Зуборезный станок. Принцип работы зуборезных станков

Станки зуборезные используются для нарезки колес для зубчатых передач цилиндрической формы. Они весьма распространены в отрасли машиностроения. Ведь станки отличаются производительностью, а также универсальностью. Кроме того они надежны и весьма точны.

Область применения зуборезных станков

Зуборезные станки позволяют без труда нарезать шевронные или червячные, прямозубые или косозубые колеса. А если в наличии есть дополнительные устройства, то можно с легкостью работать дисковыми или пальцевыми фрезами, летучими резцами, а кроме того можно нарезать любые колеса с внутренним зацеплением. Не исключен и переход от процесса обработки к предварительной прорезке заготовки с помощью дисковой фрезы, которая является высокопроизводительной.

Повышенная точность зуборезного станка получается из-за того, что в случае зубодолбления шестерней режущего типа происходит профилирование зубьевой впадины. Именно по этой причине погрешности внутри делительной цепи, а также погрешности вызванные окружным шагом зубьев долбяка, находящихся в зубодолбежном станке, и ошибки вращательной цепи - все это увеличивает погрешности обработки колеса.

Если проводится работа при помощи червячной фрезы по поверхности зубьев сбоку изделия - будут происходить цикличные повторения. Поэтому для любого элемента зубьев колеса характерно полное соответствие элементам всех других зубьев. А погрешность скапливается в зависимости от точности станка. Ошибки при работе с червячной фрезой негативно отражаются на качестве профиля колеса или основного шага. С помощью червячной фрезы возможна весьма точная нарезка зубчатого колеса.

Нынешние зуборезные станки позволяют располагать заготовку вертикально, что дает возможность точно нарезать зубья на колесах диаметром вплоть до 12 мм, а обработка с использованием червячной фрезы возможна вплоть до 30 модуля. В случае с установленной фрезы дискового типа - до 40 модуля, а с помощью пальцевой - даже 75 модуля. При наличии есть реверсового механизма, который встроен в станок в индивидуальном порядке, появляется возможность нарезать зубчатые колеса при помощи фрезы пальцевого типа даже с закрытым углом шеврона. Также эти станки можно оборудовать специальными насадками, которые могут обрабатывать венцы с зацеплением внутреннего типа до пятидесятого модуля, что достигается использованием пальцевых фрез.

Модификации зуборезных станков

Если есть необходимость произвести обработку шестерных валов, используют станки, в которых ось заготовки установлена горизонтально. Таким образом, обрабатываются прямые или косые, а также шевронные зубья.

Станки, которые работают долбяком-шестерней, не так популярны. Они не так универсальны, имеют небольшую производительную мощь и точность. Обычно такие зуборезные станки используют для нарезки шевронных передач с отсутствующей канавкой, в случае если пальцевая фреза не дает нужной точности.Шевронные зубья образуются при наличии 2-х копиров, а также 2-х долбяков косозубых, которые работают попеременно. На долбежной головке в таком случае закрепляется спец-приспособление для нарезки внутреннего зацепления в венцах.

А станки, которые работают долбаком-гребенкой, весьма точно делают нарезку колес и обеспечивают чистоту поверхности, прошедшей обработку. Но при нарезании ограниченная длина часто приводит к тому, что необходимо производить пересопряжение заготовки и инструмента. Бывает и такое, что весь процесс прерывается, а колесо снова возвращаются в начальное положение, а иногда это происходит с гребенкой. Все это будет длиться до тех пор, пока не нарежутся все необходимые зубья. Тем самым появляются некоторые погрешности.

Если подытожить все вышесказанное, то можно сделать вывод, что с червячной фрезой более точные, чем на гребенчатых или зубчатых.

Цена на зуборезные станки может быть совершенно разной. Все зависит от конкретной модели и функций. Но в среднем сумма на него варьирует в пределах 100000 рублей.

ЗУБОРЕЗНЫЙ СТАНОК

ЗУБОРЕЗНЫЙ СТАНОК

станок для нарезания зубьев различных шестерен при помощи фрез по так наз. делительному методу или методом обкатки. В первом случае пользуются плоскими фрезами с постоянным профилем, во втором -червячными. Существуют З. с. для нарезки только винтовых, шевронных или конических шестерен, а также универсальные для нарезки прямых и винтовых цилиндрических зубьев.

Технический железнодорожный словарь. - М.: Государственное транспортное железнодорожное издательство . Н. Н. Васильев, О. Н. Исаакян, Н. О. Рогинский, Я. Б. Смолянский, В. А. Сокович, Т. С. Хачатуров. 1941 .


