Органы какой системы вырабатывают гормоны. Какие бывают гормоны

Гормоны в организме человека играют роль своеобразных дирижеров - они отвечают абсолютно за все происходящие биохимические процессы. Все без исключения гормоны вырабатываются в организме человека и в здоровом состоянии заместительная терапия не требуется. Механизм действия гормоны настолько тонкий, что любое стороннее вмешательство приводит к колоссальному сбою в этой системе. Переоценить действие гормонов на организм очень сложно, без них невозможен сам процесс биологической жизни. Предлагаем узнать о значении гормонов в организме человека более детально из предлагаемого материала.

Эндокринология - область клинической медицины, изучающая строение и функции органов эндокринной системы и вырабатываемых ею гормонов, а также болезни человека, вызванные нарушением их функций, и разрабатывающая методы диагностики, лечения и профилактики этих болезней.

Биологическая и регулирующая функция гормонов в организме человека

Регулирующая функция гормонов заключается в формировании сбалансированных связей взаимодействия между различными системами. Организм человека - многоклеточная система, способная существовать как единое целое благодаря наличию сложных механизмов, регулирующих деление, рост, потребности клеток в структурных и энергетических материалах, апоптоз клеток. Взаимосвязь между клетками и их нормальным функционированием осуществляют четыре основные системы регуляции:

  • центральная и периферическая нервные системы через нервные импульсы и медиаторы;
  • эндокринная система через функции гормонов в организме человека, которые выделяются в кровь и влияют на метаболизм различных клеток-мишеней;
  • паракринная и аутокринная системы посредством различных соединений, секретирующихся в межклеточное пространство и взаимодействующих с близлежащими клетками;
  • иммунная система через специфические белки (антитела, цитокины).

Биологические функции гормонов заключаются в том, что они регулируют внутриклеточные и внутрисистемные цепочки связей на различных уровнях. Системы регуляции обмена веществ и функций организма образуют три иерархических уровня.

I уровень - центральная нервная система (ЦНС), клетки которой получают сигналы от внешней и внутренней среды и преобразуют их в форму нервных импульсов, которые, используя химические сигналы - медиаторы, включают II уровень регуляции.

II уровень - эндокринная система: гипоталамус, гипофиз, периферические эндокринные железы, которые синтезируют гормоны, передающие сигналы ЦНС на III уровень регуляции.

III уровень - внутриклеточный - изменение метаболизма в клетках-мишенях.

Выработка гормонов в организме: какой орган продуцирует

В организм человека ежесуточно должно поступать определенное количество белков, липидов, углеводов, витаминов, минеральных веществ - это элементы внешнего фактора; одновременно на организм человека воздействуют такие внешние факторы, как температура воздуха, атмосферное давление, влажность, состав воздуха. Выработка гормонов в организме человека требует обязательного присутствия всех необходимых витаминов и питательных веществ. В крови человека постоянно содержится около 1 000 различных химических соединений, которые составляют внутренний фактор. Под влиянием постоянно изменяющихся внутренних и внешних факторов в ЦНС возникают импульсы, которые передаются в отдел мозга - гипоталамус. Какой орган выработки гормонов запускается первым в ответ на поступившую реакцию? Гипоталамус в ответ на нервные импульсы продуцирует гормоны-пептиды:

1. Общее название - рилизинг-факторы (рилизинг-гормоны):

  • кортиколиберин;
  • гонадолиберин;
  • люлиберин;
  • меланолиберин;

2. Рилизинг-факторы:

  • пролактолиберин;
  • пролактостатин;
  • соматолиберин;
  • соматостатин;
  • тиролиберин;

3. Из гипоталамуса эти два гормона- пептида по нервным волокнам перемещаются в заднюю долю гипофиза, а затем уже выделяются в кровь:

  • окситоцин;
  • вазопрессин

Рилизинг-факторы воздействуют на аденогипофиз (гипофиз), вызывая биосинтез и секрецию в кровь тройных гормонов:

  • кортиколиберин стимулирует секрецию кортикотропина (адренокортикотропный гормон - АКТГ);
  • гонадолиберин стимулирует секрецию гонадотропинов (фоллитропин, ФСГ - фолликулостимулирующий гормон)
  • люлиберин стимулирует секрецию лютропина (лютеинизирующий гормон, ЛГ)
  • меланолиберин стимулирует секрецию меланотропина;
  • пролактолиберин стимулирует секрецию пролактина;
  • пролактостатин ингибирует секрецию пролактина;
  • соматолиберин стимулирует секрецию соматотропина (гормон роста);
  • соматостатин ингибирует секрецию соматотропина;
  • тиролиберин стимулирует секрецию тиреотропина;
  • липотропин стимулирует липолиз в жировой ткани.

Все тропные гормоны, за исключением АКГТ, по химической природе сложные белки - гликопротеины. АКГТ - пептид, состоящий из 39 остатков аминокислот.

Тропные гормоны, попадая в кровь, стимулируют биосинтез и секрецию гормонов в периферических эндокринных железах:

  • надпочечниках;
  • половых железах;
  • щитовидной железе;
  • паращитовидных железах;
  • поджелудочной железе;
  • тимусе;
  • плаценте (при беременности).

Химическая природа гормонов периферических эндокринных желез:

  • 1 группа - гормоны-белки, гормоны-пептиды, гормоны - производные аминокислот (адреналин, тироксин);
  • II группа - гормоны, производные холестерина - стероидные гормоны (кортикостероиды).

Какие виды и принципы действия гормонов

Какое действие гормонов оказывается на организм, зависит от типа вещества и органа, его продуцирующего. Далее рассмотрены виды действия гормонов так называемой тропной группы. Они отличаются стимулирующей или подавляющей активностью. Основной принцип действия гормонов такого типа заключается в регуляции процесса выработки последующих гормональных веществ в специальных железах.

1. АКГТ , воздействуя на корковый слой надпочечников, стимулирует биосинтез и секрецию кортикостероидов (около 40 видов).

2. ФСГ , воздействуя на яичники у женщин, вызывает рост и созревание фолликулов, выделение гормонов эстрогенов; у мужчин воздействует на семенники, стимулирует сперматогенез и созревание сперматозоидов.

3. ЛГ воздействует на яичники у женщин, стимулируя рост и развитие желтого тела, с выделением в кровь прогестерона; у мужчин стимулирует в семенниках биосинтез мужских половых гормонов - андрогенов (особенно тестостерона).

4. Меланотропин воздействует на клетки кожи и сетчатки глаза, стимулируя биосинтез пигментов (меланинов).

5. Соматотропин стимулирует образование и рост костей, биосинтез белков в организме, это гормон роста. Есть данные о его влиянии на биосинтез инсулина и глюкагона в поджелудочной железе.

