Центральное и периферическое зрение. Удивительные способности человеческого глаза: космическое зрение и невидимые лучи

ИСПОЛНИТЕЛИ: ШАГАПОВА АЛИНА (4 КЛАСС), ШАГАПОВА Н.М.

РУКОВОДИТЕЛЬ РАБОТЫ: СОЗОНОВА Е. В.

Выбор темы: Зрение - способность воспринимать свет, цвет и пространственное расположение объектов в виде изображения. Потеря зрения, особенно в детском возрасте - это трагедия. Поскольку организм ребенка очень восприимчив ко всякого рода воздействиям, именно в детском возрасте зрению должно быть уделено особое внимание.

Цель работы: подробно изучить и проанализировать причины возникновения нарушения зрения у детей.

Задачи:

  • Определить причины нарушения зрения у детей младшего школьного возраста.
  • Определить, как влияет нарушение зрения на растущий организм ребенка, к каким последствиям это приводит.
  • Доказать, что нарушение школьных условий гигиены зрения вредит здоровью ребенка и предложить свои способы решения проблемы.

Объект, предмет и база исследования:

1. ОБЪЕКТ ИССЛЕДОВАНИЯ: человек.

2. ПРЕДМЕТ ИССЛЕДОВАНИЯ: зрение, как основа здоровья человека.

3. УЧАСТНИКИ ИССЛЕДОВАНИЯ: учащиеся 1-4 классов.

ГИПОТЕЗА ИССЛЕДОВАНИЯ:

  • Мы предполагаем, что нарушение домашних и школьных условий гигиены зрения вредит здоровью ребенка.

МЕТОДЫ ИССЛЕДОВАНИЯ:

  • Анализ; опрос; наблюдение; сбор информации из книг, журналов, газет; эксперимент; работа с интернет-ресурсами; практические методы.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ. ВВЕДЕНИЕ.

Зрение принадлежит к числу интереснейших явлений природы. Над изучением зрения, его тончайших механизмов работают сотни исследователей во многих лабораториях мира.

Зрение дает людям 90 % информации, воспринимаемой из внешнего мира.

Хорошее зрение необходимо человеку для любой деятельности: учебы, отдыха, повседневной жизни. И каждый должен понимать, как важно оберегать и сохранять зрение.

Потеря зрения, особенно в детском возрасте - это трагедия. Поскольку организм ребенка очень восприимчив ко всякого рода воздействиям, именно в детском возрасте зрению должно быть уделено особое внимание.

Дефицит движений современного человека неизбежно пагубно отражается и на наших глазах. С другой стороны, чрезмерные информационные нагрузки на глаза и мозг приводят к серьезным нарушениям и заболеваниям. В развитых странах каждый четвертый - близорукий. Нарастают и возрастные изменения глаза, приводящие к дальнозоркости. И особенно остро в последнее время этот вопрос встал из-за пагубного влияния дисплеев и компьютеров на зрение. Одна из главных причин такого роста глазных нарушений состоит в недостаточном внимании со стороны родителей, врачей и педагогов к вопросам гигиены зрения и освещения.

I. ОСНОВНЫЕ ФОРМЫ НАРУШЕНИЯ ЗРЕНИЯ У ДЕТЕЙ

Хорошее зрение у ребенка играет важную роль в его обучении. Согласно статистике, проблемы со зрением выявляются у одного ребенка из 20 детей дошкольного возраста и у одного из четырех школьников. В связи с тем, что многие неприятности со зрением как раз и начинаются в раннем возрасте, очень важно, чтобы ребенок получал должный уход за своими глазами. Запущенные проблемы с глазами могут иметь серьезные последствия, равно как отрицательно влиять на способности к обучению, успеваемость в школе, и даже на особенности характера.

Рассматривая строение глаза (Рис.1) мы видим, что глаз имеет сложную структуру, в которой все части взаимосвязаны и повреждение одной из них ведет к развитию заболеваний глаз.

Рис.1. Строение глаза

Как работает наш глаз? Глазное яблоко, когда мы рассматриваем близко расположенный предмет, вытягивается, а когда мы переводим взгляд вдаль, возвращается к первоначальной круглой форме. Тогда изображение все время фокусируется на сетчатке, независимо от того, далеко оно расположено от глаза или близко (рис.2)

Рис.2. Так видит мир здоровый человек.

Но у части людей склера – оболочка, которая обтягивает глазное яблоко, как чулок, слабая, со временем она перестает возвращать глазному яблоку круглую форму, и человек видит то, что удалено от него, неточно.

Ниже приведем ряд проблем со зрением, с которыми родители могут столкнуться на практике: - врожденная слепота;

- косоглазие (стробизм) – это состояние, когда глаза смотрят в разные стороны и не фокусируются на одном предмете;

- неспособность различать цвета (дальтонизм) – это состояние, когда глаза реагируют на цвет, но имеют сложности с определением отдельно взятого цвета;

- близорукость (миопия) – когда изображение фокусируется не на сетчатке, а перед ней, в результате чего отдаленные предметы расплываются;

- дальнозоркость (гиперметропия) – изображение фокусируется за сетчаткой глаза, а не на сетчатке, в результате чего человек плохо видит вблизи. У детей глазной хрусталик приспосабливается к возникшей проблеме и прилагает большие усилия для обеспечения четкого изображения как вдали, так и вблизи, но эти усилия организма часто приводят к утомляемости глаз, и даже к косоглазию;

- дефокусировка (астигматизм) - как правило, является результатом неправильной формы роговицы. Люди с астигматизмом обычно видят вертикальные линии четче, чем горизонтальные, а иногда бывает и наоборот;

- глаукома – повышение внутриглазного давления;

- катаракта - помутнение хрусталика (“живой” природной линзы внутри человеческого глаза);

- воспаление глаз (конъюнктивит) – характеризуется характерными выделениями, слезоточивостью, раздражением глаз;

- слабое ночное зрение (куриная слепота) – человек хорошо видит днем, но в ночное время или в сумерки глаз плохо воспринимает предметы;

- повреждения глаз, связанные с некоторыми видами спорта.

Наиболее распространенные формы нарушения зрения у детей - это близорукость, дальнозоркость, астигматизм и косоглазие.

Рассмотрим эти формы нарушения зрения более подробно.

Близорукость (миопия). Как правило, это приобретенное заболевание, когда в период интенсивной длительной нагрузки (чтение, письмо, просмотр телепередач, игр на компьютере) из-за нарушения кровоснабжения происходят изменения в глазном яблоке, приводящие к его растяжению.

В результате такого растяжения ухудшается зрение вдаль, которое улучшается при прищуривании или надавливании на глазное яблоко (рис. 3). Так видит мир близорукий человек (рис.4)

Рис.3. Вытянутое глазное яблоко при близорукости.

Рис.4. Так видит мир близорукий человек.

Различают следующие типы миопии (близорукости). Рис.5.

Рис. 5. Типы миопии.

Дальнозоркость. В отличие от близорукости, это не приобретенное, а врожденное состояние, связанное с особенностью строения глазного яблока. Дальнозоркость – нарушение, при котором световые лучи фокусируются за сетчаткой. (Рис. 6)

Рис. 6. Дальнозоркость.

Первые признаки появления дальнозоркости - ухудшение остроты зрения вблизи, стремление отодвинуть текст от себя. В более выраженных и поздних стадиях - понижение зрения вдаль, быстрая утомляемость глаз, покраснение и боли, связанные со зрительной работой. Так видит мир дальнозоркий человек (рис.7).

