное напряжение.

Сосуды ряда внутренних органов и тканей обладают индивиду-альными особенностями регуляции, которые объясняются структурой и функцией каждого из этих органов или тканей, а также степенью их участия в тех или иных общих реакциях организма. Например, сосуды кожи играют важную роль в теплорегуляции. Расширение их при повышении температуры тела способствует отдаче тепла в окружающую среду, а сужение снижает теплоотдачу.

Перераспределение крови происходит также при переходе из горизонтального положения в вертикальное. При этом затрудняется венозный отток крови от ног и количество крови, поступающей в сердце по нижней полой вене, уменьшается (при рентгеноскопии четко видно уменьшение размеров сердца). Вследствие этого веноз-ный приток крови к сердцу может значительно уменьшаться.

В последние годы установлена важная роль эндотелия со-судистой стенки в регуляции кровотока. Эндотелий сосудов синтезирует и выделяет факторы, активно влияющие на тонус глад-ких мышц сосудов. Клетки эндотелия — эндотелиоциты под влиянием химических раздражителей, приносимых кровью, или под влиянием механического раздражения (растяжение) способны вы-делять вещества, непосредственно действующие на гладкие мышеч-ные клетки сосудов, вызывая их сокращение или расслабление. Срок жизни этих веществ мал, поэтому действие их ограничивается сосудистой стенкой и не распространяется обычно на другие гладкомышечные органы. Одними из факторов, вызывающих расслаб-ление сосудов, являются, по-видимому, нитраты и нитриты. Воз-можным сосудосуживающим фактором является вазоконстрикторный пептид эндотелии, состоящий из 21 аминокислотного остатка.

32. Тонус сосудов, его регуляция. Значение симпатической нервной системы. Понятие об альфа- и бета- адренорецепторах.

Сужение артерий и артериол, снабженных преимущественно сим-патическими нервами (вазоконстрикция) было впервые обнаружено Вальтером (1842) в опытах на лягушках, а затем Бернаром (1852) в экспериментах на ухе кролика. Классический опыт Бернара состоит в том, что перерезка симпатического нерва на одной стороне шеи у кролика вызывает расширение сосудов, проявляющееся покраснением и потеплением уха оперированной стороны. Если раздражать симпатический нерв на шее, то ухо на стороне раздражаемого нерва бледнеет вследствие сужения его артерий и артериол, а температура понижается.

Главными сосудосуживающими нервами органов брюшной поло-сти являются симпатические волокна, проходящие в составе внут-ренностного нерва (п. splanchnicus). После перерезки этих нервов кровоток через сосуды брюшной полости, лишенной сосудосужива-ющей симпатической иннервации, резко увеличивается вследствие расширения артерий и артериол. При раздражении п. splanchnicus сосуды желудка и тонкой кишки суживаются.

Симпатические сосудосуживающие нервы к конечностям идут в составе спинномозговых смешанных нервов, а также по стенкам артерий (в их адвентициальной оболочке). Поскольку перерезка симпатических нервов вызывает расширение сосудов той области, которая иннервируется этими нервами, считают, что артерии и артериолы находятся под непрерывным сосудосуживающим влияни-ем симпатических нервов.

Чтобы восстановить нормальный уровень артериального тонуса после перерезки симпатических нервов, достаточно раздражать их периферические отрезки электрическими стимулами частотой 1—2 в секунду. Увеличение частоты стимуляции может вызвать сужение артериальных сосудов.

Сосудорасширяющие эффекты (вазодилатация) впервые обна-ружили при раздражении нескольких нервных веточек, относящихся к парасимпатическому отделу нервной системы. Например, раздра-жение барабанной струны (chorda timpani) вызывает расширение сосудов подчелюстной железы и языка, п. cavernosi penis — расши-рение сосудов пещеристых тел полового члена.

В некоторых органах, например в скелетной мускулатуре, рас-ширение артерий и артериол происходит при раздражении симпа-тических нервов, в составе которых имеются, кроме вазоконстрикторов, и вазодилататоры. При этом активация α -адренорецепторов приводит к сжатию (констрикции) сосудов. Активация β -адренорецепторов, наоборот, вызывает вазодилатацию. Следует заметить, что β -адренорецепторы обнаружены не во всех органах.