6. Тиреотропин воздействует на щитовидную железу, стимулируя выделение гормонов иодтиронинов: тетраиодтиронина и трииодтиронина.

Клетками-мишенями в органах и тканях называют клетки, имеющие белки-рецепторы для взаимодействия с данным видом гормонов.

По механизму передачи сигнала в клетки-мишени гормоны делятся на две большие группы.

I группа - мембранновнутриклеточный механизм

1. Белки-рецепторы расположены на наружной поверхности цитоплазматической мембраны клетки-мишени.

2. Гормон не проникает внутрь клетки-мишени.

3. Передача сигнала идет через вторичный посредник (чаще всего ц-АМФ).

4. Вторичный посредник включает каскадный механизм фосфорилирования белков-ферментов.

5. Это приводит к изменению активности ферментов

II группа - цитозольный механизм

При передаче сигнала этим механизмом:

1. Белки-рецепторы расположены в цитозоли клетки-мишени.

2. Гормон проникает через мембрану в цитозоль клетки.

3. Образуется комплекс «гормон-рецептор».

4. Этот комплекс проникает в ядро клетки-мишени.

5. Происходит взаимодействие комплекса с ДНК.

6. Это приводит к индукции или репрессии синтеза белков-ферментов.

7. Изменяется количество ферментов

Гормоны периферических эндокринных желез по биохимическим функциям делятся на 5 групп.

I группа - гормоны, регулирующие обмен белков, липидов и углеводов:

  • инсулин;
  • глюкагон;
  • адреналин;
  • кортизол.

II группа - гормоны, регулирующие водно-солевой обмен:

  • альдостерон;
  • вазопрессин.

III группа - гормоны, регулирующие минеральный обмен (ионов кальция, фосфатов):

  • паратгормон;
  • кальцитонин;
  • кальцитриол.

IV группа - гормоны, регулирующие репродуктивные функции в организме человека:

  • женские половые гормоны;
  • мужские половые гормоны.

V группа - гормоны, регулирующие функции желез внутренней секреции:

  • тиреотропин;
  • соматотропин;
  • АКТГ;
  • гонадотропины;
  • меланотропин.

Особенности биологического действия гормонов

Биологическое действие гормонов гарантирует поддержание всех биохимических процессов, происходящих в организме, в соответствующем балансе. Некоторые особенности действия гормонов заключаются в следующих направлениях:

  1. Поддержание гомеостаза в организме.
  2. Адаптация организма к изменяющимся условиям внешней среды.
  3. Поддержание циклических изменений в организме (день, ночь, пол, возраст).
  4. Поддержание морфологических и функциональных изменений в онтогенезе.

Для поддержания нормального взаимодействия клеток-мишеней с окружающими клетками или макроорганизмом в целом необходимы 3 условия:

  • нормальный уровень гормонов;
  • нормальное количество белков-рецепторов к этим гормонам;
  • нормальный ответ клетки на реакцию «гормон - рецептор», зависящий от различных ферментных систем.

Если имеет место нарушение одного из этих условий, то возникает заболевание.

Эндокринная система является одной из важнейших в организме. Она включает органы, регулирующие деятельность всего организма посредством выработки специальных веществ – гормонов.

Эта система обеспечивает все процессы жизнедеятельности, а также адаптацию организма к внешним условиям.

Сложно переоценить значение эндокринной системы, таблица гормонов, секретируемых её органами, показывает, насколько широк диапазон их функций.

Структурные элементы эндокринной системы – это железы внутренней секреции. Их основной задачей является синтез гормонов. Деятельность желез контролируется нервной системой.

Эндокринная система состоит из двух больших частей: центральной и периферической. Основная часть представлена мозговыми структурами.

Это главный компонент всей эндокринной системы – гипоталамус и подчиняющиеся ему гипофиз и эпифиз.

К периферической части системы относятся железы, расположенные по организму.

К ним относятся:

  • щитовидная железа;
  • паращитовидные железы;
  • тимус;
  • поджелудочная железа;
  • надпочечники;
  • половые железы.

Гормоны, секретируемые гипоталамусом, воздействуют на гипофиз. Они делятся на две группы: либерины и статины. Это так называемые рилизинг-факторы. Либерины стимулируют выработку собственных гормонов гипофизом, статины замедляют этот процесс.

В гипофизе образуются тропные гормоны, которые, попадая в кровеносное русло, разносятся к периферическим железам. В результате активизируются их функции.

Нарушения в работе одного из звеньев эндокринной системы влекут за собой развитие патологий.

По этой причине при появлении заболеваний имеет смысл сдать анализы на определение уровня гормонов. Эти данные будут способствовать назначению эффективного лечения.

Таблица желез эндокринной системы человека

Каждый орган эндокринной системы имеет особое строение, обеспечивающее секрецию веществ гормонального характера.

Железа Локализация Структура Гормоны
Гипоталамус Является одним из отделов промежуточного мозга. Представляет собой скопление нейронов, которые образуют гипоталамические ядра. В гипоталамусе синтезируются нейрогормоны, или рилизинг-факторы, которые стимулируют деятельность гипофиза. Среди них гандолиберины, соматолиберин, соматостатин, пролактолиберин, пролактостатин, тиреолиберин, кортиколиберин, меланолиберин, меланостатин. Гипоталамус секретирует собственные гормоны – вазопрессин и окситоцин.
Гипофиз Эта небольшая железа расположена в основании головного мозга. Гипофиз соединяется ножкой с гипоталамусом. Железа разделена на доли. Передняя часть – аденогипофиз, задняя – нейрогипофиз. В аденогипофизе синтезируются соматотропин, тиреотропин, кортикотропин, пролактин, гонадотропные гормоны. Нейрогипофиз служит резервуаром для накопления окситоцина и вазопрессина, поступающих из гипоталамуса.
Эпифиз (шишковидное тело) Эпифиз представляет собой небольшое образование в промежуточном мозге. Железа расположена между полушариями. Шишковидное тело состоит преимущественно из клеток паренхимы. В его структуре присутствуют нейроны. Основным гормоном эпифиза является серотонин. Из этого вещества в шишковидном теле синтезируется мелатонин.
Щитовидная железа Этот орган расположен в области шеи. Железа локализована под гортанью рядом с трахеей. Железа имеет форму щита или бабочки. Орган состоит из двух долей и соединяющего их перешейка. Клетки щитовидной железы активно секретируют тироксин, трийодтиронин, кальцитонин, тиреокальцитонин.
Паращитовидные железы Это небольшие структуры, локализованные рядом со щитовидной железой. Железы имеют круглую форму. Они состоят из эпителиальной и фиброзной тканей. Единственный гормон паращитовидных желез – паратиреокрин, или паратгормон.
Тимус (вилочковая железа) Тимус располагается вверху за грудиной. Вилочковая железа имеет две доли, расширяющиеся книзу. Консистенция органа мягкая. Железа покрыта оболочкой из соединительной ткани. Основные гормоны тимуса – это тимулин, тимопоэтин и тимозин нескольких фракций.
Поджелудочная железа Орган локализован в брюшной полости рядом с желудком, печенью и селезёнкой. Железа имеет вытянутую форму. Она состоит из головки, тела и хвоста. Структурной единицей считаются островки Лангерганса. Поджелудочная железа секретирует соматостатин, инсулин, глюкагон. Также этот орган входит в состав пищеварительной системы за счёт выработки ферментов.
Надпочечники Это парные органы, расположенные непосредственно над почками. Надпочечники имеют мозговое вещество и кору. Структуры выполняют разные функции. Мозговой слой секретирует катехоламины. В эту группу входят адреналин, дофамин, норадреналин. Корковый слой отвечает за синтез глюкокортикоидов (кортизол, кортикостерон), альдостерона и половых гормонов (эстрадиол, тестостерон).
Яичники Яичники являются женскими репродуктивными органами. Это парные образования, расположенные в малом тазу. В корковом веществе яичников располагаются фолликулы. Они окружены стромой – соединительной тканью. В яичниках синтезируются прогестерон и эстроген. Уровень обоих гормонов непостоянный. Он зависит от фазы менструального цикла и ряда других факторов (беременность, лактация, климакс, половое созревание).
Яички (семенники) Это парный орган мужской половой системы. Яички опущены в мошонку. Яички пронизаны извитыми канальцами и покрыты многочисленными оболочками фиброзного происхождения. В семенниках образуется единственный гормон – тестостерон.