Рис.7. Так видит мир дальнозоркий человек.

Астигматизм - это особый вид оптического строения глаза. Явление этого врожденного или приобретенного характера обусловлено чаще всего, неправильностью кривизны роговицы. (Рис.8)

Астигматизм выражается в понижении зрения как вдаль, так и вблизи, снижении зрительной работоспособности, быстрой утомляемости и болезненных ощущениях в глазах при работе на близком расстоянии.

Рис. 8. Астигматизм.

Косоглазие - положение глаз (чаще врожденное), при котором зрительная линия одного глаза направлена на рассматриваемый предмет, а другого - отклонена в сторону. Отклонение в сторону носа называется сходящимся косоглазием, к виску - расходящимся, вверх или вниз - вертикальным. (Рис. 9)

Рис.9. Косоглазие.

Развивается косоглазие вследствие нарушения согласованной работы мышц глаза. При этом работает только один здоровый глаз, косящий же глаз практически бездействует, что постепенно ведет к стойкому понижению зрения.

Наиболее ужасающих размеров среди нарушений зрения у школьников занимает близорукость. (Рис. 10)

Рис. 10. Близорукость.

Степень участия зрительного анализатора в процессе школьных занятий очень велика. А в школе дети впервые в жизни начинают выполнять ежедневную, достаточно длительную, с годами увеличивающуюся работу, непосредственно связанную с напряжением зрения.

Поэтому в школьном возрасте особое значение приобретает гигиена зрения у детей, задача которой является обеспечить все условия для оптимального состояния функций глаза. Между тем, к сожалению, именно в школьном возрасте у детей появляются зрительные расстройства и в первую очередь, близорукость.

Зрение школьников является предметом широких и всесторонних исследований. При этом все исследователи обнаруживают общую закономерность - увеличение числа учащихся с близорукостью от младших классов к старшим.

С возрастом увеличивается не только процент близорукости учащихся, но и степень близорукости . Это имеет особое значение при рассмотрении всей проблемы в целом, особенно с профилактических позиций.

В офтальмологии принято все случаи близорукости делить по их степени на 3 группы: слабую до 3,0 D (диоптрий), среднюю до 6,0 D и высокую (сильную) - от 6,0 D и выше. Наблюдения показывают, что в школьном возрасте чаще наблюдаются случаи миопии слабой и средней степени.

Факторы, стимулирующие возникновению близорукости у школьников.

Развитие близорукости у школьников определяется переплетением множества самых разных условий и отдельных факторов.

По обобщенным данным, близорукость среди детей школьного возраста колеблется в пределах 2,3 - 13,8 %, а среди выпускников школ - 3,5 - 32,2 %.

В городских школах “близорукость”, как правило, встречается чаще, чем в сельских. Очевидно, здесь играет роль меньшая зрительная нагрузка учащихся сельских школ. Помимо того, сельские школьники больше бывают на свежем воздухе и занимаются физическим трудом, что способствует закаливанию организма и повышению его сопротивляемости к неблагоприятным воздействиям окружающей среды.

К основным факторам, стимулирующим миопию у школьников, считается (Рис.11,12,13):

  1. Недостаточное освещение рабочего места в школе (особенно при искусственном освещении). Неизменный вред приносит недостаточная освещенность рабочего места в домашних условиях во время приготовления уроков и чтения.
  2. Неприспособленная или плохо приспособленная мебель для занятий. Очень важно, чтобы и в школе, и дома размеры мебели соответствовали росту детей.
  3. Неправильная посадка за рабочим столом. Вредная привычка читать и писать, сильно склонив голову, сгорбившись, с наклоном в сторону, в неудобном положении способствует ослаблению зрения.
  4. Увеличение интенсивности зрительных нагрузок.
  5. Доступность электронных средств обучения.

Рис.13.

Вывод: наше зрение зависит от нас самих!!!

Профилактические мероприятия по предупреждению развития заболеваний органов зрения в школе.

Учитывая тот факт, что дети с нарушениями зрения есть в каждом классе любой школы необходимо объединить усилия врачей, учителей, медицинских сестер, педиатров, родителей в борьбе с возникновением зрительных заболеваний и их прогрессированием.

Все основные гигиенические вопросы режима для школьника в обычных школах имеют прямое отношение к работе учителя, а именно:

1. Построение учебного дня в школе.

2. Организация уроков и перемен.

3. Организация занятий и отдыха во внешкольное время.

В первую очередь, нужно сказать об учащихся младших классов. Именно в младшем возрасте наблюдаются большие изменения состояния зрения за сравнительно короткий период. Следует помнить, что у детей младшего школьного возраста отсутствуют еще достаточные навыки чтения, письма, длительного сидения.

Вот почему для учащихся первых классов, впервые приступивших к занятиям, четыре урока ежедневно - это непосильная нагрузка, в том числе и для органов зрения. Поэтому учителю следует увеличивать число уроков в день постепенно. Несколько раз в неделю делать не по 4, а по 3 и даже по 2 урока в день. Это должно сопровождаться и сменой одного вида деятельности другим.

Исследования офтальмологов показали, что учащиеся 1-х классов при обычном режиме занятий к концу третьего, а особенно 4-го урока наблюдалось значительное понижение остроты зрения, устойчивости ясного видения, скорости зрительно-моторных реакций, общей работоспособности. Таким образом, количество уроков и их чередование по трудности и степени зрительного напряжения заметно уменьшает зрительную утомляемость.

Следует остановиться и на распределении учащихся по сменам. Учебные занятия в 2 смены еще имеют место в наших школах. С позиции гигиены детского зрения все учащиеся с 1 по 4 класс должны заниматься только в первую смену. Первая смена позволяет значительно легче организовать правильный режим дня, что обеспечивает меньшее утомление детей. У них остается больше времени для отдыха, пребывания на свежем воздухе, занятий спортом и т.д. Отдых же улучшает и состояние зрительных функций. Занятия в первую смену проходят и в более благоприятных условиях освещения.

Врачами доказано, что все зрительные функции резко снижаются в условиях плохой освещенности. Основные гигиенические требования, предъявляются к освещению, включают достаточность и равномерность освещения, отсутствие резких теней и блеска на рабочей поверхности. В солнечные дни избыток солнечных лучей создает на рабочем месте солнечные блики, слепит глаза и этим мешает работе. Для защиты от прямых солнечных лучей можно пользоваться легкими светлыми шторами или жалюзи.

В осенне-зимний период, как правило, естественного света не хватает, так как домашние уроки выполняются после 16 часов. В пасмурные дни, ранние утренние и вечерние часы для обеспечения оптимальной освещенности на рабочем месте необходимо включать искусственное освещение.

На освещенность помещения влияет чистота оконных стекол. Немытые стекла поглощают 20 % световых лучей. К концу зимы, когда на окнах накапливается особенно много пыли, грязи, эта цифра достигает 50 %.

Чтобы у школьников не развивалась близорукость, нужно улучшить гигиенические условия освещения рабочих мест и в школе, и дома. Стены в классах и поверхности столов следует окрашивать в светлые тона. Оконные стекла надо чаще мыть и протирать, нельзя ставить на подоконник предметы, закрывающие доступ света, например, высокие цветы. Обязательно надо учитывать тот факт, что в первом ряду от окна освещение обычно хорошее, а в третьем при пасмурной погоде может быть недостаточным. Чтобы все дети были в равных условиях, необходимо каждую четверть пересаживать их на другой ряд парт, оставляя на одинаковом расстоянии от классной доски.

