Снижение объема циркулирующей крови называется. Признаки острой кровопотери

Гиповолемия представляет собой уменьшение объема циркулирующей по сосудам крови. Это состояние сопровождает самые разные патологические процессы и заболевания, при которых главным патогенетическим звеном является потеря жидкости или ее перераспределение с выходом в межклеточное пространство.

Объем циркулирующей крови (ОЦК), который должен находиться в сосудах у здорового человека, определен: для мужчин этот показатель составляет 70 мл на килограмм массы тела, у женщин - 66 мл/кг. При достаточном наполнении сосудов и сердца организм способен поддерживать нормальный уровень артериального давления и кровоснабжения тканей, но если жидкости становится мало, то неизбежны гипотония, гипоксия и расстройства деятельности внутренних органов.

В теле человека содержится значительное количество воды и вне сосудистого русла - это так называемая внеклеточная жидкость, необходимая для осуществления обменных процессов и трофики тканей. Кровь и внеклеточная жидкость тесно взаимосвязаны, поэтому не только кровопотеря, но и обезвоживание любой природы способствуют гиповолемии.

Кровь человека состоит из жидкой части - плазмы - и клеточных элементов (эритроциты, тромбоциты, лейкоциты). При разных видах гиповолемии соотношение клеточной и плазменной части разнится, то есть объем циркулирующей крови может уменьшаться равномерно за счет клеток и плазмы (кровопотеря, например), либо происходит нарушение пропорций жидкости и форменных элементов.

Термин «гиповолемия» довольно часто употребляется в практике врачей, однако далеко не все специалисты знакомы с тонкостями развития этого процесса и способами ликвидации его последствий. Более того, точные диагностические критерии для такого диагноза тоже не сформулированы, что затрудняет его своевременную постановку.

Отсутствие четких рекомендаций относительно диагностики и лечения гиповолемии создает предпосылки для неадекватной инфузионной терапии, а больной в равной степени пострадает независимо от того, слишком мало или слишком много жидкости ему будет введено. В этом свете вольное трактование понятия гиповолемия недопустимо , а врач должен правильно оценивать степень обезвоживания или кровопотери, подбирая каждому пациенту наиболее рациональный способ лечения исходя из разновидности, причины и патогенеза расстройства.

Особого внимания заслуживают случаи выраженной гиповолемии, которая может в очень быстрые сроки перерасти в шок. В такой ситуации от врача потребуются быстрые действия и принятие правильного решения о количестве и составе трансфузионных сред и растворов, от котороых может зависеть не только здоровье, но и жизнь пациента.

Причины и механизмы развития гиповолемии

В основе механизма развития гиповолемических состояний могут лежать:

  • Изменения концентрации белков и электролитов в плазме крови и внеклеточном пространстве;
  • Увеличение емкости сосудистого русла за счет расширения сосудов периферии;
  • Снижение объема жидкости за счет непосредственных потерь крови или плазмы.

Причины гиповолемии многообразны:

  1. Ожоговая болезнь;
  2. Аллергия;
  3. Обезвоживание при кишечных инфекциях;
  4. (массивное внутрисосудистое разрушение эритроцитов);
  5. (рвота беременных);
  6. Полиурия при патологии почек;
  7. Нарушения эндокринной системы ();
  8. Отсутствие питьевой воды или возможности ее употребления (столбняк, бешенство);
  9. Неконтролируемый прием некоторых препаратов ( , в частности).

При снижении объема циркулирующей крови запускается целый каскад реакций - сначала компенсаторные, а затем - необратимые патологические, не контролируемые посредством лечения, поэтому важно не упустить время и как можно раньше приступить в восстановлению нормоволемического состояния. Попробуем разобраться в механизмах развития патологии в зависимости от разных ее причин.

Объем циркулирующей крови имеет тесную связь с емкостью сосудистого русла, которое может подстраиваться под колебания количества жидкости, компенсируя ее недостаток или избыток. При снижении ОЦК в результате кровопотери или обезвоживания сосуды реагируют спазмом мелких артерий и вен, в результате чего повышается емкость крупных сосудов, и гиповолемия может полностью или частично компенсироваться.

Однако не всегда сосуды периферии реагируют спазмом и устраняют недостаток ОЦК. Их расширение лежит в основе гиповолемии при аллергических реакциях, сильных интоксикациях, когда объем крови не меняется, а емкость сосудистого русла увеличивается. При таком механизме возникает относительная гиповолемия, которая сопровождается снижением венозного возврата к сердцу, его недостаточностью и выраженной гипоксией органов.

Патология почек и эндокринной системы во многом способствуют не только электролитным сдвигам, но и гиповолемии. Причинами расстройства в этом случае могут стать избыток выведения воды и натрия, а также присутствие в моче осмотически активных веществ (глюкоза при диабете), которые «тянут» за собой значительный объем жидкости.

Обезвоживание может наступить при нарушении работы гипофиза, когда недостаток антидиуретического гормона провоцирует сильнейшую полиурию. В этом случае гиповолемия будет носить умеренный характер, так как организм теряет в первую очередь жидкость клеток и внеклеточного пространства, пытаясь сохранить объем крови предельно нормальным.

Повышенные потери плазмы при ожогах способствуют гиповолемии, а интоксикация продуктами тканевого распада усугубляет гипоксию и нарушение микроциркуляции, поэтому решение о возмещении потерянной жидкости обычно принимается врачом до того, как разовьются симптомы недостатка ОЦК.

Помимо почек, жидкость может выводиться посредством кишечника. В частности, при инфекциях, сопровождающихся профузным поносом и рвотой. Известно, что в кишечнике взрослого человека в сутки образуется около 7-7,5 литров жидкости, еще какой-то объем поступает с пищей, но лишь 2% общего содержания воды выходит с каловыми массами в норме. Несложно представить, к каким последствиям приведет нарушение реабсорбции жидкости, которая может быть выведена в считанные дни.

Особенно чувствительны к дегидратации маленькие дети, у которых кишечная инфекция может привести к появления признаков обезвоживания и гипотонии спустя 2-3 дня от момента начала заболевания. Лихорадка, обычно сопутствующая инфекциям, в немалой степени усугубляет потерю воды и способствует быстрому наступлению эксикоза.

Незаметные нам потери жидкости происходят постоянно за счет дыхания и потоотделения. Эти процессы вполне контролируются у здоровых людей и возмещаются при приеме воды в нужных количествах. Сильный перегрев в жарком климате, на производстве с действием высоких температур, выраженная лихорадка, чрезмерные физические нагрузки могут нарушить нормальный баланс жидкости в организме.

развитие гиповолемии при кровопетере

Одной из самых частых причин гиповолемии считается кровопотеря, когда кровь выходит либо во внешнюю среду, либо в просвет органа или ткань. При недостаточном объеме крови нарушается работа сердца, которое недополучает ее по венозной системе. Следующим этапом патологии становятся:

  • Неминуемое падение артериального давления, вызывающее выброс в сосуды крови из депо (печень, мышцы);
  • Снижение выведения мочи для задержки жидкости;
  • Усиление свертывающей способности крови;
  • Спазм мелких артерий и артериол.

Перечисленные процессы лежат в основе компенсации недостатка внутрисосудистой жидкости, когда организм пытается сконцентрировать в сосудах максимально возможное ее количество, задействуя резервы, а также уменьшая емкость кровяного русла за счет периферических тканей в пользу сердца, мозга, почек.

Однако компенсаторные механизмы имеют и обратную сторону: недостаточное кровоснабжение периферических тканей ведет к сильной гипоксии, закислению (ацидозу) внутренней среды, скоплению форменных элементов с микротромбообразованием.

Если не принять своевременно меры по ликвидации гиповолемии, то дальнейшее развитие событий может стать неконтролируемым и трагичным: централизация кровотока в крупных сосудах сменяется его децентрализацией, ведь ткани испытывают сильнейшую гипоксию, а затем жидкость проникает в межклеточное пространство, скапливается в депо, приводя к резкому падению ОЦК и остановке микроциркуляции. Это состояние характеризует необратимую стадию гиповолемического шока.

Таким образом, гиповолемический синдром имеет сходные механизмы развития вне зависимости от причины, его вызывающей: дисбаланс между объемом крови и сосудистого русла нарушается, затем кровоток централизуется в стадию компенсации, но со временем происходит декомпенсация с децентрализацией кровообращения и полиорганной недостаточностью на фоне стремительно прогрессирующего гиповолемического шока.