Смотреть что такое "ЗУБОРЕЗНЫЙ СТАНОК" в других словарях:

    ЗУБОРЕЗНЫЙ, зуборезная, зуборезное (тех.). Служащий для нарезки и обработки зубцов, зубчатых колес. Зуборезный станок. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    ЗУБОРЕЗНЫЙ, ая, ое (спец.). Служащий для изготовления зубцов, зубчатых частей. З. станок. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Металлорежущий инструмент для обработки зубчатых колёс, червячных и храповых колёс, шлицевых валиков и др. деталей с зубьями. В зависимости от метода зубонарезания применяют модульные дисковые или пальцевые фрезы (См. Фреза) и зуборезные… …

    Ая, ое. Предназначенный, служащий для обработки зубьев. З. станок … Энциклопедический словарь

    зуборезный - ая, ое. Предназначенный, служащий для обработки зубьев. Зуборе/зный станок … Словарь многих выражений

    Металлорежущий станок для обработки зубчатых колёс, червяков и зубчатых реек. В зависимости от применяемого инструмента (см. Зуборезный инструмент) различают зубофрезерные, зубодолбёжные, зубострогальные, зубоотделочные… … Большая советская энциклопедия

    Ая, ое. Предназначенный, служащий для обработки зубьев (см. зуб во 2 знач.). Зуборезный станок … Малый академический словарь

Санки имеют сходную кинематику и одинаковую методику

Зуборезные работы являются одним из методов металлообработки металлических изделий любой сложности. При необходимости изготовления шестерен, звездочек и иных деталей с зубьями наиболее подходящим методом обработки требующихся заготовок служат зуборезные работы, в результате проведения которых удаляется определенный слой металла с поверхности изделия.

Зуборезные работы включают в себя, как правило, две основные операции:

Нарезание червячных передач, т. е. глобоидных зацеплений, шлицевых соединений, шевронных зацеплений, и конических шестерен
Нарезание зубчатых колес. Зубчатые колеса, в свою очередь, могут быть прямозубыми и косозубыми, а выполняются как с внутренним, так и с наружным зацеплением
Для зуборезных работ наш цех использует модульные фрезы и долбежку. В зависимости от метода зубонарезания применяют модульные дисковые или пальцевые фрезы и зуборезные головки для работы методом копирования, зуборезные гребенки, червячные фрезы, долбяки, зубострогальные резцы и резцовые головки для работы методом обкатки.

Благодаря невысокой себестоимости технологического процесса, цены на наши металлические изделия значительно снижены, что при серийном производстве позволит Вам значительно сэкономить средства. Обратившись к нам, Вы получите консультацию специалистов по любому вопросу. А инженеры конструкторского бюро компании при необходимости сделают для Вас все необходимые чертежи и расчеты.

Максимальные параметры зубчатых колес до 1000 мм.
Зуборезные работы (зубообработка) на станках с ЧПУ: принимаем заказы на зубообработку любой сложности, работаем с серийными и штучными заказами

Зуборезные работы

Зуборезные работы это разновидность механической обработки металлической детали, при котором производится нарезка зубьев на изделии с целью получения зубчатого колеса. Зуборезные работы позволяют производить нарезку зубьев заданного профиля на внутренних и внешних поверхностях дисковых заготовок для

получения в результате колесных деталей требуемой конфигурации.

Выполнение зуборезных работ производится с использованием зубофрезерных, зубодолбежных станков, а так же станков зубострогальных, червячных фрез и гребёнок. Применяются такие методы как копирование, обкатка, методы горячего и холодного накатывания.

Использование современных, высокопроизводительных металлорежущих станков (ЧПУ) обеспечивает эффективное выполнение всего цикла зуборезных операций с соблюдением углов наклона, глубины зацепления, шага и прочих геометрических параметров зубьев.



Технологический процесс отличается малым расходом используемого сырья, что позволяет значительно снизить затраты на крупносерийное производство.

По окончании выполнения всех операций по зубонарезке полученные изделия проходят шлифовальную обработку для улучшения качества поверхностей.