Учителя должны регулярно проводить беседы с родителями об организации занятий в домашних условиях. Нельзя приступать к выполнению домашнего задания тотчас по приходу из школы. Это усугубляет наступившее в школе на протяжении уроков понижение зрительных функций. Тогда как 1 – 2 часа отдыха после занятий в школе значительно уменьшает общее утомление учащихся, что сопровождается улучшением зрительных функций. Поэтому, дома, как и в школе, занятия, требующие напряжения зрения, следует чередовать с такими занятиями, когда зрение напрягается меньше. Необходимо рекомендовать 10-20 минутные перерывы после 2-х часов непрерывных занятий.

Большое значение имеет и правильное устройство рабочего места школьника в домашних условиях.

Особая проблема это - ДЕТИ У ТЕЛЕВИЗОРА и компьютера .

Одним из частных компонентов режима дня у школьников разного возраста являются просмотры телевизионных передач. Однако, они должны быть ограничены с позиции гигиены, так как являются дополнительной нагрузкой для нервной системы и конечно для глаз школьников (Рис.14). Все рекомендации по просмотру телевизионных передач должен давать врач - офтальмолог, но в обязанность учителя следует включить как необходимость, во время беседы с родителями и детьми, еще раз напоминать, что наибольшее утомление и напряжение зрения возникает при слишком близком расстоянии к экрану телевизора. Это усугубляется тем, что ребята часто смотрят телевизор в самых разнообразных позах.

Рис.14. Правила гигиены при просмотре телевизора.

Особую опасность в жизни современного школьника представляет компьютер.

Работа за компьютером – это, как правило, длительная сидячая работа, которая может привести к различным проблемам со здоровьем, таким как снижение зрения, боли в спине и мышцах кистей рук. Чтобы значительно уменьшить риск получения серьезных заболеваний соблюдайте правила работы за компьютером (Рис.15). Немаловажное значение имеет посадка за компьютером (Рис.16).

Рис.15. Правила работы за компьютером.

Рис.16. Как правильно сидеть при работе на компьютере.

При выполнении домашних заданий особенно важно соблюдать ряд правил (Рис.17)

Рис.17.Правила гигиены при выполнении домашних заданий.

Наш эксперимент:

1. Изучение различной литературы.

2. абота с детьми.

3. Исследование состояния зрения у детей начальной школы с 2005 по 2012гг.

4. Исследование условий гигиены зрения в школе и дома.

План эксперимента:

1. Узнать у медицинского работника школы информацию о состоянии зрения, опорно-двигательной системы, в частности об осанке, ребят начальных классов.

2. Проверить соответствие нормам СанПиНа требований к условиям и организации обучения в общеобразовательных учреждениях.

3. Провести опрос-анкету среди учащихся 1-4 классов.

4. Подвести итоги о выполнении условий гигиены зрения в школе и дома.

Результаты исследований

Для определения % детей с дефектом зрения (миопия) в младших классах нашей школы был проведен анализ результатов диспансеризации учащихся 1-4 классов за период с 2005 по 2012гг. Было определено, что % близорукости у детей в 1 классах практически не наблюдался.

Уже к 4 классу % близоруких детей увеличился с 0 до 12%, что подтверждается результатами обобщенных данных, освещенных в литературе.

Мы считаем, что диагноз “миопия” и диагноз “нарушение осанки” тесно взаимосвязаны. Для подтверждения наших предположений, было подсчитано количество детей с диагнозом “нарушение осанки” и сопоставили с количеством близоруких детей. (Рис 18)

Рис. 18. Результаты изучения медицинских карт детей 1-4 классов.

Из вышесказанного видно, что к 4 классу: семеро детей из 58 имеют диагноз “миопия” и трое из них с диагнозом “нарушение осанки”, тогда как из 51 ребенка со 100% зрением всего двое детей имеют диагноз “нарушение осанки”.

Мы решили узнать, все ли дети понимают важность сохранения зрения, знают ли болезни глаз и причины его ухудшения, выполняются ли необходимые требования гигиены зрения у них дома. Для этого мы провели опрос-анкету в 1-4 классах (Приложение 1 ) . Результаты опроса показали, что:

1) 100% опрошенных детей знают, зачем человеку зрение.

2) Только 22% детей знают основные болезни глаз.

3) 90% детей указали, что причиной ухудшения зрения, они считают компьютер и телевизор, неправильное положение спины во время занятий.

4) Практически все (97%) знают, что нельзя долго находиться у телевизора и компьютера – это может привести к потере зрения.

5) 67,3% указали, что для того чтобы не потерять зрение надо поменьше сидеть за компьютером, правильно питаться (15%), сидеть прямо при выполнении школьных заданий (18%), ходить к врачу (4%).

6) 92% детей делают уроки за столом, остальные, где придется (даже на подоконнике).

7) У 94% детей дома есть свое рабочее место.

8) Только 67,5% пользуются настольной лампой при выполнении домашних заданий.

9) 63% детей хотят сидеть за 1-ой партой, потому что хорошо видно.

Мы решили выяснить причины ухудшения зрения у детей младшего школьного возраста в период обучения в школе. Для этого мы произвели необходимые замеры и согласовали их с санитарно-эпидемиологическими требованиями к условиям организации обучения в общеобразовательных учреждениях по СанПиНу (табл.1).

Табл.1 Результаты замеров (приложение 3 ).

Как видно из таблицы, не все требования согласно СанПиНу выполняются, что частично способствует ухудшению здоровья детей, в общем, и зрения в частности.

Исходя из всего, можем дать следующие рекомендации:

1. Почаще давайте глазам отдых.

Если у ребенка хорошее зрение, он должен делать перерыв в занятиях каждые 40 мин.

Если уже слабая близорукость - через каждые 30 мин

2. Отдых для глаз - это когда ты бегаешь, прыгаешь, смотришь вдаль. Выполняйте с ребенком физкультминутки, направленные на улучшение зрения (приложение 2 ).

3. Ограничьте компьютер и телевизор.

4. Книжку или тетрадку держите на расстоянии 35-40 см.

5. Закаляйтесь, занимайтесь спортом.

6. Ешьте полезные для глаз продукты (творог, кефир, отварная рыба, говядина, морковь, капуста, чернику, зелень), принимайте витамины.

7. Систематически посещайте врача-окулиста.

Список используемой литературы.

1. СанПиН 2.4.2.2821-10 “Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях”

2. Интернет-ресурсы

3. “Семейный медицинский справочник” Л.Хахалин

4. “ Новые 135 уроков здоровья, или школа докторов природы” Л.А.Обухова

5 . Газета “ Ключи к здоровью” № 2011г.

6. Брошюры Центра микрохирургии глаза “Прозрение” г. Набережные Челны

Рассказывает об удивительных свойствах нашего зрения - от способности видеть далекие галактики до возможности улавливать невидимые, казалось бы, световые волны.

Окиньте взглядом комнату, в которой находитесь – что вы видите? Стены, окна, разноцветные предметы – все это кажется таким привычным и само собой разумеющимся. Легко забыть о том, что мы видим окружающий нас мир лишь благодаря фотонам - световым частицам, отражающимся от объектов и попадающим на сетчатку глаза.

В сетчатке каждого из наших глаз расположено примерно 126 млн светочувствительных клеток. Мозг расшифровывает получаемую от этих клеток информацию о направлении и энергии попадающих на них фотонов и превращает ее в разнообразие форм, цветов и интенсивности освещения окружающих предметов.