Гиповолемический шок - крайняя степень выраженности патологии, зачастую необратимая, не поддающаяся интенсивной терапии ввиду необратимости изменений в сосудах и внутренних органах. Он сопровождается резкой гипотонией, сильнейшей гипоксией и структурными изменениями в органах. Наступает острая почечная-печеночная, сердечная, дыхательная недостаточность, больной впадает в кому и погибает.

Разновидности и симптоматика при гиповолемии

В зависимости от соотношения количества крови и объема сосудистого русла различают три вида гиповолемии:

  1. Нормоцитемическая.
  2. Полицитемическая.
  3. Олигоцитемическая.

При нормоцитемическом варианте происходит равномерное снижение ОЦК за счет плазмы и форменных элементов (кровопотеря, шок, вазодилатация).

При олигоцитемической разновидности ОЦК уменьшается преимущественно за счет числа форменных элементов (гемолиз, апластическая анемия, перенесенная кровопотеря с дефицитом эритроцитов).

Полицитемическая гиповолемия сопровождается преимущественной потерей жидкости при относительной сохранности клеточного компонента крови - обезвоживание при диарее и рвоте, лихорадке, ожогах, отсутствии питьевой воды.

В ряде случаев происходит сочетание описанных вариантов гиповолемии. В частности, при обширных ожогах можно наблюдать полицитемию вследствие пропотевания плазмы из сосудов либо олигоцитемию по причине сильного гемолиза.

Клиника гиповолемии обусловлена, главным образом, колебанием артериального давления и снижением перфузии периферических тканей, испытывающих гипоксию, препятствующую адекватному выполнению функций. Выраженность симптоматики зависит от скорости развития гиповолемии и степени тяжести.


Основными симптомами снижения ОЦК считают:

  • Снижение артериального давления;
  • Резкую слабость;
  • Головокружение;
  • Боли в животе;
  • Одышку.

Объективными признаками гиповолемии будут бледность кожи или даже цианоз, учащение пульса и дыхания, гипотония и снижение активности больного, расстройства деятельности мозга разной степени выраженности.

Из-за снижения ОЦК и гипотонии нарушается терморегуляция - кожа становится прохладной, пациент испытывает чувство зябкости, даже если градусник показывает повышенную температуру. Нарастает пульс, появляются неприятные ощущения в груди, дыхание становится частым. По мере снижения давления головокружение сменяется полуобморочным состоянием, возможна потеря сознания, сопор и кома при тяжелейшем гиповолемическом шоке.

В случае с детьми признаки гиповолемического синдрома нарастают довольно быстро, особенно, у грудничков и на первых 2-3 годах жизни. Мама малыша, у которого внезапно появился понос и рвота, очень скоро заметит сильную вялость ребенка, который до болезни мог быть чрезвычайно активным, капризы сменяются апатией и сильной сонливостью, кожа становится бледной, а носогубный треугольник, кончик носа, пальчики могут приобрести синюшный оттенок.

Симптомы гиповолемии различны на разных стадиях патологии:

Тяжелая степень гиповолемического синдрома очень быстро переходит в шок, при котором резкая гипотония провоцирует потерю сознания или, наоборот, психомоторное возбуждение, характерно нарушение работы почек в виде анурии, тахикардия, тахипное или дыхание типа Чейн-Стокса.

Полицитемическая гиповолемия, помимо перечисленных выше признаков, сопровождается выраженными нарушениями гемокоагуляции в виде тромбозов мелких сосудов и прогрессирования недостаточности органов вследствие некротических процессов из-за расстройства микроциркуляции.

Лечение гиповолемического синдрома

Лечением гиповолемического синдрома занимаются реаниматологи, хирурги, специалисты ожоговых отделений, инфекционисты, которые наиболее часто сталкиваются с патологией, провоцирующей снижение ОЦК. При планировании терапии важно выяснить вид гиповолении, чтобы возместить те компоненты, в которых организм нуждается больше всего.

Гиповолемический шок - ургентное состояние, требующее срочных мер, которые должны быть предприняты еще на догоспитальном этапе. Врач «неотложки» или приемного покоя, диагностировавший гиповолемию, должен действовать соответственно алгоритму неотложной помощи, включающему:

  1. Остановку кровотечения при его наличии;
  2. Обеспечение доступа к периферической вене катетером максимального диаметра, при необходимости катетеризируются две и более вены;
  3. Налаживание быстрого внутривенного введения растворов для возмещения ОЦК под контролем давления;
  4. Обеспечение проходимости дыхательных путей и подачу дыхательной смеси с кислородом;
  5. Обезболивание по показаниям - фентанил, трамадол;
  6. Введение глюкокортикостероидов (преднизолон, дексаметазон).

Если описанные действия принесли результат, и давление достигло или даже превысило 90 мм рт. ст., то пациенту продолжают инфузионную терапию под непрерывным контролем пульса, давления, дыхания, концентрации кислорода в крови до момента передачи его в реанимационное отделение, минуя приемный покой. В случае продолжающейся тяжелой гипотонии во вводимый раствор добавляют допамин, фенилэфрин, норадреналин.

Коррекция дефицита ОЦК состоит в восполнении потерянной жидкости, устранении основного причинного фактора патологии и симптоматическом воздействии. Главная цель лечения - восстановить ОЦК , для чего применяется инфузионная терапия, способствующая максимально быстрой ликвидации гиповолемии и профилактике шока.

Медикаментозное лечение включает:

  • Инфузионные препараты - солевые растворы (физиологический раствор, раствор Рингера, ацесоль, трисоль и др.), свежезамороженная плазма, реополиглюкин, альбумин;
  • Кровезамещающие средства - эритроцитарная и тромбоцитная масса;
  • Раствор глюкозы и инсулин, вводимые внутривенно;
  • Глюкокортикостериоды (внутривенно);
  • Гепарин при диссеминированном внутрисосудистом тромбозе и в целях его профилактики при полицитемическом типе гиповолемии;
  • Аминокапроновую кислоту, этамзилат при кровотечениях;
  • Седуксен, дроперидол при выраженном психомоторном возбуждении, судорожном синдроме;
  • Контрикал для лечения и профилактики шока и гемокоагуляционных расстройств;
  • Антибиотикотерапию.

Первый этап лечения включает введение кристаллоидных солевых растворов под контролем уровня систолического давления, которое не должно быть ниже 70 мм рт. ст., иначе не будет достигнут минимальный уровень перфузии органов и мочеобразования в почках. По современным представлениям объем вводимой жидкости должен быть равным таковому при кровопотере.

Если кристаллоидов недостаточно, а давление не достигает желаемой цифры, то дополнительно вводятся декстраны, препараты на основе желатина и крахмала, свежезамороженная плазма, а также вазотоники (адреналин, норэпинефрин, допамин).

Одновременно с инфузией жидкости проводится ингаляция кислорода, при необходимости налаживается аппаратная вентиляция легких. Функция свертывающей системы поддерживается путем назначения альбумина, гепарина, аминокапроновой кислоты (в зависимости от типа нарушения гемостаза).

Хирургическое лечение состоит в остановке кровотечения, проведении экстренных вмешательств при перитоните, панкреонекрозе, кишечной непроходимости, травматических повреждениях, пневмотораксе и т. д.

Коррекция гиповолемии проводится в условиях реанимационного отделения, где есть возможность круглосуточного контроля показателей электролитного обмена, гемостаза, давления, насыщенности крови кислородом, мочевыделительной функции почек. Дозировка препаратов, соотношение и объем вводимых растворов высчитываются индивидуально для каждого пациента в зависимости от причины заболевания, сопутствующего фона и степени потери ОЦК.

Относительное постоянство объема циркулирующей крови свидетельствует, с одной стороны, о безусловной важности его для гомеостаза, а с другой - о наличии достаточно чувствительных и надежных механизмов регуляции этого параметра. О последнем свидетельствует также относительная стабильность ОЦК на фоне интенсивного обмена жидкости между кровью и зкстраваскулярным пространством. По данным Pappenheimer (1953), объем жидкости, диффундирующей из кровеносного русла в ткани и обратно в течение 1 мин, превышает величину сердечного выброса в 45 раз.