Зубофрезерные станки с ЧПУ для цилиндрических зубчатых колес

Серводвигатель привода фрезы установлен на поворотный суппорт и, как следствие, из кинематической цепи исключены две пары конических шестерен, длинный шлицевой вал со скользящей муфтой и прочие элементы. Остальные координаты в своих кинематических цепях содержат только конечные звенья – либо ШВП, либо червячную пару. Все модификации станков включая и станки без тангенциальной подачи фрезы оснащены пятой управляемой от ЧПУ координатой осевой сдвижки фрезы в диапазоне 90 мм., позволяющей в многопроходных циклах сдвигать фрезу перед любым проходом, например последний чистовой проход выполнять отличным от черновых проходов (прохода) участком фрезы. Базовая математика станка включает 5 циклов обработки и модуль бочкообразования:

Вертикальная подача. Автоматический цикл обработки, содержащий от одного до максимум пяти проходов. В начале каждого прохода перед началом основной вертикальной подачи

возможно задание радиальной подачи стола. Для каждого прохода индивидуально задаются все параметры резания.
Цикл радиальной подачи.
Цикл обработки методом единичного деления модульной дисковой фрезой.

Цикл тангенциальной подачи.
Цикл обработки конических зубчатых шестерен модульной дисковой фрезой.

5,2 Зуборезные станки с ЧПУ для конических колес с круговым зубом

Максимально укорочена кинематическая цепь привода зуборезной головки (цепь главного привода), благодаря чему увеличилась жесткость главного привода, точность и чистота обработки. Улучшились шумовые характеристики станка – привода практически не слышно даже на максимальной скорости вращения шпинделя.
Из цепи исключены сменные шестерни и весь необходимый диапазон скоростей вращения инструмента с паспортным моментом на валу инструментального шпинделя обеспечивается системой управления и электроприводом.
Базовая математика станка предусматривает 4 цикла обработки



врезание,

обкатка с переменной подачей

комбинированное нарезание.

Для увеличения производительности в цикле «Врезание» подача стола может происходить с переменной скоростью: увеличенной в начале обработки и замедленной в конце на полной глубине впадины.

Сведения о производителе зуборезного полуавтомата 525

Производитель зуборезного станка - полуавтомата 525 Московский завод координатно-расточных станков «МЗКРС» , основанный в 1942 году и ЭНИМС Экспериментальный научно-исследовательский институт металлорежущих станков, основанный 19 мая 1933 г.


Станки для нарезания конических колес с круговыми зубьями

Конические шестерни передают крутящий момент в механизмах, где валы соединяются между собой под углом 90 градусов. Это могут быть автомобильные дифференциалы, редукторы, дробилки и приводы.

При обработке конических колес с круговыми зубьями в качестве производящего колеса принимают плоское колесо 1, зубья которого направлены по дуге окружности радиуса r (рис. 136). Заготовка 2 в процессе обработки обкатывается с производящим колесом 1, зубья которого воспроизводятся резцовой головкой 3, вращающейся вокруг точки О1. Профиль резцов соответствует профилю зубьев производящего колеса. Проходя на участке А А 1 они имитируют один зуб производящего колеса.



При обработке колес с круговыми зубьями необходимо осуществить следующие формообразующие движения:

  • а) главное движение - вращение резцовой головки вокруг точки 01;
  • б) движение обката - согласованное вращение люльки (производящего колеса) и заготовки;
  • в) движение деления - поворот заготовки на обработку следующего зуба.

Согласованность вращения люльки 1 (рис. 137) и заготовки 2 достигается сменными колесами 4, рассчитываемыми в зависимости от числа зубьев нарезаемого колеса. Вершины резцов 3 должны передвигаться по образующей внутреннего конуса нарезаемого колеса, для этого колесо необходимо установить под углом φ внутреннего конуса к плоскости, в которой передвигаются вершины резцов.



Заготовка должна устанавливаться относительно центра станка в правильное положение. Центром станка называется точка, в которой пересекаются горизонтальная ось ОО2 люльки, ось ОО1 шпинделя бабки и вертикальная ось О поворотного стола. Через центр стола должна проходить плоскость, в которой передвигаются вершины резцов головки, и с центром стола должна совпадать вершина начального производящего конуса нарезаемого колеса.

Резцовая головка (рис. 138, а) выполняется в виде диска с пазами, в которые вставляются и крепятся резцы перпендикулярно торцовой плоскости диска. Резцы бывают наружные (рис. 138, б) и внутренние (рис. 138, в).

Кроме того, резцы подразделяются на праворежущие и леворежущие, отличающиеся только расположением режущих кромок.

Конические колеса с круговым зубом нарезаются на станках 527, 5П23А, 525, 528С 5А27С1 и др.

525 Станок зуборезный для нарезания спиральных конических колес. Назначение и область применения

Станок производился серийно с 1956 года.

Полуавтомат 525 предназначается для чернового и чистового нарезания всех типов конических колес с круговыми зубьями, гипоидных колес и шестерен полуобкатных передач на скоростных режимах с высокой степенью точности обработки.