У человеческого зрения есть свои пределы. Так, мы не способны ни увидеть радиоволны, излучаемые электронными устройствами, ни разглядеть невооруженным глазом мельчайшие бактерии.

Благодаря прогрессу в области физики и биологии можно определить границы естественного зрения. "У любых видимых нами объектов есть определенный "порог", ниже которого мы перестаем их различать", - говорит Майкл Лэнди, профессор психологии и нейробиологии в Нью-Йоркском университете.

Сперва рассмотрим этот порог с точки зрения нашей способности различать цвета - пожалуй, самой первой способности, которая приходит на ум применительно к зрению.

Правообладатель иллюстрации SPL Image caption Колбочки отвечают за цветовосприятие, а палочки помогают нам видеть оттенки серого цвета при низком освещении

Наша способность отличать, например, фиолетовый цвет от пурпурного связана с длиной волны фотонов, попадающих на сетчатку глаза. В сетчатке имеются два типа светочувствительных клеток - палочки и колбочки. Колбочки отвечают за цветовосприятие (так называемое дневное зрение), а палочки позволяют нам видеть оттенки серого цвета при низком освещении - например, ночью (ночное зрение).

В человеческом глазе есть три вида колбочек и соответствующее им число типов опсинов, каждый из которых отличается особой чувствительностью к фотонам с определенным диапазоном длин световых волн.

Колбочки S-типа чувствительны к фиолетово-синей, коротковолновой части видимого спектра; колбочки M-типа отвечают за зелено-желтую (средневолновую), а колбочки L-типа - за желто-красную (длинноволновую).

Все эти волны, а также их комбинации, позволяют нам видеть полный диапазон цветов радуги. "Все источники видимого человеком света, за исключением ряда искусственных (таких, как преломляющая призма или лазер), излучают смесь волн различной длины", - говорит Лэнди.

Правообладатель иллюстрации Thinkstock Image caption Не весь спектр полезен для наших глаз...

Из всех существующих в природе фотонов наши колбочки способны фиксировать лишь те, которые характеризуются длиной волн в весьма узком диапазоне (как правило, от 380 до 720 нанометров) – это и называется спектром видимого излучения. Ниже этого диапазона находятся инфракрасный и радиоспектры – длина волн низкоэнергетических фотонов последнего варьируется от миллиметров до нескольких километров.

По другую сторону видимого диапазона волн расположен ультрафиолетовый спектр, за которым следует рентгеновский, а затем - спектр гамма-излучения с фотонами, длина волн которых не превышает триллионные доли метра.

Хотя зрение большинства из нас ограничено видимым спектром, люди с афакией - отсутствием в глазу хрусталика (в результате хирургической операции при катаракте или, реже, вследствие врожденного дефекта) - способны видеть ультрафиолетовые волны.

В здоровом глазе хрусталик блокирует волны ультрафиолетового диапазона, но при его отсутствии человек способен воспринимать волны длиной примерно до 300 нанометров как бело-голубой цвет.

В исследовании 2014 г. отмечается, что в каком-то смысле мы все можем видеть и инфракрасные фотоны. Если два таких фотона практически одновременно попадут на одну и ту же клетку сетчатки, их энергия может суммироваться, превратив невидимые волны длиной, скажем, в 1000 нанометров в видимую волну длиной в 500 нанометров (большинство из нас воспринимает волны этой длины как холодный зеленый цвет).

Сколько цветов мы видим?

В глазе здорового человека три типа колбочек, каждый из которых способен различать около 100 различных цветовых оттенков. По этой причине большинство исследователей оценивает количество различаемых нами цветов примерно в миллион. Однако восприятие цвета очень субъективно и индивидуально.

Джемесон знает, о чем говорит. Она изучает зрение тетрахроматов – людей, обладающих поистине сверхчеловеческими способностями к различению цветов. Тетрахроматия встречается редко, в большинстве случаев у женщин. В результате генетической мутации у них имеется дополнительный, четвертый вид колбочек, что позволяет им, по грубым подсчетам, видеть до 100 млн цветов. (У людей, страдающих цветовой слепотой, или дихроматов, всего два типа колбочек - они различают не более 10 000 цветов.)

Сколько нам нужно фотонов, чтобы увидеть источник света?

Как правило, колбочкам для оптимального функционирования требуется гораздо больше света, чем палочкам. По этой причине при низком освещении наша способность различать цвета падает, а за работу принимаются палочки, обеспечивающие черно-белое зрение.

В идеальных лабораторных условиях на тех участках сетчатки, где палочки по большей части отсутствуют, колбочки могут активироваться при попадании на них всего нескольких фотонов. Однако палочки справляются с задачей регистрации даже самого тусклого света еще лучше.

Правообладатель иллюстрации SPL Image caption После операции на глазе некоторые люди приобретают способность видеть ультрафиолетовое излучение

Как показывают эксперименты, впервые проведенные в 1940-х гг., одного кванта света достаточно для того, чтобы наш глаз его увидел. "Человек способен увидеть один-единственный фотон, - говорит Брайан Уонделл, профессор психологии и электротехники в Стэнфордском университете. – В большей чувствительности сетчатки просто нет смысла".

В 1941 г. исследователи из Колумбийского университета провели эксперимент – испытуемых заводили в темную комнату и давали их глазам определенное время на адаптацию. Для достижения полной чувствительности палочкам требуется несколько минут; именно поэтому, когда мы выключаем в помещении свет, то на какое-то время теряем способность что-либо видеть.

Затем в лицо испытуемым направляли мигающий сине-зеленый свет. С вероятностью выше обычной случайности участники эксперимента регистрировали вспышку света при попадании на сетчатку всего 54 фотонов.

Не все фотоны, достигающие сетчатки, регистрируются светочувствительными клетками. Учитывая это обстоятельство, ученые пришли к выводу, что всего пяти фотонов, активирующих пять разных палочек в сетчатке, достаточно, чтобы человек увидел вспышку.

Самый маленький и самый удаленный видимые объекты

Следующий факт может вас удивить: наша способность увидеть объект зависит вовсе не от его физических размеров или удаления, а от того, попадут ли хотя бы несколько излучаемых им фотонов на нашу сетчатку.

"Единственное, что нужно глазу, чтобы что-то увидеть, - это определенное количество света, излученного или отраженного на него объектом, - говорит Лэнди. – Все сводится к числу достигших сетчатки фотонов. Каким бы миниатюрным ни был источник света, пусть даже он просуществует доли секунды, мы все равно способны его увидеть, если он излучает достаточное количество фотонов".

Правообладатель иллюстрации Thinkstock Image caption Глазу достаточно небольшого количества фотонов, чтобы увидеть свет

В учебниках по психологии часто встречается утверждение о том, что в безоблачную темную ночь пламя свечи можно заметить с расстояния до 48 км. В реальности же наша сетчатка постоянно бомбардируется фотонами, так что один-единственный квант света, излученный с большого расстояния, просто затеряется на их фоне.

Чтобы представить себе, насколько далеко мы способны видеть, взглянем на ночное небо, усеянное звездами. Размеры звезд огромны; многие из тех, что мы наблюдаем невооруженным взглядом, достигают миллионов км в диаметре.

Однако даже самые близкие к нам звезды расположены на расстоянии свыше 38 триллионов километров от Земли, поэтому их видимые размеры настолько малы, что наш глаз не способен их различить.