Механизмы регуляции общего объема циркулирующей крови до сих пор изучены хуже, нежели других показателей системной гемодинамики. Известно лишь, что механизмы регуляции объема крови включаются в ответ на изменения давления в различных отделах кровеносной системы и в меньшей степени на изменения химических свойств крови, в частности ее осмотического давления. Именно отсутствие специфических механизмов, реагирующих на изменения объема крови (так называемые «волюмрецепторы» являются барорецепторами), и наличие косвенных делают регуляцию ОЦК крайне сложной и многоступенчатой. В конечном итоге она сводится к двум основным исполнительным физиологическим процессам - перемещению жидкости между кровью и зкстраваскулярным пространством и изменениям выведения жидкости из организма. При этом следует учитывать, что в регуляции объема крови большая роль принадлежит изменениям содержания плазмы, нежели глобулярного объема. Кроме того, «мощность» регуляторных и компенсаторных механизмов, включающихся в ответ на гиповолемию, превышает таковую при гиперволемии, что вполне объяснимо с позиций формирования их в процессе эволюции.

Объем циркулирующей крови является весьма информативным показателем, характеризующим системную гемодинамику. Это связано в первую очередь с тем, что он определяет величину венозного возврата к сердцу и, следовательно, его производительность. В условиях гиповолемии минутный объем кровообращения находится в прямой линейной зависимости (до определенных пределов) от степени уменьшения ОЦК (Shien, Billig, 1961; С. А. Селезнев, 1971а). Однако изучение механизмов изменений ОЦК и в первую очередь генеза гиповолемии может быть успешным лишь в случае комплексного исследования объема крови, с одной стороны, и баланса внесосудистой экстра- и интрацеллюлярной жидкости, с другой; при этом необходимо учитывать обмен жидкости на участке «сосуд - ткань».

Настоящая глава посвящена анализу принципов и методов определения лишь объема циркулирующей крови. В связи с тем, что методики определения ОЦК широко освещены в литературе последних лет (Г. М. Соловьев, Г. Г. Радзивил, 1973), в том числе и в руководствах по клиническим исследованиям, нам представлялось целесообразным уделить большее внимание ряду спорных теоретических вопросов, опустив некоторые частные методические приемы. Известно, что объем крови может быть определен как прямыми, так и непрямыми методами. Прямые методы, представляющие в настоящее время лишь исторический интерес, основаны на тотальной кровопотере с последующим отмыванием трупа от оставшейся крови и определением объема ее по содержанию гемоглобина. Естественно, что эти методы не удовлетворяют требованиям, предъявляемым к физиологическому эксперименту сегодняшнего дня, и практически не используются. Иногда они применяются для определения регионарных фракций ОЦК, о чем будет сказано в главе IV.

Используемые в настоящее время непрямые методы определения ОЦК основаны на принципе разведения индикатора, который состоит в следующем. Если в кровеносное русло ввести некоторый объем (V1) вещества известной концентрации (C1) и после полного смешивания определить концентрацию этого вещества в крови (С2), то объем крови (V2) будет равен:

Сайт о медицине

Полученные результаты объема циркулирующей крови дан­ным методом составляют: для женщин - 44,72 ±1,0 мл/кг (для мужчин - 45,69± 1,42 мл/кг). Причинами ошибок данного метода могут быть: присутствие жира в плазме, введение части красителя под кожу, выраженный гемолиз эритроцитов. По возможности этих ошибок следует избегать.

Общими недостатками описанных методов являются следую­щие: при нарушениях центральной и периферической гемодина­мики время перемешивания индикатора в сосудистом русле мо­жет сильно варьировать. Особенно этот процесс зависит от состо­яния микроциркуляции в органах и тканях. Кроме того, в условиях нормы (к примеру, в печени) и особенно патологии (выраженные степени гипоксии) нарушается проницаемость сосудистой стенки различных регионарных зон для белка. Часть белка уходит из сосу­дистого русла, что дает завышенные результаты ОЦК.

В - отношение центрального венозного давления (ЦВД) к нормальному ЦВД;

Т - степень растяжимости сосудистой стенки, определяемая по сроку исчезновения белого пятна, возникающего при сдавле - нии ногтевого ложа пальцев кисти (с).

Гематокритный метод Филлипса-Пожарского основан на том, что чем меньше объем крови у больного, тем больше снижа­ется показатель гематокрита после введения полиглюкина.

Из расчетных методов определения ОЦК нужно указать на метод Сидоры (по весовой части, гематокриту, массе тела), метод опреде­ления глобулярного объема по номограмме Староверова с соавт., 1979, определение ОЦК по гематокриту и массе тела с помощью номографа Покровского (Л. В. Усенко, 1983).

Описанные методы, к сожалению, не дают представления об изменениях ОЦК в реальном масштабе времени, что особенно важно для реаниматолога при проведении коррекции. В этом отно­шении все большее внимание привлекают современные компью­теризированные системы для определения ОЦК. Так, НПО «Эльф» (г. Саратов) разработала серию приборов: «Д-индикатор», «Инди­катор ДЦК» (индикатор дефицита циркулирующей крови), рабо­тающие совместно с любым IBM-совместимым компьютером и позволяющие всего за 3 минуты определить гематокрит, ОЦК в % и мл, вычислить дефицит ОЦК от должного. Малые объемы крови (1,5-3 мл) позволяют контролировать динамику ОЦК, что очень важно для тактики инфузионной терапии.

Определение объема циркулирующей крови

Постоянство объема циркулирующей крови обусловливает стабильность кровообращения и связано со многими функциями организма, в конечном счете определяющими его гомеостаз.

Гомеостаз - относительное динамическое постоянство внутренней среды (крови, лимфы, тканевой жидкости) и устойчивость основных физиологических функций организма.

Объем циркулирующей крови (ОЦК) можно измерить, определив отдельно объем всех циркулирующих эритроцитов (ОЦЭ) и объем всей плазмы крови (ОЦП) и сложив обе величины: ОЦК=ОЦЭ+ОЦП. Однако достаточно вычислить лишь одну из этих величин, а ОЦК подсчитать, основываясь на показаниях гематокрита.

Из курса физиологии

Гематокрит - прибор для определения отношения объема форменных элементов крови к объему плазмы. В норме плазма - 53 - 58%, форменные элементы - 42 - 47%.

Методы определения объема плазмы и эритроцитов основаны на принципе разведения в крови введенного в сосудистое русло РФП.

Схема радиодиагностического анализа,

основанного на принципе оценки степени разведения РФП

Исследуемый объем = Активность введенного препарата/Активность пробы

Представим, что надо установить объем жидкости, налитой в сосуд. Для этого в него вводят точно измеренное количество индикатора (например, красителя). После равномерного размешивания (разведения!) берут такой же объем жидкости и определяют в нем количество красителя. По степени разведения красителя легко вычислить объем жидкости в сосуде. Для определения ОЦЭ больному вводят внутривенно 1 мл эритроцитов, меченых 51 Сr (активностью 0,4 МБк). Метку эритроцитов проводят в свежезаготовленной 0(1) резус-отрицательной консервированной крови путем введения в нее 20 - 60 МБк стерильного раствора хромата натрия.

Через 10 мин после введения меченых эритроцитов берут пробу крови из вены противоположной руки и подсчитывают активность этой пробы в колодезном счетчике. К этому сроку меченые эритроциты равномерно распределены в периферической крови. Радиоактивность 1 мл пробы крови будет настолько ниже радиоактивности 1 мл введенных меченых эритроцитов, насколько количество последних меньше числа всех циркулирующих эритроцитов.

Объем всей массы эритроцитов, циркулирующих в крови, вычисляют по формуле: ОЦЭ = N/n , где N - общая радиоактивность введенных эритроцитов; n - активность пробы 1 мл эритроцитов.

Сходным образом определяют ОЦП. Только для этого внутривенно вводят не меченые эритроциты, а человеческий сывороточный альбумин, меченный 99тТс, активностью 4 МБк.

В клинике принято рассчитывать ОЦК относительно массы тела больного. ОЦК у взрослых людей в норме равен 65 - 70 мл/кг. ОЦП - 40 - 50 мл/кг, ОЦЭ - 20 - 35 мл/кг.

Больному ввели меченые эритроциты в количестве 5 мл. Радиоактивность 0,01 мл исходного раствора - 80 имп/мин. Радиоактивность 1 мл эритроцитов в крови, полученной через 10 мин после инъекции радионуклида, равна 20 имп/мин. Показатель венозного гематокрита у больного - 45%. Определите ОЦЭ и ОЦК.