Станок изготовляется в двух исполнениях: с механизмом модификации обката и без него. Устройство для модификации обката служит для небольшого изменения формы профиля зубьев, исправления угла зацепления или диагонального контакта.

На станке можно нарезать:

  1. Конические колеса со спиральными зубьями;
  2. Гипоидные колеса;
  3. Конические колеса с непрямым углом между осями;
  4. Шестерни для полуобкатных передач.

Наилучшие результаты станок 525 дает в условиях серийного производства от крупных колес диаметром до 500 мм и модулем до 10 мм - до мелких зубчатых колес диаметром до 20-25 мм мм и модулем 2,5 мм.

При этом требуется минимальный комплект резцовых головок, количество которых при при одностороннем однономерном методе нарезания составляет 6 штук.

Список литературы для настройки станка

  1. Станок для нарезания спиральнозубых конических колес модели 525. Руководство к станку, ЭНИМС, МЗКРС 1956 год.
  2. Инструкция по расчету наладочных установок зуборезных станков модели 525 и 528 для нарезания конических колес со спиральными зубьями, ЭНИМС, МЗКРС.
  3. Руковдство по расчету геометрических размеров гипоидных зубчатых колес и наладок для их нарезания на станках моделей 525, 528с, 5а27с1, Саратовский завод тяжелых зуборезных станков, 1967 год.
  4. Руковдство по расчету наладок станков 525, 528с и 5а27с4п для нарезания конических колес методом обкатки, Саратовский завод тяжелых зуборезных станков, 1969 год.

Принцип работы станка 525

Станок работает как по методу обкатки, так и по методу врезания.

Черновое нарезание зубьев производят методом врезания, при котором образование зубьев осуществляется путем постепенного приближения заготовки к инструменту. В этом случае величина обкатки берется очень малой, необходимой только для того, чтобы после каждого цикла инструмент попадал в соседнюю впадину. Быстрый подвод стола заменяется медленной рабочей подачей, при которой режущий инструмент (резцовая головка) постепенно врезается в заготовку. По достижении полной глубины -впадины стол быстро отводится и обкатная люлька поворачивается в обратную сторону.

Метод обкатки используется при чистовом нарезании. При этом необходимо наличие двух движений; движения резания и движения обкатки. Обкаточное движение продолжается в течение всего времени, необходимого для обработки одной впадины. После этого заготовка отводится от инструмента, а люлька, несущая резцовую головку с инструментом, быстро поворачивается в обратном направлении до исходного положения. Заготовка при этом продолжает вращаться в ту же сторону, что и во время обработки. Благодаря этому за время холостого хода люльки заготовка успевает повернуться на определенное число зубьев.

Для нарезания на заготовке всех зубьев необходимо, чтобы они при каждом цикле поворачивались на целое число зубьев, не имеющее общих множителей с числом зубьев нарезаемого колеса. При несоблюдении этого условия инструмент после каждого цикла не будет попадать в новую впадину.

По окончании обработки всех впадин станок автоматически останавливается.

Наличие механизма модификации обкатки позволяет производить нарезание шестерен для полуобкатных передач, а также шестерен с большой длиной образующей начального конуса.

Особенности конструкции станка 525

Отличительной особенностью полуавтомата 525 является отсутствие реверсирования заготовки, непрерывный процесс деления заготовки и реверсирование обкатной люльки с помощью составного колеса.

Время холостого хода не зависит от продолжительности цикла обработки.

В станке модели 525 холостой ход может осуществляться с двумя скоростями; (при нарезании шестерни с z≤115 продолжительность холостого хода составляет 5 сек/зуб, при нарезании шестерни с z≥16 - 2,5 сек/зуб.

Перемещение стола с обрабатываемой заготовкой, крепление заготовки на оправке в шпинделе бабки изделия и переключение фрикционной муфты осуществляется гидроприводом.

Основные узлы станка (рис. 140). А-основание станины; Б - приводная коробка; В - стойка станины; Г - обкатная люлька; Д - вертикальный суппорт; Е - бабка изделия; Ж - сменные колеса гитары деления; 3 - поворотная плита; И - стол. Органы управления. 1 - счетчик циклов; 2 - рукоятка переключения привода быстрых перемещений; 3 - рукоятка подвода и отвода стола и зажима заготовки; 4 - кнопочная станция; 5 - главный выключатель станка; 6 - кнопка пуска электродвигателя гидравлики. Движения в станке. Движением резания является вращение резцовой головки. Движение подачи - перемещение бабки с изделием в направлении резцовой головки. Движением обкатки и деления является медленное вращение обрабатываемой заготовки и поворот обкатной люльки со шпинделем резцовой головки. Механический отвод салазок бабки изделия является вспомогательным движением.