Следующая тема будет полезна для всех: . Все о строении и функциях поджелудочной железы в организме человека.

Таблица эндокринных гормонов

Все гормоны, секретируемые центральными и периферическими железами внутренней секреции, имеют различную природу.

Часть из них являются производными аминокислот, другие представляют собой полипептиды или стероиды.

Подробнее о природе гормонов и их функциях смотрите в таблице:

Гормон Химическая природа Функции в организме
Фоллиберин Цепочка из 10 аминокислот Стимуляция секреции фолликулостимулирующего гормона.
Люлиберин Белок из 10 аминокислот Стимуляция секреции лютеинизирующего гормона. Регуляция полового поведения.
Соматилиберин 44 аминокислоты Повышает секрецию соматотропного гормона.
Соматостатин 12 аминокислот Снижает секрецию соматотропного гормона, пролактина и тиреотропного гормона.
Пролактолиберин Полипептид Стимуляция выработки пролактина.
Пролактостатин Полипептид Снижение синтеза пролактина.
Тиреолиберин Три аминокислотных остатка Провоцирует выработку тиреотропного гормона и пролактина. Является антидепрессантом.
Кортиколиберин 41 аминокислота Усиливает продукцию аденокортикотропного гормона. Влияет на иммунную и сердечно-сосудистую системы.
Меланолиберин 5 аминокислотных остатков Стимулирует секрецию мелатонина.
Меланостатин 3 или 5 аминокислот Ингибирует секрецию мелатонина.
Вазопрессин Цепочка из 9 аминокислот Участвует в механизме памяти, регулирует стрессовые реакции, работу почек и печени.
Окситоцин 9 аминокислот Провоцирует маточные сокращения в процессе родов.
Соматотропин Полипептид из 191 аминокислоты Стимулирует рост мышечной, костной и хрящевой ткани.
Тиреотропин Гликопротеид Активирует выработку тироксины щитовидной железой.
Кортикотропин Пептид из 39 аминокислот Регулирует процесс распада липидов.
Пролактин Полипептид из 198 аминокислотных остатков Стимулирует лактацию у женщин. Увеличивает интенсивность секреции тестостерона у мужчин.
Лютеинизирующий гормон Гликопротеин Усиливает секрецию холестерола, андрогенов, прогестерона.
Фолликулостимулирующий гормон Гликопротеин Провоцирует рост и развитие фолликулов у женщин, повышает синтез эстрогенов. У мужчин обеспечивает рост семенников.
Серотонин Биогенный амин Влияет на кровеносную систему, участвует в формировании аллергических реакций и болевых ощущений.
Мелатонин Производное аминокислоты триптофана Стимулирует процесс образования пигментных клеток.
Тироксин Производное аминокислоты тирозина Ускоряет окислительно-восстановительные процессы и метаболизм.
Трийодтиронин Аналог тироксина, содержащий в составе атомы йода Воздействует на нервную систему, обеспечивая нормальное психическое развитие.
Кальцитонин Пептид Способствует запасанию кальция.
Паратгормон Полипептид Формирует костную ткань, участвует в обмене фосфора и кальция.
Тимулин Пептид Активирует или ингибирует деятельность лимфоцитов.
Тимопоэтин 49 аминокислот Участвует в дифференцировке лимфоцитов.
Тимозин Белок Формирует иммунитет и стимулирует развитие опорно-двигательной системы.
Инсулин Пептид Регулирует углеводный обмен, в частности снижает уровень простых сахаров.
Глюкагон 29 аминокислотных остатков Увеличивает концентрацию глюкозы.
Адреналин Катехоламин Учащает пульс, расширяет сосуды, расслабляет мускулатуру.
Норадреналин Катехоламин Повышает артериальное давление.
Дофамин Катехоламин Увеличивает силу сердечных сокращений, повышает систолическое давление.
Кортизол Стероид Регулирует обменные процессы и артериальное давление.
Кортикостерон Стероид Тормозит синтез антител, имеет противовоспалительное действие.
Альдостерон Стероид Регулирует обмен солей, задерживает воду в организме.
Эстрадиол Производное холестерола Поддерживает процессы формирования гонад.
Тестостерон Производное холестерола Провоцирует синтез белков, обеспечивает рост мышц, отвечает за сперматогенез и либидо.
Прогестерон Производное холестерола Обеспечивает оптимальные условия для зачатия, поддерживает гестацию.
Эстроген Производное холестерола Отвечает за половое созревание и работу репродуктивной системы.

Многообразие вариантов строения обеспечивает широкий спектр выполняемых гормонами функций. Недостаточная или избыточная секреция любого из гормонов влечёт за собой развитие патологий. Эндокринная система контролирует деятельность всего организма на гормональном уровне.

Что такое гормоны, все более или менее представляют. До недавнего времени было принято считать, что их синтезируют эндокринные железы или специализированные эндокринные клетки, разбросанные по всему организму и объединенные в диффузную эндокринную систему. Клетки диффузной эндокринной системы развиваются из того же зародышевого листка, что и нервные, потому называются нейроэндокринными. Где их только не находили: в щитовидной железе, мозговом веществе надпочечников, гипоталамусе, эпифизе, плаценте, поджелудочной железе и желудочно-кишечном тракте. А недавно их обнаружили в пульпе зуба, причем оказалось, что количество нейроэндокринных клеток в ней меняется в зависимости от здоровья зубов.