33. Механизм сосудорасширяющих реакций. Сосудорасширяющие нервы, их значение в регуляции регионарного кровообращения.

Расширение сосудов (главным образом кожи) можно вызвать также раздражением периферических отрезков задних корешков спинного мозга, в составе которых проходят афферентные (чувст-вительные) волокна.

Эти факты, обнаруженные в 70-х годах прошлого столетия, вызвали среди физиологов много споров. Согласно теории Бейлиса и Л. А. Орбели, одни и те же заднекорешковые волокна передают импульсы в обоих направлениях: одна веточка каждого волокна идет к рецептору, а другая — к кровеносному сосуду. Рецепторные нейроны, тела которых находятся в спинномозговых узлах, обладают двоякой функцией: передают афферентные импульсы в спинной мозг и эфферентные импульсы к сосудам. Передача импульсов в двух направлениях возможна потому, что афферентные волокна, как и все остальные нервные волокна, обладают двусторонней про-водимостью.

Согласно другой точке зрения, расширение сосудов кожи при раз-дражении задних корешков происходит вследствие того, что в рецепторных нервных окончаниях образуются ацетилхолин и гистамин, ко-торые диффундируют по тканям и расширяют близлежащие сосуды.

34. Центральные механизмы регуляции кровообращения. Сосудодвигательный центр, его локализация. Прессорный и депрессорный отделы, их физиологические особенности. Значение сосудодвигательного центра в поддержании тонуса сосудов и регуляции системного артериального давления.

В. Ф. Овсянниковым (1871) было установлено, что нервный центр, обеспечивающий определенную степень сужения артериального русла — сосудодвигательный центр — находится в продолго-ватом мозге. Локализация этого центра определена путем перерезки ствола мозга на разных уровнях. Если перерезка произведена у собаки или кошки выше четверохолмия, то АД не изменяется. Если перере-зать мозг между продолговатым и спинным мозгом, то максимальное давление крови в сонной артерии понижается до 60—70 мм рт.ст. От-сюда следует, что сосудодвигательный центр локализован в продолго-ватом мозге и находится в состоянии тонической активности, т. е. дли-тельного постоянного возбуждения. Устранение его влияния вызывает расширение сосудов и падение АД.

Более детальный анализ показал, что сосудодвигательный центр продолговатого мозга расположен на дне IV желудочка и состоит из двух отделов — прессорного и депрессорного. Раздражение прессорного отдела сосудодвигательного центра вызывает сужение артерий и подъем, а раздражение второго — расширение артерий и падение АД.

Считают, что депрессорный отдел сосудодвигательного центра вызывает расширение сосудов, понижая тонус прессорного отдела и снижая, таким образом, эффект сосудосуживающих нервов.

Влияния, идущие от сосудосуживающего центра продолговатого мозга, приходят к нервным центрам симпатической части вегета-тивной нервной системы, расположенным в боковых рогах грудных сегментов спинного мозга, регулирующих тонус сосудов отдельных участков тела. Спинномозговые центры способны через некоторое время после выключения сосудосуживающего центра продолговатого мозга немного повысить давление крови, снизившееся вследствие расширения артерий и артериол.

Кроме сосудодвигательных центров продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших полушарий.

35. Рефлекторная регуляция кровообращения. Рефлексогенные зоны сердечно-сосудистой системы. Классификация интерорецепторов.

Как отмечалось, артерии и артериолы постоянно находятся в состоянии сужения, в значительной мере определяемого тонической активностью сосудодвигательного центра. Тонус сосудодвигательного центра зависит от афферентных сигналов, приходящих от перифе-рических рецепторов, расположенных в некоторых сосудистых об-ластях и на поверхности тела, а также от влияния гуморальных раздражителей, действующих непосредственно на нервный центр. Следовательно, тонус сосудодвигательного центра имеет как ре-флекторное, так и гуморальное происхождение.

По классификации В. Н. Черниговского, рефлекторные измене-ния тонуса артерий — сосудистые рефлексы — могут быть разделены на две группы: собственные и сопряженные рефлексы.