Посадочные и присоединительные базы инструмента зуборезного станка 525

Конец шпинделя инструмента зуборезного станка 525

Конец шпинделя изделия зуборезного станка 525

525 Общий вид зуборезного станка


Расположение основных узлов станка 525

Расположение составных частей станка 525. Вид сзади

Спецификация органов управления зуборезным полуавтоматом 525

  1. Включение станка в сеть /главный включатель/;
  2. Кнопка пуска электродвигателя гидравлики;
  3. Маховичок ручного вращения резцовой головки;
  4. Рукоятка отвода и подвода стола и зажима заготовки;
  5. Кран охлаждения;
  6. Винт зажима бабки изделия;
  7. Лимб винта вертикального смещения бабки изделия;
  8. Винт для точной установки угла внутреннего конуса;
  9. Рукоятка включения ручного привода и переключения скоростей ускоренного хода;
  10. Щуп для контроля уровня масла в резервуаре гидравлики;
  11. Щуп для контроля уровня масла в резервуаре охлаждения;
  12. Пакетный выключатель для выключения электронасоса для работы без охлаждения;
  13. Кнопочная станция управления работой главного электродвигателя;
  • 13а. Кнопочная станция управления работой главного электродвигателя на задней стороне станка;
  • Регулятор скорости работы транспортера стружки;
  • Лимб и муфта для поворота шпинделя бабки изделия.
  • Спецификация составных частей зуборезного полуавтомата 525

    1. Станина - 52511001
    2. Ограждение - 5251201
    3. Транспортер стружки - 5251401
    4. Приводная коробка - 52521001
    5. Люлька с корпусом - 52531001
    6. Червяк люльки - 52532001
    7. Бабка изделия - 52541001
    8. Стол - 52542001
    9. Гидрозажим - 52545001
    10. Реверсивный механизм - 52551001
    11. Распределительный механизм - 52552001
    12. Гидрообрудование - 5256101
    13. Счётчик циклов - 5257501
    14. Электрооборудование - 5258101
    15. Пульт управления - 5258201

    Принадлежности

    • Принадлежности - 5257101
    • Оправка Тип 1 - 5257201
    • Оправка Тип 2 - 5257301
    • Оправка Тип 3 - 5257401

    Кинематическая схема зуборезного станка 525

    Привод главного движения - вращение шпинделя резцовой головки - осуществляется с помощью электродвигателя 70 и цепи передач: зубчатые пары 1-2, 3-4, сменные колеса гитары скоростей а4-b4, с4-d4, колеса 7-8, 9-10.

    Цепь обката обеспечивает согласованное вращение люльки и заготовки. Движение от вала IX передается через коническую пару 41-42 зубчатому колесу 43, сцепленному с составным зубчатым колесом (см. также справа). Последнее состоит из участков наружного 65 и внутреннего 66 зацеплений, соединенных между собой полушестернями 63 и 64. Во время контакта колеса 43 с участком внутреннего зацепления происходит рабочий ход станка, а при сцеплении с остальной частью колеса - холостой ход, в обратном направлении.

    При зацеплении колеса 43 с переходными полушестернями оно перемещается вместе с конической парой 41-42. Диск 44 имеет зубчатый венец, сцепляющийся с колесом 45. Последнее сидит на ведущем валу гитары обката a3/b3 · c3/d3, через которую движение передается конической паре 49-50, и всей цепи колес, от которой получает вращение червяк 62 люльки.

    Колесо 45 зацеплено с валом гитары обката через зубчатую муфту колеса 47. Если последнюю передвинуть до сцепления с колесом 48, то движение будет передаваться через перебор 45-46, 48-47, при этом редукция будет 1: 5.

    В станке предусмотрена цепь модификации обката. Она служит для сообщения червяку люльки 67 осевого перемещения, вызывающего добавочный небольшой поворот люльки с переменной скоростью, необходимый для нарезания конических колес некоторых разновидностей. Механизм модификации обката получает движение от колеса 57, сидящего на валу червяка люльки и сцепляющегося с колесом 58. Далее движение передается через гитару модификации обката и червячную пару 59-60 втулке, на которой эксцентрично установлен ролик, к которому посредством гидравлики прижимается стакан, связанный с червяком люльки. При работе станка эксцентриковый ролик, совершая планетарное движение, заставляет червяк люльки перемещаться в осевом направлении с переменной скоростью.