Честь этого открытия принадлежит Александру Владимировичу Московскому, доценту кафедры ортопедической стоматологии Медицинского института при Чувашском государственном университете им. И. Н. Ульянова. Нейроэндокринные клетки отличаются характерными белками, и их можно выявить иммунологическими методами. Именно так А. В. Московский их и обнаружил. (Это исследование опубликовано в № 9 «Бюллетеня экспериментальной биологии и медицины» за 2007 год.)

Пульпа - мягкая сердцевинка зуба, в которой находятся нервы и кровеносные сосуды. Ее извлекали из зубов и приготовляли срезы, на которых затем искали специфические белки нейроэндокринных клеток. Делали это в три этапа. Сначала подготовленные срезы обрабатывали антителами к искомым белкам (антигенам). Антитела состоят из двух частей: специфической и неспецифической. После связывания с антигенами они остаются на срезе неспецифической частью вверх. Срез обрабатывают антителами к этой неспецифической части, которые помечены биотином. Затем этот «бутерброд» с биотином сверху обрабатывают специальными реагентами, и место локализации исходного белка проявляется как красноватое пятнышко.

Нейроэндокринные клетки отличаются от клеток соединительной ткани более крупными размерами, неправильной формой и наличием в цитоплазме красновато-коричневых глыбок (окрашенных белков), нередко закрывающих ядро.

В здоровой пульпе нейроэндокринных клеток немного, но при кариесе их количество возрастает. Если зуб не лечить, то болезнь прогрессирует, а нейроэндокринных клеток становится все больше, причем они скапливаются вокруг очага поражения. Пик их численности приходится на кариес столь запущенный, что воспаляются и ткани вокруг зуба, то есть начинается пародонтит.

У пациентов, которые предпочитают долго мучиться дома, чем один раз сходить к врачу, развивается воспаление пульпы и пародонта. На этой стадии количество нейроэндокринных клеток уменьшается (хотя их все равно больше, чем в здоровой пульпе) - их вытесняют клетки воспаления (лейкоциты и макрофаги). Снижается их численность и при хроническом пульпите, но при этом заболевании клеток в пульпе вообще остается мало, им на смену приходят склеротические тяжи.

По мнению А. В. Московского, нейроэндокринные клетки при кариесе и пульпите регулируют в очаге воспаления процессы микроциркуляции и метаболизма. Поскольку нервных волокон при кариесе и пульпите тоже становится больше, эндокринная и нервная системы и в этом вопросе действуют сообща.

Гормоны везде?

В последние годы ученые выяснили, что производство гормонов - отнюдь не прерогатива специализированных эндокринных клеток и желез. Этим занимаются и другие клетки, у которых множество других задач. Их список растет год от года. В него попали различные клетки крови (лимфоциты, эозинофильные лейкоциты, моноциты и тромбоциты), ползающие вне кровеносных сосудов макрофаги, клетки эндотелия (выстилки кровеносных сосудов), эпителиальные клетки тимуса, хондроциты (из хрящевой ткани), клетки амниотической жидкости и плацентарного трофобласта (той части плаценты, которая врастает в матку) и эндометрия (это из самой матки), клетки Лейдига семенников, некоторые клетки сетчатки и клетки Мер-келя, расположенные в коже вокруг волос и в эпителии подногтевого ложа, мышечные клетки. Список синтезируемых ими гормонов тоже довольно длинный.

Взять, к примеру, лимфоциты млекопитающих. Помимо положенной им продукции антител, они синтезируют мелатонин, пролактин, АКТГ (адренокортикотропный гормон) и соматотропный гормон. «Родиной» мелатонина традиционно считают эпифиз - железу, расположенную у человека в глубине мозга. Синтезируют его и клетки диффузной нейроэндокринной системы. Спектр действия мелатонина широк: он регулирует биоритмы (чем особенно знаменит), дифференцировку и деление клеток, подавляет рост некоторых опухолей и стимулирует выработку интерферона. Пролактин, вызывающий лактацию, вырабатывает передняя доля гипофиза, но в лимфоцитах он действует как фактор роста клеток. АКТГ, который также синтезируется в передней доле гипофиза, стимулирует синтез стероидных гормонов коры надпочечников, а в лимфоцитах регулирует образование антител.

А клетки тимуса, органа, в котором образуются Т-лимфоциты, синтезируют лютеинизирующий гормон (гормон гипофиза, вызывающий синтез тестостерона в семенниках и эстрогенов в яичниках). В тимусе он, вероятно, стимулирует клеточное деление.

Синтез гормонов в лимфоцитах и клетках тимуса многие специалисты рассматривают как доказательство существования связи между эндокринной и иммунной системами. Но это еще и весьма показательная иллюстрация современного состояния эндокринологии: нельзя сказать, что некий гормон синтезируется там-то и делает то-то. Мест его синтеза может быть много, функций тоже, и часто они зависят именно от места образования гормона.

Эндокринная прослойка

Иногда скопление неспецифических гормонопроизводящих клеток образует полноценный эндокринный орган, и немаленький, такой, например, как жировая ткань. Впрочем, размеры его переменны, и в зависимости от них меняются спектр «жировых» гормонов и их активность.

Жир, доставляющий современному человеку столько неприятностей, на самом деле представляет собой ценнейшее эволюционное приобретение.

В 1960-е годы американский генетик Джеймс Нил сформулировал гипотезу «бережливых генов». Согласно этой гипотезе, для ранней истории человечества, да и не только для ранней, характерны периоды продолжительного голодания. Выживали те, кто в промежутках между голодными годами успевал отъедаться, чтобы потом было чем худеть. Поэтому эволюция отбирала аллели, которые способствовали быстрому набору веса, а также склоняли человека к малой подвижности - сидючи, жир не растрясешь. (Генов, которые влияют на стиль поведения и развитие ожирения, известно уже несколько сотен.) Но жизнь изменилась, и эти внутренние запасы нам теперь не впрок, а к болезни. Избыток жира вызывает тяжкий недуг - метаболический синдром: комбинацию ожирения, устойчивости к действию инсулина, повышенного артериального давления и хронического воспаления. Пациенту с метаболическим синдромом недолго ждать сердечно-сосудистых заболеваний, диабета второго типа и множества других недугов. И все это - результат действия жировой ткани как эндокринного органа.