Собственные сосудистые рефлексы. Вызываются сиг-налами от рецепторов самих сосудов. Особенно важное физиологи-ческое значение имеют рецепторы, сосредоточенные в дуге аорты и в области разветвления сонной артерии на внутреннюю и наруж-ную. Указанные участки сосудистой системы получили название сосудистых рефлексогенных зон.

депрессор.

Рецепторы сосудистых рефлексогенных зон возбуждаются при повышении давления крови в сосудах, поэтому их называют прессорецепторами, или барорецепторами. Если перерезать синокаротидные и аортальные нервы с обеих сторон, возникает гипертензия, т. е. устойчивое повышение АД, достигающее в сонной артерии собаки 200—250 мм рт.ст. вместо 100—120 мм рт.ст. в норме.

36. Роль аортальной и синокаротидной рефлексогенных зон в регуляции кровообращения. Депрессорный рефлекс, его механизм, сосудистый и сердечный компоненты.

Рецепторы, расположенные в дуге аорты, являются окончаниями центростремительных волокон, проходящих в составе аортального нерва. Ционом и Людвигом этот нерв функционально был обозначен как депрессор. Электрическое раздражение центрального конца нер-ва обусловливает падение АД вследствие рефлекторного повышения тонуса ядер блуждающих нервов и рефлекторного снижения тонуса сосудосуживающего центра. В результате сердечная деятельность тормозится, а сосуды внутренних органов расширяются. Если у подопытного животного, например у кролика, перерезаны блужда-ющие нервы, то раздражение аортального нерва вызывает только рефлекторное расширение сосудов без замедления сердечного ритма.

В рефлексогенной зоне сонного синуса (каротидный синус, sinus caroticus) расположены рецепторы, от которых идут центростреми-тельные нервные волокна, образующие синокаротидный нерв, или нерв Геринга. Этот нерв вступает в мозг в составе языкоглоточного нерва. При введении в изолированный каротидный синус крови через канюлю под давлением можно наблюдать падение АД в сосудах тела (рис. 7.22). Понижение системного АД обусловлено тем, что растяжение стенки сонной артерии возбуждает рецепторы каротидного синуса, рефлекторно понижает тонус сосудосуживающего цен-тра и повышает тонус ядер блуждающих нервов.

37. Прессорный рефлекс с хеморецепторов, его компоненты и значение.

Рефлексы, делятся на депрессорные - понижающие давление, прессорные - повышающи е, ускоряющие, замедляющие, интероцептивные, экстероцептивные, безусловные, условные, собственные, сопряженные.

Главным рефлексом является рефлекс поддержания уровня давления. Т.е. рефлексы направленные на поддержание уровня давления с барорецепторов. Барорецепторы аорты, каротидного синуса воспринимают уровень давления. Воспринимают величину колебания давления при систоле и диастоле + среднего давления.

В ответ на повышение давления барорецепторы стимулируют активность сосудорасширяющей зоны. Одновременно они повышают тонус ядер блуждающего нерва. В ответ развиваются рефлекторные реакции, происходят рефлекторные изменения. Сосудорасширяющая зона подавляет тонус сосудосуживающей. Происходит расширение сосудов и снижается тонус вен. Сосуды артериальные расширены(артериолы) и расширятся вены, давление снизится. Понижается симпатическое влияние, блуждающих повышается, снижается частота ритма. Повышенное давление возвращается нормальному. Расширение артериол увеличивает кровоток в капиллярах. Часть жидкости будет переходить в ткани - будет уменьшаться объем крови, что приведет к уменьшению давления.

С хемореепторов возникают прессорные рефлексы . Увеличение активности сосудосуживающей зоны по нисходящим путям стимулирует симпатическую систему, при этом сосуды суживаются. Давление повышается через симпатические центры сердца произойдет учащение работы сердца. Симпатическая система регулирует выброс гормонов мозговым веществом надпочечников. Усилится кровоток в малом круге кровообращения. Дыхательная система реагирует учащение дыхания - освобождение крови от углекислого газа. Фактор, который вызвал прессорный рефлекс приводит к нормализации состава крови. В этом прессорном рефлексе иногда наблюдается вторичный рефлекс на изменение работы сердца. На фоне повышения давления наблюдается уряжение работы сердца. Это изменение работы сердце носит характер вторичного рефлекса.