С другой стороны, мы все равно наблюдаем звезды в виде ярких точечных источников света, поскольку испускаемые ими фотоны преодолевают разделяющие нас гигантские расстояния и попадают на нашу сетчатку.

Правообладатель иллюстрации Thinkstock Image caption Острота зрения снижается по мере увеличения расстояния до объекта

Все отдельные видимые звезды на ночном небосклоне находятся в нашей галактике – Млечном Пути. Самый удаленный от нас объект, который человек в состоянии разглядеть невооруженным глазом, расположен за пределами Млечного Пути и сам представляет собой звездное скопление – это Туманность Андромеды, находящаяся на расстоянии в 2,5 млн световых лет, или 37 квинтильонов км, от Солнца. (Некоторые люди утверждают, что особо темными ночами острое зрение позволяет им увидеть Галактику Треугольника, расположенную на удалении около 3 млн световых лет, но пусть это утверждение останется на их совести.)

Туманность Андромеды насчитывает один триллион звезд. Из-за большой удаленности все эти светила сливаются для нас в едва различимое пятнышко света. При этом размеры Туманности Андромеды колоссальны. Даже на таком гигантском расстоянии ее угловой размер в шесть раз превышает диаметр полной Луны. Однако до нас долетает настолько мало фотонов из этой галактики, что она едва различима на ночном небе.

Предел остроты зрения

Почему же мы не способны разглядеть отдельные звезды в Туманности Андромеды? Дело в том, что у разрешающей способности, или остроты, зрения есть свои ограничения. (Под остротой зрения подразумевается способность различать такие элементы, как точка или линия, как отдельные объекты, не сливающиеся с соседними объектами или с фоном.)

Фактически остроту зрения можно описывать так же, как и разрешение компьютерного монитора - в минимальном размере пикселей, которые мы еще способны различать как отдельные точки.

Правообладатель иллюстрации SPL Image caption Достаточно яркие объекты можно разглядеть на расстоянии в несколько световых лет

Ограничения остроты зрения зависят от нескольких факторов - таких как расстояние между отдельными колбочками и палочками сетчатки глаза. Не менее важную роль играют и оптические характеристики самого глазного яблока, из-за которых далеко не каждый фотон попадает на светочувствительную клетку.

В теории, как показывают исследования, острота нашего зрения ограничивается способностью различать около 120 пикселей на угловой градус (единицу углового измерения).

Практической иллюстрацией пределов остроты человеческого зрения может являться расположенный на расстоянии вытянутой руки объект площадью с ноготь, с нанесенными на нем 60 горизонтальными и 60 вертикальными линиями попеременно белого и черного цветов, образующими подобие шахматной доски. "По всей видимости, это самый мелкий рисунок, который еще в состоянии различить человеческий глаз", - говорит Лэнди.

На этом принципе основаны таблицы, используемые окулистами для проверки остроты зрения. Наиболее известная в России таблица Сивцева представляет собой ряды черных заглавных букв на белом фоне, размер шрифта которых с каждым рядом становится все меньше.

Острота зрения человека определяется по тому, на каком размере шрифта он перестает четко видеть контуры букв и начинает их путать.

Правообладатель иллюстрации Thinkstock Image caption В таблицах для проверки остроты зрения используются черные буквы на белом фоне

Именно пределом остроты зрения объясняется тот факт, что мы не способны разглядеть невооруженным глазом биологическую клетку, размеры которой составляют всего несколько микрометров.

Но не стоит горевать по этому поводу. Способность различать миллион цветов, улавливать одиночные фотоны и видеть галактики на удалении в несколько квинтильонов километров – весьма неплохой результат, если учесть, что наше зрение обеспечивается парой желеобразных шариков в глазницах, соединенных с полуторакилограммовой пористой массой в черепной коробке.

Особенности человеческого зрения

Человек не может видеть в полной темноте. Для того, чтобы человек увидел предмет, необходимо, чтобы свет отразился от предмета и попал на сетчатку глаза. Источники света могут быть естественные (огонь, Солнце) и искусственные (различные лампы).

глаз человека представляет собой радиоприемник, способный принимать электромагнитные волны определенного (оптического) диапазона частот. Первичными источниками этих волн являются тела, их излучающие (солнце, лампы и т.п.), вторичными – тела, отражающие волны первичных источников. Свет от источников попадает в глаз и делает их видимыми человеку. Таким образом, если тело является прозрачным для волн видимого диапазона частот (воздух, вода, стекло и т.п.), то оно не может быть зарегистрировано глазом.

Благодаря зрению мы получаем 90% информации об окружающем мире, поэтому глаз - один из важнейших органов чувств. Глаз можно назвать сложным оптическим прибором. Его основная задача - "передать" правильное изображение зрительному нерву.

Световая чувствительность человеческого глаза

Способность глаза воспринимать свет и распознавать различной степени его яркости называется светоощущением, а способность приспосабливаться к разной яркости освещения - адаптацией глаза; световая чувствительность оценивается величиной порога светового раздражителя. Человек с хорошим зрением способен разглядеть ночью свет от свечи на расстоянии нескольких километров. Максимальная световая чувствительность достигается после достаточно длительной темновой адаптации.

В глазу человека содержатся два типа светочувствительных клеток (рецепторов): высоко чувствительные палочки, отвечающие за сумеречное (ночное) зрение, и менее чувствительные колбочки, отвечающие за цветное зрение.

В сетчатке глаза человека есть три вида колбочек, максимумы чувствительности которых приходятся на красный, зелёный и синий участки спектра. Распределение типов колбочек в сетчатке неравномерно: «синие» колбочки находятся ближе к периферии, в то время как «красные» и «зеленые» распределены случайным образом. Соответствие типов колбочек трём «основным» цветам обеспечивает распознавание тысяч цветов и оттенков. Кривые спектральной чувствительности трёх видов колбочек частично перекрываются, что способствует явлению метамерии. Очень сильный свет возбуждает все 3 типа рецепторов, и потому воспринимается, как излучение слепяще-белого цвета.

Равномерное раздражение всех трёх элементов, соответствующее средневзвешенному дневному свету, также вызывает ощущение белого цвета. За цветовое зрение человека отвечают гены, кодирующие светочувствительные белки опсины. По мнению сторонников трёхкомпонентной теории, наличие трёх разных белков, реагирующих на разные длины волн, является достаточным для цветового восприятия. У большинства млекопитающих таких генов только два, поэтому они имеют черно-белое зрение.

Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв, хиазму, зрительные тракты в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим. Все эти органы и составляют наш зрительный анализатор или зрительную систему.[

Изменение зрения с возрастом

У новорожденных и детей дошкольного возраста хрусталик более выпуклый и более эластичный, чем у взрослого, его преломляющая способность выше. Это позволяет ребенку четко видеть предмет на меньшем расстоянии от глаза, чем взрослому. И если у младенца он прозрачный и бесцветный, то у взрослого человека хрусталик имеет легкий желтоватый оттенок, интенсивность которого с возрастом может усиливаться. Это не отражается на остроте зрения, но может повлиять на восприятие синего и фиолетового цветов. Сенсорные и моторные функции зрения развиваются одновременно. В первые дни после рождения движения глаз несинхронны, при неподвижности одного глаза можно наблюдать движение другого. Способность фиксировать взглядом предмет формируется в возрасте от 5 дней до 3–5 месяцев. Реакция на форму предмета отмечается уже у 5-месячного ребенка. У дошкольников первую реакцию вызывает форма предмета, затем его размеры и уже в последнюю очередь – цвет. Острота зрения с возрастом повышается, улучшается и стереоскопическое зрение. Стереоскопическое зрение (от греч. στερεός - твёрдый, пространственный) - вид зрения, при котором возможно восприятие формы, размеров и расстояния до предмета, например благодаря бинокулярному зрению Стереоскопическое зрение к 17–22 годам достигает своего оптимального уровня, причем с 6 лет у девочек острота стереоскопического зрения выше, чем у мальчиков. Поле зрения интенсивно увеличивается. К 7 годам его размер составляет приблизительно 80 % от размера поля зрения взрослого. После 40 лет наблюдается падение уровня периферического зрения, то есть происходит сужение поля зрения и ухудшение бокового обзора. Примерно после 50 лет сокращается выработка слезной жидкости, поэтому глаза увлажняются хуже, чем в более молодом возрасте. Чрезмерная сухость может выражаться в покраснении глаз, рези, слезотечении под действием ветра или яркого света. Это может не зависеть от обычных факторов (частые напряжения глаз или загрязненность воздуха). С возрастом человеческий глаз начинает воспринимать окружающее более тускло, с понижением контрастности и яркости. Также может ухудшиться способность распознавать цветовые оттенки, особенно близкие в цветовой гамме. Это напрямую связано с сокращением количества клеток сетчатой оболочки, воспринимающих оттенки цвета, контрастность, яркость. Некоторые возрастные нарушения зрения обусловлены пресбиопией, которая проявляется нечеткостью, размытостью картинки при попытке рассмотреть предметы, расположенные близко от глаз. Возможность фокусировки зрения на небольших предметах требует аккомодацию около 20 диоптрий (фокусировка на объекте в 50 мм от наблюдателя) у детей, до 10 диоптрий в возрасте 25 лет (100 мм) и уровни от 0,5 до 1 диоптрии в возрасте 60 лет (возможность фокусировки на предмете в 1-2 метрах). Считается, что это связано с ослаблением мышц, которые регулируют зрачок, при этом так же ухудшается реакция зрачков на попадающий в глаз световой поток. Поэтому возникают трудности с чтением при тусклом свете и увеличивается время адаптации при перепадах освещенности.

Так же с возрастом начинает быстрее возникать зрительное утомление и даже головные боли.

Психология восприятия цвета

Психология восприятия цвета - способность человека воспринимать, идентифицировать и называть цвета. Ощущение цвета зависит от комплекса физиологических, психологических и культурно-социальных факторов. Первоначально исследования восприятия цвета проводились в рамках цветоведения; позже к проблеме подключились этнографы, социологи и психологи. Зрительные рецепторы по праву считаются «частью мозга, вынесенной на поверхность тела». Неосознаваемая обработка и коррекция зрительного восприятия обеспечивает «правильность» зрения, и она же является причиной «ошибок» при оценке цвета в определенных условиях. Так, устранение «фоновой» засветки глаза (например, при разглядывании удаленных предметов через узкую трубку) существенно меняет восприятие цвета этих предметов. В силу природы глаза, свет, вызывающий ощущение одного и того же цвета (например белого), то есть одну и ту же степень возбуждения трёх зрительных рецепторов, может иметь разный спектральный состав. Человек в большинстве случаев не замечает данного эффекта, как бы «домысливая» цвет. Это происходит потому, что хотя цветовая температура разного освещения может совпадать, спектры отражённого одним и тем же пигментом естественного и искусственного света могут существенно отличаться и вызывать разное цветовое ощущение.

Периферическое зрение (поле зрения ) - определяют границы поля зрения при проекции их на сферическую поверхность (при помощи периметра).

999 14.02.2019 5 мин.

Зрение – одно из важнейших чувств для восприятия окружающего мира. С помощью него мы видим объекты и предметы вокруг нас, можем оценить их размеры и форму. Если верить исследованиям, при помощи зрения мы получаем не менее 90% информации об окружающей реальности. За цветное зрение отвечает несколько зрительных компонентов, что позволяет более точно и правильно передавать изображение объектов в головной мозг для дальнейшей обработки информации. Существует несколько патологий нарушения передачи цветов, которые существенно ухудшают взаимодействие с миром и снижают качество жизни в целом.

Как устроен орган зрения?

Глаз представляет собой сложную оптическую систему, которая состоит из множества элементов, связанных между собой. Восприятие различных параметров окружающих объектов (величина, удалённость, форма и другие) обеспечивает периферическая часть зрительного анализатора, представленная глазным яблоком. Это орган шаровидной формы с тремя оболочками, который имеет два полюса – внутренний и внешний. Глазное яблоко размещено в защищенной с трех сторон костной впадине – глазнице или орбите, где окружено тонкой жировой прослойкой. Спереди находятся веки, необходимые для защиты слизистой оболочки органа и его очистки. Именно в их толще находятся железы, необходимые для постоянного увлажнения глаз и беспрепятственной работы смыкания и размыкания непосредственно век. Движение глазного яблока обеспечивают 6 разных по функциям мышц, что позволяет выполнять содружественные действия этого парного органа. Помимо этого глаз соединен с кровеносной системой разными по величине многочисленными кровеносными сосудами, а с нервной системой – несколькими нервными окончаниями.

Особенность зрения в том, что мы не видим непосредственно объект, а лишь лучи, отражающиеся от него . Дальнейшая обработка информации происходит в головном мозге, точнее его затылочной части. Лучи света изначально поступают на роговицу, а затем переходят на хрусталик, стекловидное тело и сетчатку. За восприятие лучей света отвечает естественная линза человека – хрусталик, а за его восприятие ответственна светочувствительная оболочка – сетчатка. Она имеет сложное строение, в котором выделяют 10 различных слоев клеток. Среди них особенно важными являются колбочки и палочки, которые неравномерно распределены по всему слою. Именно колбочки являются необходимым элементом, который отвечает за цветовое зрение человека.

Наибольшая концентрация колбочек отмечается в центральной ямке – воспринимающей изображения области в желтом пятне. В ее пределах плотность колбочек достигает 147 тыс. на 1 мм 2 .

Цветовое восприятие

Человеческий глаз является самой сложной и совершенной зрительной системой среди всех млекопитающих. Он способен воспринимать более 150 тыс. различных цветов и их оттенков. Восприятие цвета возможно благодаря колбочкам – специализированным фоторецепторам, расположенным в желтом пятне . Вспомогательную роль выполняют палочки – клетки, отвечающие за сумеречное и ночное зрение. Воспринимать весь цветовой спектр возможно с помощью всего трех видов колбочек, каждый их которых восприимчив к определенному участку цветовой гаммы (зеленый, синий и красный) за счет содержания в них йодопсина. У человека с полноценным зрением имеется 6-7 млн. колбочек, а если их количество меньше или имеются патологии в их составе, возникают различные нарушения цветовосприятия.

Строение глаза

Зрение мужчины и женщин существенно отличается. Доказано, что женщины способы распознавать больше различных оттенков цветов, в то время как представители сильного пола обладают лучшей способностью распознавать движущиеся предметы и дольше удерживать концентрацию на конкретном объекте.