Основные клетки жировой ткани, адипоциты, совсем не похожи на секреторные клетки. Однако они не только запасают жир, но и выделяют гормоны. Главный из них, адипонектин, предотвращает развитие атеросклероза и общих воспалительных процессов. Он влияет на прохождение сигнала от рецептора инсулина и тем самым препятствует возникновению инсулинрезистентности. Жирные кислоты в клетках мышц и печени под его действием окисляются быстрее, активных форм кислорода становится меньше, а диабет, если он уже есть, протекает легче. Более того, адипонектин регулирует работу самих адипоцитов.

Казалось бы, адипонектин незаменим при ожирении и может предотвратить развитие метаболического синдрома. Но, увы, чем сильнее разрастается жировая ткань, тем меньше гормона она производит. Адипонектин присутствует в крови в виде тримеров и гексамеров. При ожирении тримеров становится больше, а гексамеров - меньше, хотя гексамеры гораздо лучше взаимодействуют с клеточными рецепторами. Да и само количество рецепторов при разрастании жировой ткани сокращается. Так что гормона не просто становится меньше, он еще и действует слабее, что, в свою очередь, способствует развитию ожирения. Получается порочный круг. Но его можно разорвать - похудеть килограммов на 12, не меньше, тогда количество рецепторов приходит в норму.

Еще один замечательный гормон жировой ткани - лептин. Как и адипокинетин, его синтезируют адипоциты. Лептин известен тем, что подавляет аппетит и ускоряет расщепление жирных кислот. Такого эффекта он достигает, взаимодействуя с определенными нейронами гипоталамуса, а уж дальше гипоталамус сам распоряжается. При избыточной массе тела продукция лептина увеличивается в разы, а нейроны гипоталамуса снижают к нему чувствительность, и гормон бродит по крови несвязанный. Поэтому, хотя уровень лептина в сыворотке больных ожирением повышен, люди не худеют, поскольку гипоталамус его сигналы не воспринимает. Однако рецепторы к лептину есть и в других тканях, их чувствительность к гормону остается на прежнем уровне, и они охотно реагируют на его сигналы. А лептин, между прочим, активирует симпатический отдел периферической нервной системы и повышает кровяное давление, стимулирует воспаление и способствует образованию тромбов, иными словами, вносит посильную лепту в развитие гипертонии и воспаления, свойственных метаболическому синдрому.

Развитие воспаления и устойчивость к инсулину вызывает и еще один гормон адипоцитов, резистин. Резистин представляет собой антагонист инсулина, под его действием клетки сердечной мышцы снижают потребление глюкозы и накапливают внутриклеточные жиры. А сами адипоциты под влиянием резистина синтезируют намного больше факторов воспаления: хемотаксического для макрофагов белка 1, интерлейкина-6 и фактора некроза опухоли-б (МСР-1, IL-6 и TNF-б). Чем больше резистина в сыворотке, тем выше систолическое давление, шире талия, больше риск развития сердечно-сосудистых заболеваний.

Справедливости ради надо отметить, что разрастающаяся жировая ткань стремится исправить вред, причиняемый ее гормонами. С этой целью адипоциты больных ожирением в избытке производят еще два гормона: висфатин и апелин. Правда, их синтез происходит и в других органах, в том числе в скелетных мышцах и печени. В принципе эти гормоны противостоят развитию метаболического синдрома. Висфатин действует подобно инсулину (связывается с инсулиновым рецептором) и снижает уровень глюкозы в крови, а еще очень сложным образом активирует синтез адипонектина. Но безусловно полезным этот гормон назвать нельзя, поскольку висфатин стимулирует синтез сигналов воспаления. Апелин подавляет секрецию инсулина, связываясь с рецепторами бета-клеток поджелудочной железы, понижает артериальное давление, стимулирует сокращение клеток сердечной мышцы. При уменьшении массы жировой ткани его содержание в крови снижается. К сожалению, апелин и висфатин не могут противостоять действию других адипоцитных гормонов.

Гормональная активность жировой ткани объясняет, почему избыточный вес приводит к таким серьезным последствиям. Однако недавно ученые обнаружили в организме млекопитающих эндокринный орган покрупнее. Оказывается, наш скелет вырабатывает по крайней мере два гормона. Один регулирует процессы минерализации кости, другой - чувствительность клеток к инсулину.

Кость заботится о себе

Читатели «Химии и жизни» знают, конечно, что кость живая. Ее строят остеобласты. Эти клетки синтезируют и выделяют большое количество белков, главным образом коллагена, остеокальцина и остеопонтина, создающих органический матрикс кости, который затем минерализуется. При минерализации ионы кальция связываются с неорганическими фосфатами, образуя гидроксиапатит . Окружив себя минерализованным органическим матриксом, остеобласты превращаются в остеоциты - зрелые, многоотростчатые веретенообразные клетки с крупным округлым ядром и малым количеством органелл. Остеоциты не соприкасаются с кальцинированным матриксом, между ними и стенками их «пещерок» существует зазор шириной около 0,1 мкм, а сами стенки выстланы тонким, 1–2 мкм, слоем неминерализованной ткани. Остеоциты связаны друг с другом длинными отростками, проходящими по специальным канальцам. По этим же канальцам и полостям вокруг остеоцитов циркулирует тканевая жидкость, питающая клетки.

Минерализация кости протекает нормально при соблюдении нескольких условий. Прежде всего необходима определенная концентрация кальция и фосфора в крови. Эти элементы поступают с пищей через кишечник, а выходят с мочой. Поэтому почки, фильтруя мочу, должны задерживать ионы кальция и фосфора в организме (это называется реабсорбцией).

Должное всасывание кальция и фосфора в кишечнике обеспечивает активная форма витамина D (кальцитриол). Она же влияет на синтетическую активность остеобластов. Витамин D превращается в кальцитриол под действием фермента 1б-гидроксилазы, который синтезируется главным образом в почках. Еще один фактор, влияющий на уровень кальция и фосфора в крови и активность остеобластов, - паратиреоидный гормон (ПТГ), продукт паращитовидных желез. ПТГ взаимодействует с костной, почечной и кишечной тканями и ослабляет реабсорбцию.

Но недавно ученые обнаружили еще один фактор, регулирующий минерализацию кости - белок FGF23, фактор роста фибробластов 23. (Большой вклад в эти работы внесли сотрудники фармацевтической исследовательской лаборатории пивоваренной компании «Кирин» и кафедры нефрологии и эндокринологии Токийского университета под руководством Такэёси Ямасита. Синтез FGF23 происходит в остеоцитах, а действует он на почки, контролируя уровень неорганических фосфатов и кальцитриола.

Как выяснили японские ученые, ген FGF23 (здесь и далее гены, в отличие от их белков, обозначаются курсивом) ответствен за две серьезные болезни: аутосомный доминантный гипофосфатемический рахит и остеомаляцию. Если проще, то рахит представляет собой нарушенную минерализацию растущих детских костей. А слово «гипофосфатемический» означает, что болезнь вызвана нехваткой фосфатов в организме. Остеомаляция - это деминерализация (размягчение) кости у взрослых, вызванная нехваткой витамина D. У пациентов, страдающих этими недугами, повышен уровень белка FGF23. Иногда остеомаляция возникает в результате развития опухоли, причем отнюдь не костной. В клетках таких опухолей также повышена экспрессия FGF23.