    Расчет настройки станка 525

    Рассмотрим расчет настройки станка 525. Исходными данными для расчета настройки станка являются геометрические параметры конического нарезаемого колеса, а также материал, из которого оно изготовлено.

    Настройка цепи главного движения

    Эта цепь связывает частоты вращения вала электродвигателя и шпинделя резцовой головки:

    Расчетная формула настройки:

    где n р.г - частота вращения шпинделя резцовой головки в об/мин;

    С τ = 180 - постоянная цепи.

    Настройка цепи подачи

    Гитара подачи связывает вращение электродвигателя с барабаном 69. За время рабочего хода (t p) барабан 69 поворачивается на 4/9 оборота.

    Уравнение кинематического баланса:

    Расчетная формула настройки:

    где C s - 4,7 - постоянная цепи подачи.

    Настройка цепи деления

    Шпиндель изделия во время работы станка непрерывно вращается в одном и том же направлении. Это движение берет начало от барабана 69 и передается на червячное колесо 62. За время пока планшайба, по окончании обработки очередной впадины зуба, вернется в исходное положение, заготовка успеет повернуться на zi зубьев. Следовательно к резцовой головке будет подведена не соседняя впадина, a z i . За один оборот барабана заготовка повернется на - оборота и уравнение кинематического баланса примет вид:

    Расчетная формула настройки:

    где С д = 2 - постоянная цепи деления.

    От числа пропускаемых зубьев zi зависит угол качания люльки. Может, однако, оказаться, что угол качания люльки будет недостаточным или, наоборот, слишком большим. В первом случае отвод стола будет происходить раньше, чем окончится снятие стружки и, таким образом, зубья не получат правильной формы. Изменить угол качания люльки можно путем пересчета сменных колес гитар обкатки и деления, взяв другое число zi. Если угол качания люльки недостаточен, то zi надо увеличить, если же он слишком велик, то уменьшить.

    Цепь деления при нарезании способом врезания (редукция 1: 5). За один оборот барабана 69 заготовка повернется на один зуб:

    Расчетная формула настройки:

    где С д = 10 - постоянная цепи.

    Настройка гитары обката

    Цепь обката связывает вращение люльки и заготовки:

    получим формулу настройки:

    где z π - число зубьев производящего колеса;

    С об = 3,5 - постоянная цепи.

    При нарезании зубьев способом врезания гитару обкатки настраивают аналогично, только вместо передачи 33-32 включают пару колес 31-30. При этом расчетная формула будет

    где С об = 17,5 - постоянная цепи.

    Нарезание конических колес с круговыми зубьями по способу обката характеризуется длительным циклом обработки. Чтобы избежать гранности зубьев и получить высокий класс чистоты поверхности, приходится увеличивать время огибания. Много времени затрачивается на холостые ходы станка, отвод инструмента, делительный процесс и др.

    На Горьковском автозаводе в массовом производстве спирально-конические и гипоидные передачи нарезаются высокопроизводительным полуобкатным методом. В полуобкатной паре обкаткой нарезается только шестерня, имеющая небольшое число зубьев, а колесо нарезается торцовой резцовой головкой или круговой протяжкой по методу копирования. Зубья колеса полуобкатной пары имеют поэтому не винтовые, а конические рабочие поверхности, представляющие собой точные копии производящих поверхностей, описываемых режущими кромками резцов торцовой головки или протяжки.

    На рис. 140 жирными линиями очерчены профили зубьев полуобкатной пары. Для сравнения тонкими линиями показаны профили зубьев обычной пары, которые нарезаются с обката. Такие зубья нарезаются на обычных зуборезных станках способом обкатки с коническим или плоским производящим колесом. В последнем случае применяется модификация обката. Поскольку методом обката нарезается только шестерня, а колесо нарезается методом копирования, эти передачи получили название «полуобкатных», а способ нарезания - полуобкатного.


    Станки для нарезания конических зубчатых колес среднего и крупного модуля

    В зависимости от типа зубьев обрабатываемых конических колес различают станки для нарезания колес с круговыми зубьями и станки для нарезания прямозубых колес. Технические данные станков, выпускаемых в России, приведены в табл. 4.1, 4.2. По своему основному назначению эти станки делят на универсальные и специализированные .