38. Рефлекторные влияния на сердце с полых вен (рефлекс Бейнбриджа). Рефлексы с рецепторов внутренних органов (рефлекс Гольца). Глазо-сердечный рефлекс (рефлекс Ашнера).

Бейнбридж вводил в венозную часть устья 20 мл физ. Раствора или такой же объем крови. После этого происходило рефлекторное учащение работы сердца, с последующим повышением артериального давления. Главным компонентом в этом рефлексе является увеличение частоты сокращений, а давление поднимается лишь вторично. Этот рефлекс возникает при увеличение притока крови к сердцу. Когда приток крови, больше чем отток. В области устья половых вен - чувствительные рецепторы, которые реагируют на повышение венозного давления. Эти чувствительные рецепторы являются окончаниями афферентных волокон блуждающего нерва, а также афферентных волокон задних спинно-мозговых корешков. Возбуждение этих рецепторов приводит к тому, что импульсы достигают ядер блуждающего нерва и вызывают понижение тонуса ядер блуждающего нерва, одновременно увеличивается тонус симпатических центров. Происходит учащение работы сердца и кровь из венозной части начинает перекачиваться в артериальную. Давление в полых венах будет понижаться. В физиологических условиях такое состояние может увеличиваться при физических нагрузках, когда приток крови увеличивается и при пороках сердца, тоже наблюдается застой крови, что приводит к учащению работы сердца.

Гольц обнаружил, что потягивание желудка, кишечника или легкое поколачивание кишечника у лягушки сопровождается замедлением работы сердца, вплоть до полной остановки. Это связано с тем, что с рецепторов импульсы поступают к ядрам блуждающих нервов. Тонус их повышается и тормозится работа сердце или даже его остановка.

39. Рефлекторные влияния на сердечно-сосудистую систему с сосудов малого круга кровообращения (рефлекс Парина).

В сосудах малого круга кровообращения располагаются в рецепторы, которые реагируют на повышение давления в малом круге. При повышение давления в малом круге кровообращения возникает рефлекс, который вызывает расширение сосудов большого круга, одновременно происходит уряжение работы сердца и наблюдается увеличение объема селезенки. Таким образом с малого круга кровообращения возникает такой своеобразный разгрузочный рефлекс. Этот рефлекс был обнаружен В.В. Париным . Он очень много работал в плане развития и исследований космической физиологии, возглавлял институт медико-биологических исследований. Повышение давления в малом круге кровообращении - очень опасное состояние, ибо оно может вызвать отек легкого. Т.к. увеличивается гидростатическое давление крови, которое способствует фильтрации плазмы крови и благодаря такому состоянию жидкость попадает в альвеолы.

40. Значение рефлексогенной зоны сердца в регуляции кровообращения и объема циркулирующей крови.

Для нормального кровоснабжения органов и тканей, поддержания постоянства АД необходимо определенное соотношение между объ-емом циркулирующей крови (ОЦК) и общей емкостью всей сосудистой системы. Это соответствие достигается при помощи ряда нервных и гуморальных регуляторных механизмов.

Рассмотрим реакции организма на уменьшение ОЦК при кровопотере. В подобных случаях приток крови к сердцу уменьшается и уровень АД снижается. В ответ на это возникают реакции, на-правленные на восстановление нормального уровня АД. Прежде всего происходит рефлекторное сужение артерий. Кроме того, при кровопотере наблюдается рефлекторное усиление секреции сосудо-суживающих гормонов: адреналина — мозговым слоем надпочечни-ков и вазопрессина — задней долей гипофиза, а усиление секреции этих веществ приводит к сужению артериол. О важной роли адре-налина и вазопрессина в поддержании АД при кровопотере свиде-тельствует тот факт, что смерть при потере крови наступает раньше, чем после удаления гипофиза и надпочечников. Помимо симпатоадреналовых влияний и действия вазопрессина, в поддержании АД и ОЦК на нормальном уровне при кровопотере, особенно в поздние сроки, участвует система ренин—ангиотензин—альдостерон. Возни-кающее после кровопотери снижение кровотока в почках приводит к усиленному выходу ренина и большему, чем в норме, образованию ангиотензина II, который поддерживает АД. Кроме того, ангиотензин II стимулирует выход из коркового вещества надпочечников альдостерона, который, во-первых, способствует поддержанию АД за счет увеличения тонуса симпатического отдела вегетативной нервной системы, а во-вторых, усиливает реабсорбцию в почках натрия. Задержка натрия является важным фактором увеличения реабсорбции воды в почках и восстановления ОЦК.