Отклонения цветового зрения

Аномалии цветового зрения – редкая группа офтальмологических нарушений, которая характеризуется искажением восприятия цветов. Практически всегда эти заболевания передаются по наследству по рецессивному типу. С физиологической точки зрения все люди являются трихроматами – для полного различения цвета используют три части спектра (синий, зеленый и красный), но при патологии нарушается пропорция цветов или какой-то из них полностью или частично выпадает. Дальтонизм является лишь частным случаем патологии, при котором наблюдается полная или частичная слепота к какому-либо цвету.

Выделяют три группы аномалий цветового зрения:

  • Дихроматизм или дихромазия . Патология заключается в том, что для получения любого цвета используются только два участка спектра. Существует , в зависимости от выпадающего участка цветовой палитры. Наиболее часто встречается дейтеранопия – невозможность воспринимать зеленый цвет;
  • Полная цветовая слепота . Встречается лишь у 0,01% всех людей. Существует две разновидности патологии: ахроматопсия (ахромазия) , при которой полностью отсутствует пигмент в колбочках на сетчатке, а любые цвета воспринимаются как оттенки серого, и колбочковая монохромазия – разные цвета воспринимаются одинаково. Аномалия является генетической и связана с тем, что в составе цветовых фоторецепторов вместо йодопсина содержится родопсин;

Любые цветовые отклонения являются причиной множества ограничений, например, для вождения транспортных средств или службы в армии. В некоторых случаях аномалии цветовосприятия являются поводом получения инвалидности по зрению.

Определение и виды дальтонизма

Одна из самых частых патологий восприятия цвета, которая имеет генетическую природу или развивается на фоне . Существует полная (ахромазия) или частичная невозможность (дихромазия и монохромазия) воспринимать цвета, подробнее патологии описаны выше.

Традиционно выделяют несколько видов дальтонизма в форме дихромазии, в зависимости от выпадения участка цветового спектра.

  • Протанопия . Возникает цветовая слепота красного участка спектра, встречается у 1% мужчин и у менее 0,1% женщин;
  • Дейтеранопия . Из воспринимаемой гаммы цветов выпадает зеленый участок спектра, встречается чаще всего;
  • Тританопия . Невозможность различать оттенки цветов сине-фиолетовой гаммы, плюс к этому нередко наблюдается отсутствие сумеречного зрения из-за нарушений работы палочек.

Отдельно выделяют трихромазию. Это редкий вид дальтонизма, при котором человек различает все цвета, но из-за нарушения концентрации йодопсина происходит искажение цветовосприятия. Особенную сложность люди с этой аномалией испытывают при интерпретации оттенков. Кроме того, нередко наблюдается эффект гиперкомпенсации при этой патологии, например, при невозможности отличить зеленый и красный цвет возникает улучшенное различение оттенков цвета хаки.

Виды дальтонизма

Аномалия носит имя Дж. Дальтона, который описал заболевание еще в 18 веке. Большой интерес к болезни связан с тем, что сам исследователь и его братья страдали от протанопии.

Тест на определение дальтонизма

В последние годы для определения аномалий цветовосприятия применяются , которые представляют собой изображения цифр и фигур, нанесенные на подобранный фон при помощи различных по диаметру кругов. Всего разработано 27 картинок, каждая из которых имеет определённую цель. Плюс к этому, в стимульном материале имеются специальные изображения для выявления симулирования заболевания, поскольку тест является важным при прохождении некоторых профессиональных медицинских комиссий и при постановке на воинский учет. Интерпретацию теста должен проводить только специалист, поскольку анализ результатов – довольно сложный и трудоемкий процесс.

Считается, что можно использовать только распечатанные карточки, так как на мониторе или экране может происходить искажение цветов.

Видео

Выводы

Зрение человека – сложный и многогранный процесс, за который отвечает множество элементов. Любые аномалии восприятия окружающего мира не только снижают качество жизни, но могут быть угрозой для жизни в некоторых ситуациях. Большинство зрительных патологий являются врожденными, поэтому при диагностировании у ребенка отклонения нужно не только пройти необходимое лечение и грамотно подобрать корректирующую оптику, но и научить его жить с этой проблемой.

August 17th, 2015 , 09:25 am

Предлагаем вам узнать об удивительных свойствах нашего зрения - от способности видеть далекие галактики до возможности улавливать невидимые, казалось бы, световые волны.

Окиньте взглядом комнату, в которой находитесь – что вы видите? Стены, окна, разноцветные предметы – все это кажется таким привычным и само собой разумеющимся. Легко забыть о том, что мы видим окружающий нас мир лишь благодаря фотонам - световым частицам, отражающимся от объектов и попадающим на сетчатку глаза.

В сетчатке каждого из наших глаз расположено примерно 126 млн светочувствительных клеток. Мозг расшифровывает получаемую от этих клеток информацию о направлении и энергии попадающих на них фотонов и превращает ее в разнообразие форм, цветов и интенсивности освещения окружающих предметов.

У человеческого зрения есть свои пределы. Так, мы не способны ни увидеть радиоволны, излучаемые электронными устройствами, ни разглядеть невооруженным глазом мельчайшие бактерии.

Благодаря прогрессу в области физики и биологии можно определить границы естественного зрения. "У любых видимых нами объектов есть определенный "порог", ниже которого мы перестаем их различать", - говорит Майкл Лэнди, профессор психологии и нейробиологии в Нью-Йоркском университете.

Сперва рассмотрим этот порог с точки зрения нашей способности различать цвета - пожалуй, самой первой способности, которая приходит на ум применительно к зрению.


Наша способность отличать, например, фиолетовый цвет от пурпурного связана с длиной волны фотонов, попадающих на сетчатку глаза. В сетчатке имеются два типа светочувствительных клеток - палочки и колбочки. Колбочки отвечают за цветовосприятие (так называемое дневное зрение), а палочки позволяют нам видеть оттенки серого цвета при низком освещении - например, ночью (ночное зрение).

В человеческом глазе есть три вида колбочек и соответствующее им число типов опсинов, каждый из которых отличается особой чувствительностью к фотонам с определенным диапазоном длин световых волн.

Колбочки S-типа чувствительны к фиолетово-синей, коротковолновой части видимого спектра; колбочки M-типа отвечают за зелено-желтую (средневолновую), а колбочки L-типа - за желто-красную (длинноволновую).

Все эти волны, а также их комбинации, позволяют нам видеть полный диапазон цветов радуги. "Все источники видимого человеком света, за исключением ряда искусственных (таких, как преломляющая призма или лазер), излучают смесь волн различной длины", - говорит Лэнди.


Из всех существующих в природе фотонов наши колбочки способны фиксировать лишь те, которые характеризуются длиной волн в весьма узком диапазоне (как правило, от 380 до 720 нанометров) – это и называется спектром видимого излучения. Ниже этого диапазона находятся инфракрасный и радиоспектры – длина волн низкоэнергетических фотонов последнего варьируется от миллиметров до нескольких километров.

По другую сторону видимого диапазона волн расположен ультрафиолетовый спектр, за которым следует рентгеновский, а затем - спектр гамма-излучения с фотонами, длина волн которых не превышает триллионные доли метра.

Хотя зрение большинства из нас ограничено видимым спектром, люди с афакией - отсутствием в глазу хрусталика (в результате хирургической операции при катаракте или, реже, вследствие врожденного дефекта) - способны видеть ультрафиолетовые волны.

В здоровом глазе хрусталик блокирует волны ультрафиолетового диапазона, но при его отсутствии человек способен воспринимать волны длиной примерно до 300 нанометров как бело-голубой цвет.