По мере развития сердечной недостаточности ОЦК неуклонно возрастает, главным образом за счет плазмы, тогда как ОЦЭ остается нормальным или даже снижается. Раннее выявление гиперволемии позволяет своевременно включить ряд лекарственных средств (в частности, диуретиков) в систему лечения таких больных и корректировать проведение лекарственной терапии. Плазмопотеря является одним из важных звеньев развития шока, и ее учитывают при назначении интенсивной терапии.

Справочники, энциклопедии, научные труды, общедоступные книги.

Патофизиология системы крови

Система крови включает органы кроветворения и кроверазрушения, циркулирующую и депонированную кровь. Система крови: костный мозг, тимус, селезенка, лимфатические узлы, печень, циркулирующая и депонированная кровь. На кровь у взрослого здорового человека приходится в среднем 7% массы тела. Важным показателем системы крови является объем циркулирующей крови (ОЦК), суммарный объем крови, находящейся в функционирующих кровеносных сосудах. Около 50% всей крови может храниться вне кровотока. При повышении потребности организма в кислороде или уменьшении количества гемоглобина в крови в общую циркуляцию поступает кровь из депо крови. Основные депо крови - селезёнка , печень и кожа . В селезёнке часть крови оказывается выключенной из общей циркуляции в межклеточных пространствах, здесь она сгущается, Таким образом, селезенка является основным депо эрит­роцитов. Обратное поступление крови в общий кровоток осуществляется при сокращении гладкой мускулатуры селезёнки. Кровь, находящаяся в сосудах печени и сосудистом сплетении кожи (у человека до 1 л), циркулирует значительно медленнее (в 10-20 раз), чем в других сосудах. Поэтому кровь в данных органах задерживается, т. е. они также являются резервуарами крови. Роль депо крови выполняет вся венозная система и в наибольшей степени вены кожи.

Изменения объема циркулирующей крови (оцк) и соотношений между оцк и количеством форменных элементов крови.

ОЦК взрослого человека - достаточно постоянная величина, составляет 7-8% от массы тела, зависит от пола, возраста и содержания в организме жировой ткани. Соотношение объемов форменных элементов и жидкой части крови называется гематокритом. В норме гематокрит мужчины равен 0,41-0,53, женщины - 0,36-0,46. У новорождённых гематокрит примерно на 20 % выше, у маленьких детей - примерно на 10 % ниже, чем у взрослого. Гематокрит повышен при эритроцитозах, снижен при анемиях.

Нормоволемия - (ОЦК) в норме.

Нормоволемия олигоцитемическая (нормальный ОЦК c уменьшенным количеством форменных элементов) – характерна для различных по происхождению анемий, сопровождается снижением гематокрита.

Нормоволемия полицитемическая (нормальный ОЦК с увеличенным количеством клеток, гематокрит повышен) развивается вследствие избыточной инфузии эритроцитарной массы; активации эритропоэза при хронической гипоксии; опухолевом размножении клеток эритроидного ряда.

Гиперволемия – ОЦК превышает среднестатистические нормы.

Гиперволемия олигоцитемическая (гидремия, гемодилюция) - возрастание объема плазмы, разведение клеток жидкостью, развивается при почечной недостаточности, гиперсекреции антидиуретического гормона, сопровождается развитием отеков. В норме олигоцитемическая гиперволемия развивается во второй половине беременности, когда гематокрит снижается до 28-36%. Такое изменение повышает скорость плацентарного кровотока, эффективность трансплацентарного обмена (это особенно существенно для поступления СО 2 из крови плода в кровь матери, так как разность концентраций этого газа очень небольшая).

Гиперволемия полицитемическая – увеличение объема крови главным образом из-за повышения числа форменных элементов крови, поэтому гематокрит повышен.

Гиперволемия приводит к увеличению нагрузки на сердце, увеличению сердечного выброса, повышению артериального давления.

Гиповолемия – ОЦК меньше среднестатистических норм.

Гиповолемия нормоцитемическая – уменьшение объема крови с сохранением объема клеточной массы, наблюдается в течение первых 3-5 часов после массивной кровопотери.

Гиповолемия полицитемическая – снижение ОЦК за счет потери жидкости (дегидратация) при диарее, рвоте, обширных ожогах. Артериальное давление при гиповолемической полицитемии снижается, массивная потеря жидкости (крови) может привести к развитию шока.

Кровь состоит из форменных элементов (эритроцитов, тромбоцитов, лейкоцитов) и плазмы. Гемограмма (греч. haima кровь + gramma запись) - клинический анализ крови, включает данные о количестве всех форменных элементов крови, их морфологических особенностях, скорости оседания эритроцитов (СОЭ), содержании гемоглобина, цветном показателе, гематокрите, среднем объеме эритроцитов (MCV), среднем содержании гемоглобина в эритроците (MCH), средней концентрации гемоглобина в эритроците (MCHC).

Гемопоэз (кроветворение)у млекопитающих осуществляется кроветворными органами, прежде всегокрасным костным мозгом. Некоторая часть лимфоцитов развивается в лимфатических узлах, селезёнке, вилочковой железе (тимусе).

Сущность процесса кроветворения заключается в пролиферации и поэтапной дифференцировке стволовых клеток в зрелые форменные элементы крови.

В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток. Всего в схеме кроветворения различают VI классов клеток: I – стволовые кроветворные клетки (СКК); II – полустволовые; III – унипотентные; IV – бластные; V – созревающие; VI – зрелые форменные элементы.

Характеристика клеток различных классов схемы кроветворения

Класс I – Предшественниками всех клеток являются плюрипотентные гемопоэтическиестволовые клетки костного мозга. Содержание стволовых клеток не превышает в кроветворной ткани долей процента. Стволовые клетки дифференцируются по всем росткам кроветворения (это и означает плюрипотентность); они способны к самоподдержанию, пролиферации, циркуляции в крови, миграции в другие органы кроветворения.

Класс II – полустволовые,ограниченно полипотентные клетки– предшественницы: а) миелопоэза; б) лимфоцитопоэза. Каждая из них дает клон клеток, но только миелоидных или лимфоидных. В процессе миелопоэза образуются все форменные элементы крови, кроме лимфоцитов - эритроциты, гранулоциты, моноциты и тромбоциты. Миелопоэз происходит в миелоидной ткани, расположенной в эпифизах трубчатых и полостях многих губчатых костей. Ткань, в которой происходит миелопоэз, называется миелоидной. Лимфопоэз происходит в лимфатических узлах, селезёнке,тимусеи костном мозге.

Класс III –унипотентные клетки-предшественницы, они могут дифференцироваться только в одном направлении, при культивировании этих клеток на питательных средах они образуют колонии клеток одной линии, поэтому их называют также колониеобразующими единицами(КОЕ).Частота деления этих клеток и способность дифференцироваться дальше зависят от содержания в крови особых биологически активных веществ – поэтинов, специфичных для каждого ряда кроветворения. Эритропоэтин – регулятор эритропоэза, гранулоцитарно-моноцитарный колониестимулирующий фактор (ГМ-КСФ) регулируют продукцию нейтрофилов и моноцитов, гранулоцитарный КСФ (Г-КСФ) регулирует образование нейтрофилов.

В этом классе клеток существует предшественник В-лимфоцитов, предшественник Т-лимфоцитов.

Клетки трех названных классов схемы кроветворения, морфологически нераспознаваемые, существуют в двух формах: бластной и лимфоцитоподобной. Бластную форму приобретают делящиеся клетки, находящиеся в фазе синтеза ДНК.

Класс IV – морфологически распознаваемых пролиферирующихбластных клеток, начинающих отдельные клеточные линии: эритробласты, мегакариобласты, миелобласты, монобласты, лимфобласты. Эти клетки крупные, имеют большое рыхлое ядро с 2–4 ядрышками, цитоплазма базофильная. Часто делятся, дочерние клетки все вступают на путь дальнейшей дифференцировки.

Класс V – класссозревающих(дифференцирующихся) клеток, характерных для своего ряда кроветворения. В этом классе может быть несколько разновидностей переходных клеток – от одной (пролимфоцит, промоноцит) до пяти – в эритроцитарном ряду.

Класс VI –зрелые форменные элементы кровис ограниченным жизненным циклом. Только эритроциты, тромбоциты и сегментоядерные гранулоциты являются зрелыми конечными дифференцированными клетками. Моноциты – не окончательно дифференцированные клетки. Покидая кровеносное русло, они дифференцируются в тканях в конечные клетки – макрофаги. Лимфоциты при встрече с антигенами превращаются в бласты и снова делятся.