    Универсальные обеспечивают черновое и чистовое нарезание зубчатых колес методами обкатки и копирования (врезания). Из них можно выделить две основные группы:

    1. Станки, предназначенные для нарезания зубчатых колес средних размеров (m ≤ 8 мм, ≤ 500 мм):
      5С26В, 5С270П, 5C276П, 5С267П . На конечных звеньях кинематических цепей обкатки (люльке и шпинделе изделия) этих станков установлены высокоредукционные гипоидные передачи. Базовой моделью является станок 5С26В .
    2. Станки, обеспечивающие обработку крупномодульных зубчатых колес (m ≤ 12 мм, d ≤ 800 мм):
      527В, 5С280П, 5С286П, 5С277П . На конечных звеньях кинематических цепей обкатки этих станков установлены червячные передачи и предусмотрено встраивание, при необходимости, механизма модификации обкатки (модификатора). Базовой моделью является станок 527В .

    Станки обеих групп имеют идентичную кинематическую структуру и являются полуавтоматическими. Циклограмма работы станков при нарезании зубчатого колеса показана на рис. 2.7.

    Последовательность работы механизмов полуавтоматов при обработке одного зуба зубчатого колеса методом обкатки показана на рис. 4.1. Цикл нарезания зуба tц складывается из времени на рабочий ход tр, при котором осуществляется обработка, и времени на вспомогательный ход tв, при котором механизмы возвращаются в исходное положение и происходит делительное движение. На рабочем ходу осуществляется движение обкатки с рабочей скоростью (согласованные вращения люльки и шпинделя изделия), а также возврат механизма деления в исходное положение. При этом стол с нарезаемой заготовкой неподвижен и находится в позиции резания. Во время вспомогательного хода стол отводится в позицию деления, движение обкатки реверсируется, и люлька со шпинделем изделия на ускоренном ходу возвращаются в исходное положение, шпиндель изделия получает от механизма деления делительный поворот, а затем происходят реверсирование движения обкатки на рабочий ход и подвод стола с заготовкой в позицию резания. Далее цикл повторяется. Движение инструмента (движение резания) осуществляется в течение всего цикла обработки.

    525 Станок зуборезный полуавтомат. Видеоролик.

    Технические характеристики зуборезного станка 525

    Наименование параметра 525 528с
    Основные параметры станка
    Класс точности станка по ГОСТ 8-82 и ГОСТ 659-78 Н Н
    Наибольший окружной модуль нарезаемого колеса, мм 10 16
    Наибольшая длина образующей начального конуса при угле спирали 0° / 30°, мм 180 /260 285 / 420
    Наименьшая длина образующей, мм 0 0
    Наибольший диаметр делительной окружности нарезаемых колес при передаточном отношении нарезаемой пары 10:1 при угле спирали 0° / 30°, мм 500 / 360 575 / 800
    Наибольший диаметр делительной окружности нарезаемых колес при передаточном отношении нарезаемой пары 2:1 при угле спирали 0° / 30°, мм 450 / 320 520 / 750
    Наибольший диаметр делительной окружности нарезаемых колес при передаточном отношении нарезаемой пары 1:1 при угле спирали 0° / 30°, мм 350 / 250 395 / 600
    Угол внутреннего конуса (начального конуса), град 4°..90° 5°30`..84°
    Наибольшее передаточное отношение нарезаемой пары при угле между осями 90° 10:1 10:1
    Наибольшая длина зуба нарезаемого колеса (Наибольшая ширина зубчатого венца), мм 65 100
    Наибольшая высота нарезаемого зуба, мм 20
    Наибольшее число нарезаемых зубьев 5..100 4..100
    Угол спирали, град 0°..50°
    Угол наклона зуба, град 0°..45°
    Инструментальная бабка. Размеры инструмента
    Диаметры резцовых головок, мм 6", 9", 12" 250, 315, 500
    Люлька
    Поворот люльки при наладке, град 0..360° 0..360°
    Установка угла эксцентрикового барабана, град 0..240 0..180
    Соответствующее радиальное смещение шпинделя резцовой головки, мм 0..126 340
    Наибольший угол качания люльки от центрального положения вверх и вниз, град 0..60° 0..60°
    Точность отсчета по шкале поворота люльки, мин 1
    Одно деление шкалы поворота эксцентрикового барабана, мин 20
    Расстояние от центра станка до торца шпинделя (опорный торец для установки резцовой головки), мм 67,3
    Бабка изделия (Делительная бабка)
    Расстояние от торца шпинделя бабки изделия до центра станка, мм 60..360 135..600
    Вертикальное смещение шпинделя вниз от центрального расположения при установленном расстоянии от торца шпинделя бабки изделия до центра станка до 115 / свыше 115, мм 10 / 75
    Вертикальное смещение шпинделя вниз от центрального расположения при установленном расстоянии от торца шпинделя бабки изделия до центра станка 135..325, мм 20
    Вертикальное смещение шпинделя вниз от центрального расположения при установленном расстоянии от торца шпинделя бабки изделия до центра станка 326..600, мм 100
    Вертикальное смещение шпинделя вверх от центрального положения, мм 75 110
    Размеры конического / сквозного отверстия в шпинделе, мм 100 / 78 153 / 125
    Точность отсчета по шкале осевой установки бабки, мм 0,01
    Точность отсчета по шкале установки бабки на угол внутреннего конуса, мин 1
    Одно деление шкалы отсчета установки бабки на угол внутреннего конуса, мин 10
    Установка бабки на угол внутреннего конуса, град 5°30`..84°
    Одно деление шкалы гипоидного смещения бабки, мм 1
    Стол
    Наибольшее смещение от центрального положения,мм ±25 ±25
    Привод и электрооборудование станка
    Количество электродвигателей, установленных на станке
    Электродвигатель главного привода, кВт (об/мин) 4,5 (2870) 10 (2920)
    Электродвигатель гидропривода, кВт (об/мин) 1,7 (930) 2,2 (1430)
    Электродвигатель привода гидронасоса охлаждения, кВт (об/мин)
    Суммарная мощность электродвигателей, кВт
    Габаритные размеры и масса станка
    Габаритные размеры станка (длина х ширина х высота), мм 2200 х 1600 х 1600
    Масса станка с электрооборудованием и охлаждением, кг 7000