В исследовании 2014 г. отмечается, что в каком-то смысле мы все можем видеть и инфракрасные фотоны. Если два таких фотона практически одновременно попадут на одну и ту же клетку сетчатки, их энергия может суммироваться, превратив невидимые волны длиной, скажем, в 1000 нанометров в видимую волну длиной в 500 нанометров (большинство из нас воспринимает волны этой длины как холодный зеленый цвет).

Сколько цветов мы видим?

В глазе здорового человека три типа колбочек, каждый из которых способен различать около 100 различных цветовых оттенков. По этой причине большинство исследователей оценивает количество различаемых нами цветов примерно в миллион. Однако восприятие цвета очень субъективно и индивидуально.

Джемесон знает, о чем говорит. Она изучает зрение тетрахроматов – людей, обладающих поистине сверхчеловеческими способностями к различению цветов. Тетрахроматия встречается редко, в большинстве случаев у женщин. В результате генетической мутации у них имеется дополнительный, четвертый вид колбочек, что позволяет им, по грубым подсчетам, видеть до 100 млн цветов. (У людей, страдающих цветовой слепотой, или дихроматов, всего два типа колбочек - они различают не более 10 000 цветов.)

Сколько нам нужно фотонов, чтобы увидеть источник света?

Как правило, колбочкам для оптимального функционирования требуется гораздо больше света, чем палочкам. По этой причине при низком освещении наша способность различать цвета падает, а за работу принимаются палочки, обеспечивающие черно-белое зрение.

В идеальных лабораторных условиях на тех участках сетчатки, где палочки по большей части отсутствуют, колбочки могут активироваться при попадании на них всего нескольких фотонов. Однако палочки справляются с задачей регистрации даже самого тусклого света еще лучше.


Как показывают эксперименты, впервые проведенные в 1940-х гг., одного кванта света достаточно для того, чтобы наш глаз его увидел. "Человек способен увидеть один-единственный фотон, - говорит Брайан Уонделл, профессор психологии и электротехники в Стэнфордском университете. – В большей чувствительности сетчатки просто нет смысла".

В 1941 г. исследователи из Колумбийского университета провели эксперимент – испытуемых заводили в темную комнату и давали их глазам определенное время на адаптацию. Для достижения полной чувствительности палочкам требуется несколько минут; именно поэтому, когда мы выключаем в помещении свет, то на какое-то время теряем способность что-либо видеть.

Затем в лицо испытуемым направляли мигающий сине-зеленый свет. С вероятностью выше обычной случайности участники эксперимента регистрировали вспышку света при попадании на сетчатку всего 54 фотонов.

Не все фотоны, достигающие сетчатки, регистрируются светочувствительными клетками. Учитывая это обстоятельство, ученые пришли к выводу, что всего пяти фотонов, активирующих пять разных палочек в сетчатке, достаточно, чтобы человек увидел вспышку.

Самый маленький и самый удаленный видимые объекты

Следующий факт может вас удивить: наша способность увидеть объект зависит вовсе не от его физических размеров или удаления, а от того, попадут ли хотя бы несколько излучаемых им фотонов на нашу сетчатку.

"Единственное, что нужно глазу, чтобы что-то увидеть, - это определенное количество света, излученного или отраженного на него объектом, - говорит Лэнди. – Все сводится к числу достигших сетчатки фотонов. Каким бы миниатюрным ни был источник света, пусть даже он просуществует доли секунды, мы все равно способны его увидеть, если он излучает достаточное количество фотонов".


В учебниках по психологии часто встречается утверждение о том, что в безоблачную темную ночь пламя свечи можно заметить с расстояния до 48 км. В реальности же наша сетчатка постоянно бомбардируется фотонами, так что один-единственный квант света, излученный с большого расстояния, просто затеряется на их фоне.

Чтобы представить себе, насколько далеко мы способны видеть, взглянем на ночное небо, усеянное звездами. Размеры звезд огромны; многие из тех, что мы наблюдаем невооруженным взглядом, достигают миллионов км в диаметре.

Однако даже самые близкие к нам звезды расположены на расстоянии свыше 38 триллионов километров от Земли, поэтому их видимые размеры настолько малы, что наш глаз не способен их различить.

С другой стороны, мы все равно наблюдаем звезды в виде ярких точечных источников света, поскольку испускаемые ими фотоны преодолевают разделяющие нас гигантские расстояния и попадают на нашу сетчатку.


Все отдельные видимые звезды на ночном небосклоне находятся в нашей галактике – Млечном Пути. Самый удаленный от нас объект, который человек в состоянии разглядеть невооруженным глазом, расположен за пределами Млечного Пути и сам представляет собой звездное скопление – это Туманность Андромеды, находящаяся на расстоянии в 2,5 млн световых лет, или 37 квинтильонов км, от Солнца. (Некоторые люди утверждают, что особо темными ночами острое зрение позволяет им увидеть Галактику Треугольника, расположенную на удалении около 3 млн световых лет, но пусть это утверждение останется на их совести.)

Туманность Андромеды насчитывает один триллион звезд. Из-за большой удаленности все эти светила сливаются для нас в едва различимое пятнышко света. При этом размеры Туманности Андромеды колоссальны. Даже на таком гигантском расстоянии ее угловой размер в шесть раз превышает диаметр полной Луны. Однако до нас долетает настолько мало фотонов из этой галактики, что она едва различима на ночном небе.

Предел остроты зрения

Почему же мы не способны разглядеть отдельные звезды в Туманности Андромеды? Дело в том, что у разрешающей способности, или остроты, зрения есть свои ограничения. (Под остротой зрения подразумевается способность различать такие элементы, как точка или линия, как отдельные объекты, не сливающиеся с соседними объектами или с фоном.)

Фактически остроту зрения можно описывать так же, как и разрешение компьютерного монитора - в минимальном размере пикселей, которые мы еще способны различать как отдельные точки.


Ограничения остроты зрения зависят от нескольких факторов - таких как расстояние между отдельными колбочками и палочками сетчатки глаза. Не менее важную роль играют и оптические характеристики самого глазного яблока, из-за которых далеко не каждый фотон попадает на светочувствительную клетку.

В теории, как показывают исследования, острота нашего зрения ограничивается способностью различать около 120 пикселей на угловой градус (единицу углового измерения).

Практической иллюстрацией пределов остроты человеческого зрения может являться расположенный на расстоянии вытянутой руки объект площадью с ноготь, с нанесенными на нем 60 горизонтальными и 60 вертикальными линиями попеременно белого и черного цветов, образующими подобие шахматной доски. "По всей видимости, это самый мелкий рисунок, который еще в состоянии различить человеческий глаз", - говорит Лэнди.

На этом принципе основаны таблицы , используемые окулистами для проверки остроты зрения. Наиболее известная в России таблица Сивцева представляет собой ряды черных заглавных букв на белом фоне, размер шрифта которых с каждым рядом становится все меньше.

Острота зрения человека определяется по тому, на каком размере шрифта он перестает четко видеть контуры букв и начинает их путать.


Именно пределом остроты зрения объясняется тот факт, что мы не способны разглядеть невооруженным глазом биологическую клетку, размеры которой составляют всего несколько микрометров.

Но не стоит горевать по этому поводу. Способность различать миллион цветов, улавливать одиночные фотоны и видеть галактики на удалении в несколько квинтильонов километров – весьма неплохой результат, если учесть, что наше зрение обеспечивается парой желеобразных шариков в глазницах, соединенных с полуторакилограммовой пористой массой в черепной коробке.