Гемопоэз на ранних стадиях развития эмбрионов млекопитающих начинается в желточном мешке, продуцирующем эритроидные клетки примерно с 16-19 дня развития, и прекращается после 60-го дня развития, после чего функция кроветворения переходит к печении начинается лимфопоэз в тимусе. Последним из кроветворных органов в онтогенезе развивается красный костный мозг, играющий главную роль в гемопоэзе взрослых особей. После окончательного формирования костного мозга гемопоэтическая функция печени угасает.

Большинство циркулирующих форменных элементов крови составляют эритроциты – красные безъядерные клетки, их в 1000 раз больше, чем лейкоцитов; поэтому: 1) гематокрит зависит от количества эритроцитов; 2)СОЭ зависит от количества эритроцитов, их величины, способности к образованию агломератов, от температуры окружающей среды, количества белков плазмы крови и соотношения их фракций. Повышенное значение СОЭ может быть при инфекционных, иммунопатологических, воспалительных, некротических и опухолевых процессах.

В норме количество эритроцитов в 1л крови у мужчин - 4,0-5,010 12 , у женщин -3,7-4,710 12 .У здорового человека эритроциты в 85% имеют форму диска с двояковогнутыми стенками, в 15% - другие формы. Диаметр эритроцита 7-8мкм. Наружная поверхность клеточной мембраны содержит молекулы, определяющие группу крови, и другие антигены. Содержание гемоглобина в крови у женщин составляет 120-140г/л , у мужчин - 130-160г/л . Уменьшение числа эритроцитов характерно для анемий, увеличение - называется эритроцитозом (полицитемией). В крови взрослых содержится 0,2-1,0% ретикулоцитов.

Ретикулоциты - это молодые эритроциты с остатками РНК, рибосом и других органелл, выявляемых при специ­альной (суправитальной) окраске в виде гранул, сетки или нитей. Ретикулоциты образуются из нормоцитов в костном моз­ге, после чего поступают в перифе­рическую кровь.

При ускорении эритропоэза доля ретикулоцитов возраста­ет, а при замедлении снижается. В случае усиленного разрушения эритроцитов доля ре­тикулоцитов может превышать 50%. Резкое увеличение эритропоэза сопровождается появлением в крови ядерных эритроидных клеток (эритрокариоцитов) – нормоцитов, иногда даже эритробластов.

Рис. 1. Ретикулоциты в мазке крови.

Основная функция эритроцита состоит в транспорте кислорода от легочных альвеол к тканям и двуокиси углерода (СО 2) – обратно из тканей к легочным альвеолам. Двояковогнутая форма клетки обеспечивает наибольшую площадь поверхности газообмена, позволяет ей значительно деформироваться и проходить через капилляры с просветом 2-3 мкм. Такая способность к деформации обеспечивается за счет взаимодействия между белками мембраны (сегмент 3 и гликофорин) и цитоплазмы (спектрин, анкирин и белок 4.1). Дефекты этих белков ведут к морфологическим и функциональным нарушениям эритроцитов. Зрелый эритроцит не имеет цитоплазматических органелл и ядра и поэтому не способен к синтезу белков и липидов, окислительному фосфорилированию и поддержанию реакций цикла трикарбоновых кислот. Он получает большую часть энергии через анаэробный путь гликолиза и сохраняет ее в виде АТФ. Приблизительно 98% массы белков цитоплазмы эритроцита составляет гемоглобин (Hb), молекула которого связывает и транспортирует кислород. Длительность жизни эритроцитов 120 дней. Наиболее устойчивы к воздействиям молодые клетки. Постепенное старение клетки или ее повреждение приводит к появлению на ее поверхности «белка старения» - своеобразной метки для макрофагов селезенки и печени.

ПАТОЛОГИЯ «КРАСНОЙ» КРОВИ

Анемия - это снижение концентрации гемоглобина в единице объема крови, чаще всего при одновременном уменьшении числа эритроцитов.

Различные виды анемий выявляются у 10-20% населения, в большинстве случаев у женщин. Наиболее часто встречаются анемии, связанные с дефицитом железа (около 90% всех анемий), реже анемии при хронических заболеваниях, еще реже анемии, связанные с дефицитом витамина В12 или фолиевой кислоты, гемолитические и апластические.

Общие признаки анемий являются следствием гипоксии: бледность, одышка, сердцебиение, общая слабость, быстрая утомляемость, снижение работоспособности. Снижение вязкости крови объясняет возрастание СОЭ. Появляются функциональные шумы в сердце вследствие турбулентного тока крови в крупных сосудах.

В зависимости от выраженности снижения уровня гемоглобина выделяют три степени тяжести анемии: легкая- уровень гемоглобина выше 90 г/л;средняя- гемоглобин в пределахг/л;тяжелая- уровень гемоглобина менее 70 г/л.

Для продолжения скачивания необходимо собрать картинку:

Объем циркулирующей крови

Объем циркулирующей крови

У раз­личных субъектов в зависимости от пола, возраста, телосложения, условий жизни, степени физического развития и тренированности Объем Крови на 1 кг массы тела колеблется и составляет от 50 до 80 мл/кг.

Этот показатель в условиях физиологической нормы у индивидуума весьма постоянен.

Объем крови у мужчины массой 70 кг составляет примерно 5,5 л (75-80 мл/кг),

у взрослой женщины он несколько меньше (около 70 мл/кг).

У здорового человека, находящегося в лежачем положении 1-2 недели, объем крови может снизиться на 9- 15% от исходного.

Из 5,5 л крови у взрослого мужчины 55-60%, т.е. 3.0-3.5 л, при­ходится на долю плазмы, остальное количество - на долю эритро­цитов.

В течение суток по сосудам циркулирует около л крови.

Из этого количества приблизительно 20 л выходит в течение суток из капилляров в ткань в результате фильтрации и возвращается вновь (путем абсорбции) через капилляры (л) и с лимфой (2-4 л). Объем жидкой части крови, т.е. плазмы (3-3.5 л), существенно меньше, чем объем жидкости во внесосудистом интерстициальном пространстве (9- 12 л) и во внутриклеточном пространстве тела (27-30 л); с жидкостью этих «пространств» плазма находится в динами­ческом осмотическом равновесии (подробнее см.главу 2).

Общий объем циркулирующей крови (ОЦК) условно делят на его часть, активно циркулирующую по сосудам, и часть, которая не участвует в данный момент в кровообращении, т.е. депонированную (в селезенке, печени, почке, легких и др.), но быстро включаемую в циркуляцию при соответствующих гемодинамических ситуациях. Считается, что количество депонированной крови более чем в два раза превышает объем циркулирующей. Депонированная кровь не находится в состоянии полного застоя, некоторая ее часть все время включается в быстрое передвижение, а соответствующая часть бы­стро движущейся крови переходит в состояние депонирования.

Уменьшение или увеличение объема циркулирующей крови у нормоволюмического субъекта на 5- 10% компенсируется изменением емкости венозного русла и не вызывает сдвигов ЦВД. Более зна­чительное увеличение ОЦК обычно сопряжено с увеличением ве­нозного возврата и при сохранении эффективной сократимости сердца приводит к увеличению сердечного выброса.

Важнейшими факторами, от которых зависит объем крови, явля­ются:

1) регуляция объема жидкости между плазмой и интерстициальным пространством,

2) регуляция обмена жидкости между плаз­мой и внешней средой (осуществляется, главным образом, почками),

3) регуляция объема эритроцитной массы.

Нервная регуляция этих трех механизмов осуществляется с помощью:

1) предсердных рецепторов типа А, реагирующих на изменение давления и, следовательно, яв­ляющихся барореиепторами,

2) типа В - реагирующих на растяже­ние предсердий и весьма чувствительных к изменению объема в них крови.

Существенное влияние на объем кропи оказывает инфузия различ­ных растворов. Вливание в вену изотонического раствора хлорида натрия не повышает длительно объем плазмы на фоне нормального объема крови, так как образующийся в организме избыток жидкости быстро выводится путем усиления диуреза. При дегидратации и дефи­ците солей в организме указанный раствор, введенный в кровь в адекватных количествах, быстро восстанавливает нарушенное равнове­сие. Введение в кровь 5% растворов глюкозы и декстрозы вначале увеличивает содержание воды в сосудистом русле, однако следующим этапом является усиление диуреза и перемещение жидкости сначала в интерстициальное, а затем в клеточное пространство. Внутривенное введение растворов высокомолекулярных декстранов на длительный период (доч) повышает объем циркулирующей крови.