Для поддержания АД при открытых кровопотерях имеет значение также переход в сосуды тканевой жидкости и в общий кровоток того количества крови, которое сосредоточено в так называемых кровяных депо. Выравниванию давления крови способствует также рефлекторное учащение и усиление сокращений сердца. Благодаря этим нейрогуморальным влияниям при быстрой потере 20—25% крови некоторое время может сохраняться достаточно высокий уро-вень АД.

Существует, однако, некоторый предел потери крови, после которого никакие регуляторные приспособления (ни сужение со-судов, ни выбрасывание крови из депо, ни усиленная работа сердца и т. д.) не могут удержать АД на нормальном уровне: если организм быстро теряет более 40—50% содержащейся в нем крови, то АД резко понижается и может упасть до нуля, что приводит к смерти.

Указанные механизмы регуляции сосудистого тонуса являются безусловными, врожденными, но в течение индивидуальной жизни животных на их основе вырабатываются сосудистые условные ре-флексы, благодаря которым сердечно-сосудистая система включается в реакции, необходимые организму при действии лишь одного сиг-нала, предшествующего тем или иным изменениям окружающей среды. Таким образом организм оказывается заранее приспособлен-ным к предстоящей деятельности.

41. Гуморальная регуляция сосудистого тонуса. Характеристика истинных, тканевых гормонов и их метаболитов. Сосудосуживающие и сосудорасширяющие факторы, механизмы реализации их эффектов при взаимодействии с различными рецепторами.

Одни гуморальные агенты суживают, а другие расширяют просвет артериальных сосудов.

Сосудосуживающие вещества. К ним относятся гормо-ны мозгового вещества надпочечников — адреналин и норадреналин, а также задней доли гипофиза — вазопрессин.

Адреналин и норадреналин суживают артерии и артериолы кожи, органов брюшной полости и легких, а вазопрессин действует пре-имущественно на артериолы и капилляры.

Адреналин, норадреналин и вазопрессин оказывают влияние на сосуды в очень малых концентрациях. Так, сужение сосудов у теплокровных животных происходит при концентрации адреналина к крови 1*10 7 г/мл. Сосудосуживающий эффект этих веществ обусловливает резкое повышение АД.

К числу гуморальных сосудосуживающих факторов относится серотонин (5-гидроокситриптамин), продуцируемый в слизистой оболочке кишечника и в некоторых участках головного мозга. Се-ротонин образуется также при распаде тромбоцитов. Физиологиче-ское значение серотонина в данном случае состоит в том, что он суживает сосуды и препятствует кровотечению из пораженного со-суда. Во второй фазе свертывания крови, развивающейся после образования тромба, серотонин расширяет сосуды.

Особый сосудосуживающий фактор — ренин, образуется в почках, причем тем в большем количестве, чем ниже кровоснабжение почек. По этой причине после частичного сдавливания почечных артерий у животных возникает стойкое повышение артериального давления, обусловленное сужением артериол. Ренин представляет собой протеолитический фермент. Сам ренин не вызывает сужения сосудов, но, поступая в кровь, расщепляет α 2 -глобулин плазмы — ангиотензиноген и превращает его в относительно малоактивный дека-пептид — ангиотензин I . Последний под влиянием фермента дипептидкарбоксипептидазы превращается в очень активное сосудо-суживающее вещество ангиотензин II . Ангиотензин II быстро разрушается в капиллярах ангиотензиназой.

В условиях нормального кровоснабжения почек образуется срав-нительно небольшое количество ренина. В большом количестве он продуцируется при падении уровня давления крови по всей сосудистой системе. Если понизить давление крови у собаки путем кровопускания, то почки выделят в кровь повышенное количество ренина, что будет способствовать нормализации АД.