    Использованная литература:


    1. Гальперин Е.И. Наладка зуборезных станков. 1960.
    2. Ачеркан Н.С. Металлорежущие станки. Том 1. 1965.
    3. Кучер А.М. Киватицкий М.М. Покровский А.А. Металлорежущие станки. (Альбом общих видов, кинематических схем и узлов) 1972.
    4. Руководящий материал для конструкторов, проектирующих технологическую оснастку. Основные данные и посадочные места металлорежущих станков. НИИМАШ, 1968.
    5. Малахов Я.А. Зубообрабатывающие и резьбофрезерные станки и их наладка. 1972.
    6. Мильштейн М.З. Нарезание зубчатых колес. Москва, 1972.
    7. Лоскутов В.В. Ничков А.Г. Зубообрабатывающие станки. Москва, М. 1978.
    8. Птицин Г.А. Кокичев В.Н. Зуборезные станки. 1957.



    Зубчатые колеса являются изделиями общемашиностроительного применения. В зависимости от вида зубчатого венца, требований по точности и производительности используются соответствующие методы обработки и зубообрабатывающие станки. Этими факторами объясняется широкая номенклатура станков, действующих в промышленности. Зубообрабатывающие станки разделяются на две основные группы: станки, работающие по методу копирования, и станки, работающие по методу обката. Схемы образования поверхностей зубчатых колес показаны на рис. 4.58.

    Рис. 4.58. Схемы профилирования зубчатых эвольвентных поверхностей: Z – число зубьев заготовки, Ds.пр — движение подачи заготовке, Ds.кр — круговая подача заготовки З (или инструмента И), D.г — возвратно-поступательное движение инструмента, Ds.n — поступательное движение инструмента.

    Для образования впадины между зубьями методом копирования (рис. 4.58,а) фасонный резец обрабатывает впадину так, что образуются две боковые поверхности двух соседних зубьев. Следующая впадина получается аналогичным способом после углового поворота заготовки на один зуб колеса. Аналогично такую впадину можно получить, используя в качестве режущего инструмента фасонную дисковую фрезу (рис. 4.58,б) или фасонную пальцевую фрезу (рис. 4.58,в).

    Наибольшее развитие для нарезания зубчатых колес получил метод обкатки. Этот метод основан на зацеплении и согласованных движениях зубчатой пары, состоящей из заготовки и инструмента в виде зубчатого колеса (рис. 4.58,г), в виде рейки (рис. 4.58,д) или в виде двух резцов (рис. 4.58,е).

    Для изготовления зубчатых колес в условиях крупносерийного и массового производства предпочтительны зубообрабатывающие станки, работающие методами непрерывного обката и контурной обработки.

    В конструктивном отношении эти станки отличаются большим разнообразием. Помимо общих для всех металлорежущих станков механизмов они имеют специальные механизмы для образования зубьев на заготовке и для формирования их профилей.

    В зубообрабатывающих станках с программным управлением для перемещения рабочих органов применяют регулируемые приводы, часть из которых взаимосвязана в своей работе. В этих станках используют передачи с минимальными зазорами или совсем беззазорные. К ним относятся шариковые винтовые пары, червячные передачи с червяком, имеющим переменный шаг витка, цилиндрические передачи с малой конусностью зубьев.