Что такое оцк

объём циркулирующей крови

основной цифровой канал

отраслевой центр компетенций;

отраслевой центр компетенции

обратимый цикл Карно

областной центр крови

отбивка цементного кольца

Объединенное центральное командование

Словарь: С. Фадеев. Словарь сокращений современного русского языка. - С.-Пб.: Политехника, 1997. - 527 с.

Словарь сокращений и аббревиатур. Академик. 2015 .

Смотреть что такое «ОЦК» в других словарях:

ОЦК - Кубическая сингония; ОЦК Объём циркулирующей крови. Сокращение, принятое в медицинской литературе; ОЦК Основной цифровой канал. Сокращение, принятое в телекоммуникационной отрасли, в телефонии … Википедия

ОЦК - объёмно центрированная кубическая (ячейка) объём циркулирующей крови … Словарь сокращений русского языка

объемноцентрированная кубическая (ОЦК) решетка (К8) - пространствен решетка с элементарной ячейкой в виде куба, в вершинах и центре объема которого находятся атомы. Объемноцентрированная кубическая решетка относится к кубической сингонии (Смотри Кристалл);… … Энциклопедический словарь по металлургии

Кровопотеря - состояние организма, возникающее вслед за кровотечением, характеризующееся развитием ряда приспособительных и патологических реакций. Кровопотери классифицируются: по виду: травматическая (раневая, операционная), патологическая (при заболевании,… … Словарь черезвычайных ситуаций

Кровопотеря - патологический процесс, развивающийся вследствие кровотечения и характеризующийся комплексом патологических и приспособительных реакций на снижение объёма циркулирующей крови (ОЦК) и гипоксию, вызванную снижением транспорта кровью кислорода.… … Википедия

Ожо́говый шок - клинический синдром, возникающий при глубоких ожогах, занимающих у взрослых более 15% поверхности тела, а у детей от 5 10%. В основе его патогенеза лежат боль и перераздражение ц.н.с., большая плазмопотеря, сгущение крови, образование токсических … Медицинская энциклопедия

ШОК ГЕМОРРАГИЧЕСКИЙ - мед. Геморрагический шок разновидность гиповолемического шока. Последний также возникает при ожогах и дегидратации. Классификация Лёгкой степени (потеря 20% ОЦК) Средней степени (потеря 20 40% ОЦК) Тяжёлой степени (потеря более 40% ОЦК).… … Справочник по болезням

УПАКОВКИ ПЛОТНЕЙШИЕ - УПАКОВКИ ПЛОТНЕЙШИЕ, в кристаллографии (см. КРИСТАЛЛОГРАФИЯ), формы расположения атомов в кристаллической решетке, которые характеризуются наибольшим числом атомов в единице объема кристалла. Для устойчивости кристаллической структуры требуется… … Энциклопедический словарь

КРОВОТЕЧЕНИЕ ЖЕЛУДОЧНО-КИШЕЧНОЕ - мед. Желудочно кишечное кровотечение кровотечение в полость желудка или двенадцатиперстной кишки. Причины Язвенная болезнь 71,2% Варикозное расширение вен пищевода 10,6% Геморрагический гастрит 3,9% Рак и лейомиома желудка 2,9% Прочие:… … Справочник по болезням

Мы используем куки для наилучшего представления нашего сайта. Продолжая использовать данный сайт, вы соглашаетесь с этим. Хорошо

Чурсин В.В. Клиническая физиология кровообращения (методические материалы к лекциям и практическим занятиям)

Информация

Методические материалы к лекциям и практическим занятиям

Содержит информацию о физиологии кровообращения, нарушениях кровообращения и их вариантах. Также представлена информация о методах клинической и инструментальной диагностики нарушений кровообращения.

Введение

Более образно это можно представить в следующем виде (рисунок 1).

Приспособительные реакции обеспечивают компенсацию, а патологические реакции обуславливают декомпенсацию страдающего органа или страдающей системы. В общем виде отличием (границей) между нормой и приспособлением является изменение свойств приспосабливающего органа или приспосабливающейся системы.

Кровообращение – определение, классификация

Основными задачами кровообращения являются:

1-м элементом является сердце, которое представляется как насос;

2 - аорта и крупные артерии, имеют много эластических волокон, представляются как буферные сосуды, благодаря им резко пульсирующий кровопоток превращается в более плавный;

3 - прекапиллярные сосуды, это мелкие артерии, артериолы, метартериолы, прекапиллярные жомы (сфинктеры), имеют много мышечных волокон, которые могут существенно изменить свой диаметр (просвет), они определяют не только величину сосудистого сопротивления в малом и большом кругах кровообращения (поэтому и называются резистивными сосудами), но и распределение кровопотока;

4 - капилляры, это обменные сосуды, при обычном состоянии открыто 20-35% капилляров, они образуют обменную поверхность вкв.м., при физической нагрузке максимальное количество открытых капилляров может достигать 50-60%;

5 - сосуды - шунты или артериоло-венулярные анастомозы, обеспечивают сброс крови из артериального резервуара в венозный, минуя капилляры, имеют значение в сохранении тепла в организме;

6 - посткапиллярные сосуды, это собирательные и отводящие венулы; в

7 - вены, крупные вены, они обладают большой растяжимостью и малой эластичностью, в них содержится большая часть крови (поэтому и называются емкостными сосудами), они определяют "венозный возврат" крови к желудочкам сердца, их заполнение и (в определенной мере) ударный объём (УО).

8 – объем циркулирующей крови (ОЦК) – совокупность содержимого всех сосудов.

Объем циркулирующей крови (ОЦК)

Необходимо чётко представлять, что ОЦК является «жидким слепком сосудистой системы» - сосуды не бывают полупустыми. Ёмкость сосудистой системы может изменяться в достаточно больших пределах, в зависимости от тонуса артериол, количества функционирующих капилляров, степени сдавления вен окружающими тканями («наполненность» интерстиция и тонус мышц) и степенью растянутости свободно расположенных вен брюшной полости и грудной клетки. Разница в ОЦК, определяемая изменением состояния вен, предположительно составляет примерномл у взрослого человека (А.Д.Ташенов, В.В.Чурсин, 2009г.). Мнение, что венозная система может вместить, кроме ОЦК, еще 7-10 литров жидкости, можно считать ошибочным, так как излишняя жидкость достаточно быстро перемещается в интерстиций. Депо ОЦК в организме является интерстициальное пространство, резервная-мобильная емкость которого составляет примерно ещё 1 литр. При патологии интерстиций способен принять около 5-7 литров жидкости без формирования внешне видимых отеков (А.Д.Ташенов, В.В.Чурсин, 2009г.).

Особенностью интерстициальных отеков при некорректной инфузионной терапии является то, что жидкость при быстром поступлении в организм прежде всего уходит в наиболее «мягкие» ткани – мозг, легкие и кишечник.

Из-за спазма легочных артериол при дальнейшей избыточной инфузии наступает объемная перегрузка правых отделов сердца, в первую очередь правого желудочка. При его чрезмерной перегрузке в действие вступает рефлекс Ярошевича. Импульсы с рецепторов легочных артерий, возбуждающе действуя на мускулатуру в устьях полых вен, суживают их, предотвращая таким образом переполнение правых отделов сердца.

Во-первых ухудшается отток в правое предсердие значительной части крови из коронарных вен. Затруднение оттока по коронарным венам приводит к затруднению притока крови по коронарным артериям и доставки кислорода к миокарду (боль в области сердца).

Во-вторых, может возникнуть рефлекс Бейнбриджа (подробнее - раздел регуляции кровообращения), он вызывает тахикардию, которая всегда увеличивает потребность миокарда в кислороде.

У лиц со скрытой коронарной недостаточностью (что почти никогда не выявляется у больных перед операцией из-за недостаточного обследования) и у лиц с явной ишемической болезнью сердца (ИБС) все это может обусловить возникновение острой коронарной недостаточности вплоть до возникновения острого инфаркта миокарда (ОИМ) с дальнейшим развитием острой сердечной лево-желудочковой недостаточности (ОСЛН).

Если компенсаторные возможности коронарного кровообращения не скомпрометированы и не реализуется рефлекс Бейнбриджа, то дальнейшая объемная перегрузка приводит к растяжению полых вен. При этом с рецепторов, расположенных в устьях полых вен, импульсация поступает к центрам осморегуляции в гипоталамусе (супраоптическое ядро). Уменьшается секреция вазопрессина, приводящая к полиурии (выделению мочи более 2000 мл/сут), что отмечается утром дежурным врачом (и, как правило, безотчётливо) – больной спасает себя. Хорошо, если у больного регуляция водного баланса не нарушена и почки функционируют, в противном случае больной будет «утоплен» с благими намерениями.