Открытие ренина и механизма его сосудосуживающего действия представляет большой клинический интерес: оно объяснило причину высокого АД, сопутствующего некоторым заболеваниям почек (гипертензия почечного происхождения).

42. Коронарное кровообращение. Особенности его регуляции. Особенности кровообращения головного мозга, легких, печени.

Сердце получает кров из правой и левой коронарных артерий, которые отходят от аорты, на уровне верхних краев полулунных клапанов. Левая коронарная артерия делится на переднюю нисходящую и огибающую артерию. Коронарные артерии функционируют обычно как кольцевые артерии. И между правой и левой коронарными артериями анастомозы развиты очень слабо. Но если происходит медленное закрытие одной артерии, то начинается развитие анастомозов между сосудами и которые могут пропускать от 3 до 5 % из одной артерии в другую. Это при медленном закрытии коронарных артерий. Быстрое перекрытие приводит к инфаркту и из других источников не компенсируется. Левая коронарная арерия снабжает левый желудочек, переднюю половину межжелудочковой перегородки, левое и частично правое предсердие. Правая коронарная артерия питает правый желудочек, правое предсердие и задняя половина межжелудочковой перегородки. В кровоснабжении проводящей системы сердца участвуют обе коронарные артерии, но у человека больше правая. Отток венозной крови происходит по венам, которые идут параллельно артериям и эти вены впадают в коронарный синус, который открывается в правое предсердие. Через этот путь оттекает от 80 до 90 % венозной крови. Венозная кровь из правого желудочка в межпредсердной перегородке оттекает по мельчайшим венам в правый желудочек и эти вены получили название вен тибезия , которые прямо выводят венозную кровь в правый желудочек.

Через коронарные сосуды сердца протекает 200-250 мл. крови в минуту, т.е. это составляет 5 % минутного объема. На 100 г. Миокарда, в минуту протекает от 60 до 80 мл. Сердце извлекает из артериальной крови 70 -75 % кислорода, поэтому в сердце очень большая артерио-венозная разница(15%) В других органах и тканях - 6-8 %. В миокарде капилляры густо оплетают каждый кардиомиоцит, что и создает лучшее условие для максимального извлечения крови. Изучение коронарного кровотока представляет собой большие трудности, т.к. он меняется от сердечного цикла.

Увеличивается коронарный кровоток в диастолу, в систолу, уменьшение кровотока, из-за сжатия кровеносных сосудов. На диастолу - 70-90% коронарного кровотока. Регуляция коронарного кровотока прежде всего регулируется местными анаболическими механизмами, быстро реагирует на снижение кислорода. Понижение уровня кислорода в миокарде - очень мощный сигнал, ля расширения сосудов. Уменьшение содержания кислорода приводит к тому что кардиомиоциты выделяют аденозин, а аденозин - мощный сосудорасширяющий фактор. Очень трудно оценить влияние симпатической и парасимпатической системы на кровоток. И вагус и симпатикус меняют работу сердца. Установлено, что раздражение блуждающих нервов, вызывает замедление работы сердца, увеличивает продолжение диастолы, ну и непосредственное выделение ацетилхолина, тоже будет вызывать расширение сосудов. Симпатические влияния способствуют освобождению норадреналиа.

В коронарных сосудах сердца имеются 2 типа адрено рецепторов - альфа, и бета адрено рецепторы. У большинства людей преобладающим типом является бетта адренорецепторы, но у части есть преобладание альфа рецепторов. Такие люди будут при волнении чувствовать снижение кровотока. Адреналин вызывает увеличение коронарного кровотока, благодаря усилению окислительных процессов в миокарде и увеличение потребления кислорода и за счет влиянии на бета адрено рецепторы. Расширяющим действием на коронарные сосуды облают тироксин, простогландины А и Е, вазопрессин суживает коронарные сосуды и уменьшает коронарный кровоток.