У всех больных с гиперпродукцией FGF23 понижено содержание фосфора в крови, а почечная реабсорбция ослаблена. Если бы описанные процессы находились под контролем ПТГ, то нарушение фосфорного обмена повлекло бы за собой усиленное образование кальцитриола. Но этого не происходит. При остеомаляции обоих видов концентрация кальцитриола в сыворотке остается низкой. Следовательно, в регуляции фосфорного обмена при этих заболеваниях первую скрипку играет не ПТГ, а FGF23. Как выяснили ученые, этот фермент подавляет синтез 1б-гидроксилазы в почках, поэтому и возникает нехватка активной формы витамина D.

При недостатке FGF23 картина обратная: фосфора в крови в избытке, кальцитриола тоже. Аналогичная ситуация имеет место и у мутантных мышей с повышенным уровнем белка. А у грызунов с отсутствующим геном FGF23 все наоборот: гиперфосфатизация, усиление почечной реабсорбции фосфатов, высокий уровень кальцитриола и повышенная экспрессия 1б-гидроксилазы. В результате исследователи пришли к выводу, что FGF23 регулирует фосфатный обмен и метаболизм витамина D, причем этот путь регуляции отличен от ранее известного пути с участием ПТГ.

В механизмах действия FGF23 ученые сейчас разбираются. Известно, что он сокращает экспрессию белков, отвечающих за поглощение фосфатов в почечных канальцах, а также экспрессию1б-гидроксилазы. Поскольку FGF23 синтезируется в остеоцитах, а действует на клетки почек, попадая туда через кровь, этот белок можно назвать классическим гормоном, хотя кость никто не рискнул бы назвать эндокринной железой.

Уровень гормона зависит от содержания фосфат-ионов в крови, а также от мутаций в некоторых генах, также влияющих на минеральный обмен (FGF23 ведь не единственный ген с такой функцией), и от мутаций в самом гене. Этот белок, как и всякий другой, находится в крови определенное время, а затем расщепляется специальными ферментами. Но если в результате мутации гормон приобретает устойчивость к расщеплению, его станет слишком много. А есть еще ген GALNT3, продукт которого расщепляет белок FGF23. Мутация в этом гене вызывает усиленное расщепление гормона, и при нормальном уровне синтеза больной испытывает недостаток FGF23 со всеми вытекающими последствиями. Есть белок KLOTHO, необходимый для взаимодействия гормона с рецептором. И как-то FGF23 взаимодействует с ПТГ, конечно. Исследователи предполагают, что он подавляет синтез паратиреоидного гормона, хотя до конца в этом не уверены. Но ученые продолжают работу и скоро, видимо, разберут все действия и взаимодействия FGF23 до последней косточки. Подождем.

Скелет и диабет

Безусловно, должная минерализация костей невозможна без поддержания нормального уровня кальция и фосфатов в сыворотке крови. Поэтому вполне объяснимо, что кость «лично» контролирует эти процессы. Но что ей, спрашивается, до чувствительности клеток к инсулину? Однако в 2007 году исследователи из Колумбийского университета (Нью-Йорк) под руководством Джерарда Карсенти обнаружили, к величайшему удивлению научного сообщества, что на чувствительность клеток к инсулину влияет остеокальцин. Это, как мы помним, один из ключевых белков костного матрикса, второй по значению после коллагена, а синтезируют его остеобласты. Сразу после синтеза специальный фермент карбоксилирует три остатка глутаминовой кислоты остеокальцина, то есть вводит в них карбоксильные группы. Именно в таком виде остеокальцин и включается в состав кости. Но часть молекул белка остается некарбоксилированной. Такой остеокальцин обозначают uOCN, он и обладает гормональной активностью. Процесс карбоксилирования остеокальцина усиливает остеотестикулярный белок тирозинфосфатаза (OST-PTP), понижающий, таким образом, активность гормона uOCN.

Началось с того, что американские ученые создали линию «безостеокальцинных» мышей. Синтез костного матрикса у таких животных проходил с большей скоростью, чем у обычных, поэтому кости оказались более массивными, но свои функции выполняли хорошо. У этих же мышей исследователи обнаружили гипергликемию, низкий уровень инсулина, малое количество и пониженную активность вырабатывающих инсулин бета-клеток поджелудочной железы и повышенное содержание висцерального жира. (Жир бывает подкожный и висцеральный, отложенный в брюшной полости. Количество висцерального жира зависит главным образом от питания, а не от генотипа.) Зато у мышей, дефектных по гену OST-PTP, то есть с избыточной активностью uOCN, клиническая картина обратная: слишком много бета-клеток и инсулина, повышенная чувствительность клеток к инсулину, гипогликемия, жира почти нет. После инъекций uOCN у нормальных мышей увеличивается количество бета-клеток, активность синтеза инсулина и чувствительность к нему. Уровень глюкозы приходит в норму. Так что uOCN - это гормон, который синтезируется в остеобластах, действует на клетки поджелудочной железы и мышечные клетки. И влияет он на продукцию инсулина и чувствительность к нему соответственно.

Все это было установлено на мышах, а что же люди? По данным немногочисленных клинических исследований, уровень остеокальцина положительно ассоциируется с чувствительностью к инсулину, и в крови диабетиков он значительно ниже, чем у людей, не страдающих этой болезнью. Правда, в этих исследованиях медики не различали карбоксилированный и некарбоксилированный остеокальцин. В том, какую роль играют эти формы белка в человеческом организме, еще предстоит разбираться.

Но какова роль скелета, оказывается! А мы-то думали - опора для мышц.

FGF23 и остеокальцин - классические гормоны. Они синтезируются в одном органе, а влияют на другие. Однако на их примере видно, что синтез гормонов не всегда есть специфическая функция избранных клеток. Она скорее общебиологическая и присуща любой живой клетке, независимо от ее основной роли в организме.

Стерта не только грань между эндокринными и неэндокринными клетками, само понятие «гормон» становится все более расплывчатым. Например, адреналин, дофамин и серотонин, безусловно, гормоны, но они же и нейромедиаторы, ибо действуют и через кровь, и через синапс. А адипонектин оказывает не только эндокринное действие, но и паракринное, то есть действует не только через кровь на отдаленные органы, но и через тканевую жидкость на соседние клетки жировой ткани. Так что предмет эндокринологии меняется на глазах.