По современным представлениям отмечаются следующие приспособительные изменения функции сердечно-сосудистой системы.

Когда ОЦК снижается на 10-20%, то такая кровопотеря представляется компенсируемой. При этом первой приспособительной реакцией является уменьшение емкости венозных сосудов за счёт сдавления их окружающими тканями. Вены из округлых становятся сплющенными или почти полностью спадаются, и таким образом емкость сосудов приспосабливается к изменившемуся объему циркулирующей крови. Венозный приток крови к сердцу и его УО поддерживаются на прежнем уровне. Компенсаторную реакцию организма можно сравнить с ситуацией, когда содержимое неполной 3-х литровой банки переливают в 2-х литровую и она оказывается полной.

С уменьшением ОЦК до 25-30% (а это уже потеря растягивающей части ОЦК - V) кровопотеря представляется не компенсируемой за счёт критического уменьшения ёмкости венозной системы. Начинает уменьшаться венозный приток к сердцу и страдает УО. При этом развивается приспособительная (компенсаторная) тахикардия. Благодаря ей поддерживается достаточный уровень сердечного выброса (СВ за минуту = МСВ) за счёт уменьшенного УО и более частых сердечных сокращений. Одновременно с тахикардией развивается сужение периферических артериальных сосудов – централизация кровообращения. При этом ёмкость сосудистой системы значительно уменьшается, подстраиваясь под уменьшенный ОЦК. При сниженном УО и суженных периферических артериальных сосудах поддерживается достаточный уровень среднего артериального давления (АДср) в сосудах, направляющих кровь к жизненно важным органам (мозг, сердце и лёгкие). Именно от величины АДср зависит степень перфузии того или иного органа. Таким образом, развивается приспособительная централизация кровообращения за счет уменьшения кровоснабжения периферических тканей (кожа, скелетные мышцы и т.д.). Эти ткани могут переживать ишемию (I фазу нарушения микроциркуляции) и кислородную недостаточность в течение более продолжительного времени.

Эта реакция аналогична процессу воспаления, при котором организм, образуя грануляционный вал и отторгая омертвевшее, жертвует частью во имя сохранения целого.

Когда ОЦК снижается более чем на 30-40% и восполнение кровопотери задерживается, то такая кровопотеря переходит в разряд некомпенсированной и может стать необратимой. При этом несмотря на тахикардию, СВ уменьшается и снижается АДср. Из-за недостаточного транспорта кислорода в организме усиливается метаболический ацидоз. Недоокисленные продукты метаболизма парализуют прекапиллярные сфинктеры, но периферический кровоток не восстанавливается из-за сохраняющегося спазма посткапиллярных сфинктеров.

Наступает несостоятельность тканевой перфузии. Во всех случаях затянувшегося синдрома малого СВ присоединяется преренальная анурия. Всё это клиническая форма шока с классической триадой: синдром сниженного СВ, метаболический ацидоз, преренальная анурия. При этом во многих органах, как отмечает профессор Г.А.Рябов, "наступают необратимые изменения и даже последующее восполнение кровопотери и восстановление ОЦК не всегда предотвращает смертельный исход из-за осложнений, связанных с необратимыми изменениями в некоторых органах" – развивается полиорганная недостаточность (ПОН) или мультиорганная дисфункция (МОД).

Таким образом, при абсолютном снижении ОЦК практически любого происхождения границей перехода приспособления в декомпенсацию является увеличение частоты сердечных сокращений (ЧСС) с одновременным снижением СВ и АДср.

Основные свойства и резервы крови

1. Ньютоновские: однородные жидкости (например - вода).

Одним из наиболее важных свойств жидкости является ее текучесть.

Используя вязкость как характеристику, жидкости можно разделить на:

Обладающие вязкостью, не зависящей от скорости перемещения жидкости;

Вязкость увеличивается при уменьшении скорости перемещения жидкости.

Кровь представляется неньютоновской жидкостью - суспензией. Поэтому вязкость крови значительно увеличивается при замедлении кровотока. В норме замедление перемещения крови отмечается в капиллярах, однако капиллярный кровоток не нарушается.

В капилляре иная форма кровотока. Форменные элементы крови продвигаются по осевой линии по одиночке и отделенными друг от друга "столбиками" плазмы. Плазма крови , хоть и содержит белковые молекулы и другие вещества, ближе к ньютоновской жидкости . Такое свойство плазмы способствует поддержанию нормального кровотока в капиллярах. В целом эта естественная особенность капиллярного кровообращения подсказывает дополнительный элемент к терапии больного с патологическим замедлением перемещения крови при сердечной, сосудистой, сердечно-сосудистой недостаточности.

Наиболее важным резервом крови является гораздо больше, чем необходимое тканям содержание О 2 в артериальной крови. Резерв О 2 таков, что ткани могут получать его если кровоток уменьшится примерно в 3 раза. То есть коэффициент безопасности по кислороду равен 3, по глюкозе - 3, по аминокислотам - 36 и т.д. Это означает, что если кровотоком тканям доставляются достаточное количество кислорода, то "автоматически" обеспечивается доставка и других веществ: глюкозы, аминокислот и т.д.

Сердечно-сосудистая система

1. Обеспечение транспорта крови. Это связано, прежде всего, с работой сердца. Оно обеспечивает УО, СВ, оно обеспечивает энергией объемный поток крови (ОПК), в результате чего создается давление (Р) крови в начале сосудистой системы малого (Рл.а.) и большого (Ра) кругов кровообращения.

2. Распределение кровотока по сосудам органов и тканей в соответствии с интенсивностью их работы. Это связано с работой резистивных сосудов.

Эффективность кровообращения органов и тканей обеспечивается свойствами и резервами крови, ОЦК, возможностями общего и местного кровотока.

Сердце

В 1980-е г.г. профессором Б.А.Константиновым и его сотрудниками В.А.Сандриковым, В.Ф.Яковлевым внесены существенные поправки в представление о сокращении и расслаблении сердца.

Их клинические исследования показали, что систола сердца начинается с систолы предсердий. Систола предсердий асинфазна (раньше сокращается правое, позже левое предсердия). При этом глубокие мышцы в устьях полых и легочных вен, сокращаясь и суживая просвет вен изолируют вены от полостей сердца, а также препятствуют току крови и передаче давления в вены.

Под давлением предсердной порции крови (12-18 см3 или 16-20% от УО) открываются створки атриовентрикулярных клапанов (трехстворчатого, митрального).

Кроме того, систола предсердий играет роль в начальном повышении внутрижелудочкового давления. Сокращение правого предсердия повышает давление в желудочке до 9-12, а левого предсердия – домм Hg.

С систолой предсердий фактически начинается (1) период повышения внутрижелудочкового давления. В этом периоде различаются две фазы.

(1.1.) Фаза внутрижелудочкового перемещения крови.

Вместе с сокращением наружной косой и внутренней прямой мышц трабекулы и сосочковые мышцы сближаются. Поэтому створки атриовентрикулярных клапанов сближаются, а их свободные края остаются направленными в полость желудочков. Это позволяет сохранять единую полость предсердие-желудочек и предупреждать регургитацию (возврат) крови из желудочка (ов) в предсердия благодаря конусообразному или воронкообразному расположению створок клапанов с образованными верхушками, которые обращены в полость желудочков.

Во время внутрижелудочкового перемещения крови многочисленными замерами было установлено непрерывное увеличение (или приращение) внутрижелудочкового давления.

(1.2.) Развивается фаза изоволемического повышения внутрижелудочкового давления.

Сокращение - укорочение и утолщение волокон средней циркулярной мышцы увеличивает кривизну боковой наружной поверхности желудочков, она растягивается.

(2.1.) С началом первой фазы максимального изгнания (ФМИ1) продолжающееся и усиливающееся сокращение волокон средней циркулярной мышцы (при закрытых

(2.2.) С началом сокращения всех трех мышц наступает вторая фаза максимального изгнания (ФМИ2). При этом, несмотря на непрерывно уменьшающийся внешний размер сердца и уменьшающиеся полости желудочков, также непрерывно продолжается поддерживание внутрижелудочкового давления. С началом этой фазы (сокращения всех трех мышц) изгоняемая порция крови получает основную часть кинетической энергии. Кроме того, подключившееся сокращение наружной косой и внутренней прямой мышц приводит к умеренной ротации сердца по часовой стрелке вокруг его (условно) продольной оси. Это придает изгоняемому току крови характер поступательного движения по спирали, что облегчает ее продвижение через клапанное кольцо (или отверстие).