Ведь стыдно будущим врачам не знать основу основ — круги кровообращения. Не владея этой информацией и пониманием того, как движется кровь по организму, невозможно понять механизм развития заболеваний сосудов и сердца, объяснить патологические процессы, которые протекают в сердце при том или ином поражении. Не зная круги кровообращения невозможно работать врачом. Эта информация не помешает и простому обывателю, ведь знания о собственном организме никогда не бывают лишними.

1 Большое путешествие

Чтобы лучше представлять себе как устроен большой круг кровообращения, пофантазируем немного? Представим, что все сосуды организма — реки, а сердце — бухта, в залив которой попадают все протоки рек. Отправляемся в путешествие: наш корабль начинает большое плавание. Из левого желудочка плывем в аорту — главный сосуд человеческого организма. Именно здесь берет начало большой круг кровообращения.

В аорте протекает кровь, насыщенная кислородом, ведь аортальная кровь распределяется по всему человеческому организму. Аорта отдает ветви, словно река притоки, которые кровоснабжают головной мозг, все органы. Артерии ветвятся до артериол, а те в свою очередь отдают капилляры. Яркая, артериальная кровь отдает клеткам кислород, нутриенты, и забирает продукты обмена клеточной жизни.

Капилляры организуются в венулы, которые несут кровь темного, вишневого цвета, ведь она отдала кислород клеткам. Венулы собираются в более крупные вены. Наш корабль завершает свое путешествие по двум крупнейшим «рекам» — верхней и нижней полым венам — попадает в правое предсердие. Путь окончен. Схематично представить большой круг можно так: начало — левый желудочек и аорта, окончание — полые вены и правое предсердие.

2 Малое путешествие

Что же представляет собой малый круг кровообращения? Отправляемся во второе путешествие! Наш корабль берет начало из правого желудочка, от которого отходит легочный ствол. Помните, что завершая большой круг кровообращения, мы пришвартовались в правом предсердии? Из него венозная кровь вытекает в правый желудочек, а затем, при сердечном сокращении, выталкивается в сосуд, от него отходящий — легочный ствол. Этот сосуд направляется к легким, где раздваивается на легочные артерии, а затем и на капилляры.

Капилляры окутывают бронхи и альвеолы легких, отдают углекислый газ и продукты обмена и обогащаются живительным кислородом. Капилляры организуются в венулы, выходя из легких, а затем и в более крупные легочные вены. Мы привыкли к тому, что в венах течет венозная кровь. Только не в легочных! Эти вены богаты артериальной, ярко-алой, обогащенной О2,кровью. По легочным венам наш корабль приплывает в бухту, где его путешествие завершается — в левое предсердие.

Итак, начало малого круга — правый желудочек и легочный ствол, окончание – легочные вены и левое предсердие. Более подробное описание следующее: легочный ствол делится на две легочные артерии, которые в свою очередь ветвятся на сеть капилляров, словно паутиной огибающие альвеолы, где и происходит газообмен, затем капилляры собираются в венулы и легочные вены, впадающие в левую верхнюю сердечную камеру сердца.

3 Исторические факты

Разобравшись с отделами кровообращения, кажется, что ничего сложного в их строении нет. Все просто, логично, понятно. Кровь выходит из сердца, собирает продукты обмена и СО2 от клеток всего тела, насыщает их кислородом, возвращается снова к сердцу уже венозная кровь, которая проходя через естественные «фильтры» организма — легкие, становится снова артериальной. Но, чтобы изучить и понять движение тока крови в организме потребовалось немало столетий. Гален ошибочно предполагал, что артерии содержат не кровь, а воздух.

Данную позицию на сегодняшний день можно объяснить тем, что в те времена изучали сосуды лишь на трупах, а в мертвом теле артерии обескровлены, а вены, напротив, полнокровны. Считалось, что кровь производится в печени, а в органах она расходуется. Мигель Сервет в XVI веке высказал предположение о том, что «дух жизни берет начало в левом сердечном желудочке, содействуют этому легкие, где происходит перемешивание воздуха и крови, поступающей из правого сердечного желудочка», таким образом, ученый распознал и описал впервые малый круг.