Развитие и функционирование половой системы женского организма обеспечивают женские гормоны, поэтому важно знать соответствующий норме уровень каждого из них, чтобы не допустить дисбаланса. От количества вырабатываемых гормонов зависит психологическое состояние, внешний вид, способность к зачатию и вынашиванию ребенка. Если присутствует чувство дискомфорта в какой-либо из перечисленных сфер, стоит сдать анализы, чтобы проверить уровень гормонального фона.

Что такое гормоны

Обобщенное описание понятия "гормоны" сводится к выделению их основного качества - воздействия на другие клетки. Это биологически активные вещества, вырабатываемые организмом, которые, попадая в кровь, оказывают влияние на функционирование физиологических систем. Благодаря этим веществам, каждый отдельный вид живых существ имеет свои отличительные особенности в способе репродукции и внешнем половом различии.

Половые гормоны человека обуславливают формирование телосложения и внутренних половых органов по женскому или мужскому типу. Синтезируемые половыми железами, эти вещества воздействуют на рецепторы клеток-мишеней, чем обеспечивается репродуктивная способность человека. Любое отклонение от нормы по их количеству или качеству отражается как на женском, так и на мужском здоровье.

Женские половые гормоны

Эндокринология выделяет два основных гормона, которые играют существенную роль для женского организма. Первый - это эстроген, представленный тремя видами: эстрон, эстрадиол, эстриол. Синтезируясь в яичниках, он оказывает влияние не только на половую систему, но и на функционирование других систем. Второй - прогестерон, выработка которого происходит после выхода яйцеклетки из фолликула и образования желтого тела. Эти гормоны у девушек действуют только сообща, оказывая противоположное влияние на организм, чем достигается целостность системы.

Помимо главных, существуют другие женские гормоны, не менее важные для жизнедеятельности организма. Им отведена второстепенная роль только потому, что они включаются в работу на определенных стадиях жизни. Так, например, пролактин вызывает выработку молока в лактационный период, окситоцин стимулирует сокращение матки во время беременности, а лютеинизирующий (ЛГ) и фолликулостимулирующий (ФСГ) отвечают за развитие вторичных половых признаков и менструальный цикл.

Где вырабатываются

Основными органами эндокринной системы, которые отвечают за то, что половые гормоны у женщин вырабатываются в необходимом количестве, являются яичники и гипофиз. Информация о вырабатывающих железах представлена в таблице:

Название

Где вырабатываются

Эстроген

Оболочка фолликула яичника, надпочечники, желтое тело

Прогестерон

Соматотропин

Норадреналин

Надпочечники

Окситоцин

Серотонин и его индольное производное мелатонин

Шишковидная железа

Тиреоидная группа (тироксин, трийодтиронин)

Щитовидная железа

Тестостерон

Надпочечники

Пролактин

Поджелудочная железа


Норма половых гормонов

Первые симптомы, указывающие на дисфункцию какой-либо системы, являются сигналом о том, что следует сдать гормональные анализы для женщин. Результаты диагностики выдаются на руки и содержат информацию о том, сколько гормонов в организме женщины. Для того чтобы понять, являются ли показатели, указанные в расшифровке, нормальными – стоит узнать нормы половых гормонов. В таблице представлены данные о предельных границах допустимого количества (в установленных единицах измерения):

Название

Нижняя граница

Верхняя граница

Эстрадиол

Прогестерон

Тестостерон

Пролактин

Тироксин

Трийодтиронин


Влияние гормонов на организм женщины

Каждая женщина, пусть и неосознанно, но ощущает на себе воздействие гормонов. Оно проявляется в постоянной изменчивости характера, переменах во внешности, изменениях самочувствия. Гормоны для женщин способны влиять на происходящие в организме процессы, а самые значимые среди них:

  • Обретение женственных пропорций фигуры во время полового созревания девушки - происходит за счет резкого выброса эстрогена.
  • Приливы нежности у женщины - свидетельство поступления в мозг сигнала о подготовке к синтезу лютеинизирующих гормонов, так как организм готов к оплодотворению.
  • Усиление аппетита после овуляции - следствие резкого выброса эстрогена ввиду того, что химические вещества продолжают свою работу по подготовке к вынашиванию ребенка, независимо от того, произошло зачатие или нет.
  • Период беременности - характеризуется резким повышением уровня эстрогенов и прогестерона, затем к ним подключается окситоцин и пролактин.
  • Начало менопаузы и климакса в зрелом возрасте - происходит снижение уровня эстрогенов.

Какие гормоны за что отвечают

Женский организм представляет собой слаженную работу взаимосвязанных процессов. Каждый участник этой системы выполняет определенные функции и у каждого есть своя сфера ответственности. Информация об этом приведена в таблице:

Название

Область ответственности

Эстроген

Развитие половых органов, подготовка к воспроизведению потомства

Прогестерон

Способность яйцеклетки к оплодотворению, стимуляция увеличения матки во время беременности

Соматотропин

Укрепление мышц для обеспечения возможности вынашивания плода

Норадреналин

Снижение уровня стресса во время гормональных перепадов при беременности

Окситоцин

Стимулирование сокращения матки во время схваток

Серотонин

Снижает болевые ощущения при родовой деятельности

Тиреоидная группа

Формирование и поддержание функционирования щитовидной железы у плода

Тестостерон

Влечение к противоположному полу

Управление созреванием яйцеклетки

Пролактин

Способствует началу выработки молока в период лактации

Избыток гормонов

Отклонение в количестве химических веществ в ту или иную сторону может свидетельствовать о наличии патологии, избыточная их выработка приводит к появлению таких заболеваний:

  • гиперандрогении - повышенной выработке тестостерона, приводящей к маскулинности, проблемам с зачатием;
  • тиреотоксикоза - избытка тироксина, что характеризуется нарушением терморегуляции и, как следствие, возможностью появления осложнений в виде тиреоидита;
  • гиперпролактинемии - повышению выработки пролактина, при этом возникает нарушение менструального цикла;
  • гиперэстрогении - избытка эстрогенов, что вызывает ожирение, нарушение обмена веществ.

Недостаток гормонов

Пониженное продуцирование гормонов у женщин представляет угрозу выкидыша при беременности, невозможности вынашивания плода, неспособности к оплодотворению. Помимо этого, существует ряд заболеваний, вызванных недостатком определенных веществ, среди них самыми распространенными являются:

  • гипотиреоз - недостаток тироксина и трийодтиронина;
  • сахарный диабет - слабая выработка инсулина;
  • депрессия - низкий уровень окситоцина.

Анализы на гормональный фон у женщин

Уровень гормонов определяется посредством сдачи венозной крови. Диагностика проводится в лабораторных условиях и занимает от 2 до 5 дней. Для анализа на определение количественного состава каждого вида химических веществ необходимо выполнение определенных условий, связанных с фазой менструального цикла. Ознакомиться с инструкцией и правилами сдачи анализов на женские гормоны можно в диагностическом центре.