Но на открытие Сервета практически не обратили никакого внимания. Отцом системы кровообращения считается Гарвей, который уже в 1616 г. писал в своих трудах о том, что кровь «кружит по организму». Много лет он изучал движение крови, и в 1628 году опубликовал труд, ставший классикой, и перечеркнувший все представления о кровообращении Галена, в этом труде были изложены круги кровообращения.

Не обнаружил Гарвей лишь капилляры, открытые позже, ученым Мальпиги, который дополнил знания о «кругах жизни» связующим капиллярным звеном между артериолами и венулами. Помог открыть капилляры ученому микроскоп, который давал увеличение до 180 раз. Открытие Гарвея было встречено с критикой и оспариванием великими умами тех времен, многие ученые были не согласны с открытием Гарвея.

Но даже сегодня, читая его труды, удивляешься, насколько точно и подробно для того времени ученый описал работу сердца и движение крови по сосудам: «Сердце, совершая работу, сначала производит движение, а затем отдыхает у всех животных, пока те еще живы. В момент сокращения, оно выдавливает из себя кровь, сердце опорожняется в момент сокращения». Также подробно были описаны круги кровообращения, за тем исключением, что Гарвей не мог наблюдать капилляры, но он точно описал, что кровь собирается из органов и течет обратно к сердцу?

Но как же происходит переход от артерий к венам? Этот вопрос не давал Гарвею покоя. Мальпиги раскрыл данный секрет человеческого организма, обнаружив капиллярное кровообращение. Обидно, что Гарвей не дожил несколько лет до данного открытия, ведь открытие капилляров со 100% достоверностью подтверждало правдивость учений Гарвея. Великому ученому не довелось ощутить всю полноту торжества от своего открытия, но мы помним о нем и его огромном вкладе в развитие анатомии и знаний о природе человеческого тела.

4 От большего к меньшему

Хотелось бы остановиться на главных элементах кругов кровообращения, являющихся их каркасом, по которым движется кровь — сосудах. Артерии — сосуды, несущие кровь от сердца. Аорта — самая главная и важная артерия организма, она самая крупная — около 25 мм в диаметре, именно по ней кровь поступает к другим, отходящим от нее сосудам и доставляется к органам, тканям, клеткам.

Исключение: легочные артерии несут не богатую О2 кровь, а насыщенную СО2 к легким.

Вены — это сосуды, несущие кровь к сердцу, их стенки легко растяжимы, диаметр полых вен — около 30 мм, а мелких — 4-5 мм. Кровь в них темная, цвета спелой вишни, насыщенная продуктами обмена.

Исключение: легочные вены — единственные в организме, по которым течет артериальная кровь.

Капилляры — тончайшие сосуды, состоящие всего из одного слоя клеток. Однослойное строение позволяет происходить газообмену, обмену полезными и вредными продуктами между клетками и непосредственно капиллярами.

Диаметр данных сосудов всего лишь 0,006 мм в среднем, а длина не более 1 мм. Вот какие они маленькие! Однако, если суммировать длину всех капилляров воедино, мы получим весьма существенную цифру — 100 тыс. км… Наше тело внутри окутано ими словно паутиной. И неудивительно — ведь каждая клеточка организма нуждается в кислороде и нутриентах, а обеспечить поступление этих веществ могут капилляры. Все сосуды, и самые крупные и мельчайшие капилляры, образуют замкнутую систему, а точнее две системы — вышеупомянутые круги кровообращения.

5 Важные функции

Для чего нужны круги кровообращения? Роль их невозможно переоценить. Как жизнь на Земле невозможна без водных ресурсов, так и человеческая жизнь невозможно без системы кровообращения. Основная роль большого круга заключается:

  1. Обеспечение кислородом каждой клетки человеческого организма;
  2. Поступление нутриентов из системы пищеварения в кровь;
  3. Фильтрации из крови в выделительные органы продуктов жизнедеятельности.

Роль малого круга ничуть не менее важна, чем вышеописанные: выведение С02 из организма и продуктов обмена.

Знания о строении собственного тела никогда не бывают лишними, знания о том, как функционируют отделы кровообращения подводит к лучшему пониманию работы организма, а также формирует представление о единстве и целостности органов и систем, связующим звеном которых несомненно является кровяное русло, организованное в круги кровообращения.