Как повысить женские гормоны

Если результаты анализов показали нехватку биологически активных веществ, существует несколько вариантов, как повысить уровень женских гормонов. К способам повышения гормонального фона относят:

  1. Гормонозаместительную терапию - лечение с помощью синтетических заменителей.
  2. Употребление в пищу продуктов, содержащих фитоэстрогены.
  3. Народные средства.

Гормоны в таблетках

Препараты, назначаемые врачом, необходимо принимать в точном соответствии с рекомендациями. Женские половые гормоны в таблетках бывают: комбинированные и прогестиновые. Комбинированные предназначены как для предотвращения беременности, так и для ускорения ее наступления. Прогестиновые предотвращают развитие тромбозов и атеросклероза в климактерический период.

ГОРМОНЫ - органические соединения, вырабатываемые определенными клетками и предназначенные для управления функциями организма, их регуляции и координации.

У высших животных есть две регуляторных системы, с помощью которых организм приспосабливается к постоянным внутренним и внешним изменениям. Одна из них - нервная система, быстро передающая сигналы (в виде импульсов) через сеть нервов и нервных клеток; другая - эндокринная система, осуществляющая химическую регуляцию с помощью гормонов, которые переносятся кровью. Они есть у всех млекопитающих, включая человека. Хорошо описаны гормоны растений и линьки насекомых.

Как медицинская дисциплина эндокринология появилась только в 20 в., однако наблюдения известны со времен античности. Гиппократ полагал, что здоровье человека и его темперамент зависят от особых гуморальных веществ. Аристотель обратил внимание на то, что кастрированный теленок, вырастая, отличается в половом поведении от кастрированного быка тем, что даже не пытается взбираться на корову. Кроме того, на протяжении веков кастрация практиковалась как для приручения и одомашнивания животных, так и для превращения человека в покорного раба.

КАКИЕ БЫВАЮТ ГОРМОНЫ

Согласно классическому определению, гормоны - продукты секреции эндокринных желез, выделяющиеся прямо в кровоток и обладающие высокой физиологической активностью. Главные эндокринные железы млекопитающих - гипофиз, щитовидная и паращитовидные железы, кора надпочечников, мозговое вещество надпочечников, островковая ткань поджелудочной железы, половые железы (семенники и яичники), плацента и гормон-продуцирующие участки желудочно-кишечного тракта.

В организме синтезируются и некоторые соединения гормоноподобного действия. Например, исследования гипоталамуса показали, что ряд секретируемых им веществ необходим для высвобождения гормонов гипофиза. Эти «рилизинг-факторы», или либерины, были выделены из различных участков гипоталамуса. Они поступают в гипофиз через систему кровеносных сосудов, соединяющих обе структуры. Поскольку гипоталамус по своему строению не является железой, а рилизинг-факторы поступают, по-видимому, только в очень близко расположенный гипофиз, эти выделяемые гипоталамусом вещества могут считаться гормонами лишь при расширительном понимании данного термина.

В определении того, какие вещества следует считать гормонами и какие структуры эндокринными железами, есть и другие проблемы. Убедительно показано, что такие органы, как печень, могут экстрагировать из циркулирующей крови физиологически малоактивные или вовсе неактивные гормональные вещества и превращать их в сильнодействующие гормоны. Например, дегидроэпиандростерон сульфат, малоактивное вещество, продуцируемое надпочечниками, преобразуется в печени в тестостерон - высокоактивный мужской половой гормон, в большом количестве секретируемый семенниками. Доказывает ли это, однако, что печень - эндокринный орган?

Другие вопросы еще более трудны. Почки секретируют в кровоток фермент ренин, который через активацию ангиотензиновой системы (эта система вызывает расширение кровеносных сосудов) стимулирует продукцию гормона надпочечников - альдостерона. Регуляция выделения альдостерона этой системой весьма схожа с тем, как гипоталамус стимулирует высвобождение гипофизарного гормона АКТГ (адренокортикотропного гормона, или кортикотропина), регулирующего функцию надпочечников. Почки секретируют также эритропоэтин - гормональное вещество, стимулирующее продукцию эритроцитов. Можно ли отнести почку к эндокринным органам? Все эти примеры доказывают, что классическое определение гормонов и эндокринных желез не является достаточно исчерпывающим.

ДЕЙСТВИЕ ГОРМОНОВ ЧЕЛОВЕКА

Физиологическое действие гормонов направлено на:

1) обеспечение регуляции биологических процессов;
2) поддержание постоянства внутренней среды;
3) регуляцию процессов роста, созревания и репродукции.

Гормоны регулируют активность всех клеток организма. Они влияют на остроту мышления и физическую подвижность, телосложение и рост, определяют рост волос, тональность голоса, половое влечение и поведение. Благодаря эндокринной системе человек может приспосабливаться к сильным температурным колебаниям, излишку или недостатку пищи, к физическим и эмоциональным стрессам. Изучение физиологического действия эндокринных желез и гормонов позволило раскрыть секреты половой функции и чудо рождения детей, а также ответить на вопрос, почему одни люди высокого роста, а другие низкого, одни полные, другие худые, одни медлительные, другие проворные, одни сильные, другие слабые.

В нормальном состоянии существует гармоничный баланс между активностью эндокринных желез, состоянием нервной системы и ответом тканей-мишеней (тканей, на которые направлено воздействие гормонов). Любое нарушение в каждом из этих звеньев быстро приводит к отклонениям от нормы. Избыточная или недостаточная их продукция служит причиной различных заболеваний, сопровождающихся глубокими химическими изменениями в организме.


ПОЧЕМУ БЫВАЮТ ГОРМОНАЛЬНЫЕ НАРУШЕНИЯ

Нарушения функции гормонов в организме могут быть вызваны следующими причинами:

  • Недостаточность гормона . Возникает при снижении продукции гормонов эндокринной железой по разным причинам: инфекции, инфаркты, аутоиммунные процессы, опухоли, наследственные заболевания.
  • Избыток гормона . Возникает при избыточной продукции и выбросе в кровяное русло гормонов. Причинами этого могут быть избыточный синтез гормонов эндокринной железой, продукция гормонов другими тканями (обычно при злокачественном перерождении), усиление производства гормонов тканями из его предшественника и ятрогенные причины, когда избыток гормона вводится при назначении гормонов в качестве лекарственного препарата.
  • Синтез аномальных гормонов эндокринными железами. Чаще это происходит при врожденных генетических аномалиях.
  • Резистентность к гормонам . При этом ткани организма не дают обычную реакцию на нормальное или повышенное количество гормона в крови. Резистентность (невосприимчивость) тканей к гормону имеет различные причины: наследственную природу, дефект тканевых рецепторов, появление антител к гормонам.