Одновременно с выбросом крови происходит реактивное смещение желудочков книзу, что приводит к растяжению предсердий, увеличению их полостей.

(3.1.) В фазе редуцированного изгнания за счет сохраняющейся разности давлений между желудочками и сосудами, за счет полученной кинетической энергии поступательное движение крови из желудочков в сосуды продолжается, уменьшаясь постепенно. В какой-то момент начинает расслабляться (и "растягиваться") средняя циркулярная мышца. Вместе с этим начинает снижаться давление в полостях желудочков. Когда оно становится ниже давления в сосудах, кровь, направляясь в полости желудочков, "отгибает" створки полулунных клапанов и закрывает их.

(3.2.) С закрытием полулунных клапанов (атриовентрикулярные тоже еще закрыты) начинается фаза изоволемического снижения внутрижелудочкового давления. При этом наружная косая и внутренняя прямая мышцы еще продолжают активно сокращаться и способствуют дальнейшему пассивному растяжению средней циркулярной мышцы. Форма желудочков приближается к шаровидной, сохраняется тот же объем. Такая шаровидная конфигурация лучше обеспечивает открытие атриовентрикулярных клапанов.

(4.1.) В фазе быстрого наполнения всё ещё продолжается сокращение наружной косой и внутренней прямой мышц, расслабление циркулярной мышцы и более полное приближение полостей к шаровидной форме. При этом происходит равномерное истончение стенок и усиление присасывающей силы желудочков. Присасывающее действие желудочков распространяется не только на предсердия, но и вены (с еще расслабленными жомами). Через 0,05-0,07 с от начала наполнения заканчивается сокращение наружной косой и внутренней прямой мышц и начинается (4.2.) фаза медленного наполнения. С этого момента расслабляются и растягиваются все три мышцы. Движение крови в желудочки продолжается, но с меньшей скоростью и в меньшем объеме. А конфигурация сердца все более приближается к элипсоидной. Далее весь цикл работы сердца повторяется.

Как примечание следует отметить, что с момента закрытия атриовентрикулярных клапанов расслабляются жомы в устьях вен, образуя единую полость вена-предсердие (справа и слева), сами предсердия несколько удлиняются. А дополнительное удлинение предсердий и ускорение наполнения их кровью происходит во время реактивного смещения желудочков книзу.

Итак, при клинических исследованиях Б.А.Константинова, В.А.Сандрикова, В.Ф.Яковлева (1986 г.) было установлено, что:

Результаты этих исследований подводят к очень важному вопросу: как при разновременной активности мышечных слоев миокарда между собой осуществляется коронарное кровообращение? Ответа пока нет.

Мышцы, образующие стенку желудочка, при своем сокращении, "слоисто" растягивая её тем больше, чем ближе "слой" к наружной поверхности, все более и более увеличивают её напряжение. Вместе с этим растет внутрижелудочковое давление. В какой-то момент времени закрытые створки полулунных клапанов, составляющие часть стенки желудочка под действием силы напряжения ("разрыва") и внутрижелудочкового давления открываются ("разрываются") и кровь изгоняется из полости желудочка.

Итак, у взрослого человека "правое" сердце последовательно соединено с "левым" (рисунок 3).

Желудочки (правый и левый) при каждом изгнании выбрасывают одинаковые объёмы крови (закон Гарвея). Установлено, если выброс правого желудочка будет всего на 2% больше выброса левого, то через некоторое время может наступить отёк лёгких из-за переполнения МКК. В норме этого не происходит. В организме имеются механизмы, которые согласуют выбросы обоих желудочков, и обеспечивают приспособление сердца в целом к гидро- (точнее гемо-) динамическим изменениям.

В общем виде это два типа регулирующих механизмов:

Потребление питательных веществ сердцем.

При нарушении коронарного кровообращения, как видно, главная опасность для сердца возникает не из-за недостатка энергоносителей (питательных веществ), а в дефиците окислителя (кислорода).

У больных с пороками сердца, с гипертрофией, особенно выраженной степени, в большей мере используются свободные жирные кислоты (Е.П.Степанян, И.Н. Баркан, "Биоэнергетика оперированного сердца". М. 1971 г.).

Потребление кислорода сердцем.

Метаболические пути окисления и получения энергии.

Энергия сердца и ее расход.

Функциональные резервы сердца и сердечная недостаточность

Физиология различает 4 варианта острой сердечной недостаточности (ОСН).

1.) ОСН, обусловленная рефлекторными реакциями. Например, брадикардия вплоть до полной остановки сердца, обусловленная раздражением блуждающего нерва.

2.) ОСН, обусловленная гемодинамическими отклонениями от нормы. Например, изотоническая или изометрическая перегрузка.

3.) ОСН, обусловленная снижением именно сократительной способности.

4.) ОСН, обусловленная повреждениями значительной части кардиомиоцитов - материальной основы сокращения. Это бывает при остром обширном инфаркте миокарда, диффузном миокардите с исходом в миомаляцию.

В кардиохирургии различными методами удаётся продлить срок "клинической смерти сердца", чтобы в условиях искусственного кровообращения, после пережатия аорты в восходящей части, выполнить коррекцию пороков сердца.

Факторы, определяющие нагрузку на сердце

Это нагрузка объёмом крови, которым заполняется полость желудочка перед началом изгнания. В клинической практике мерой преднагрузки является конечно-диастолическое давление (КДД) в полости желудочка (правого - КДДп, левого - КДДл). Это давление определяется только инвазивным методом. В норме КДДп = 4-7 мм Hg, КДДл = 5-12 мм Hg.

Для правого желудочка косвенным показателем может быть величина центрального венозного давления (ЦВД). Для левого желудочка очень информативным показателем может быть давление наполнения левого желудочка (ДНЛЖ), которое возможно определить неинвазивным (реографическим) методом.

До какой границы (предела) действует приспособительная реакция О.Франка и Е.Старлинга, когда изменение длины волокна изменяет напряжение, а оно изменяет силу сокращения?

Ориентиром, контролируемым в клинических условиях, для правого желудочка может быть повышение ЦВД более 120 мм Н 2 О (норма). Это косвенный ориентир. Непосредственным ориентиром является повышение КДДп до 12 мм Hg. Ориентиром для левого желудочка является увеличение КДДл (ДНЛЖ) до 18 мм Hg. Иными словами, когда КДДп в пределах от 7 до 12 или КДДл в пределах от 12 до 18 мм Hg, то правый или левый желудочек уже работает по закону О.Франка и Е.Старлинга.

При приспособительной реакции О.Франка и Е.Старлинга, УО левого желудочка не зависит от диастолического артериального давления (ДАД) в аорте, а систолическое артериальное давление (САД) и ДАД в аорте не изменяются. Эту приспособительную реакцию сердца S.Sarnoff назвал гетерометрической регуляцией (heteros по греч. - другой; применительно к теме раздела - регуляция посредством другой длины волокна).

Надо отметить, что еще в 1882 г. Fick и в 1895 г. Blix отметили, что "закон сердца таков же, как закон скелетной мышцы, а именно, что механическая энергия, освобождающаяся при переходе из состояния покоя в состояние сокращения, зависит от площади "химически сокращающихся поверхностей", т.е. от длины мышечного волокна".

Поскольку приспособительная реакция сердца, подчиняющаяся закону, имеет определенную границу, за которой этот закон О.Франка и Е.Старлинга уже не действует, то возникает вопрос: а можно ли усилить эффект этого закона? Ответ на этот вопрос имеет очень важное значение для врачей анестезистов и интенсивистов. В исследованиях E.H.Sonnenblick г.г.) было установлено, что при чрезмерной преднагрузке миокард способен значительно увеличивать силу сокращения под воздействием положительно инотропных средств. Изменяя функциональные состояния миокарда посредством воздействия инотропных средств (Са, гликозиды, норадреналин, дофамин) при одном и том же притоке крови (одно и то же растяжение волокон), он получил целое семейство «кривых Е.Старлинга» со смещением кверху от исходной кривой (без действия инотропика).

Из рисунка 4 видно, что:

Вначале включаются следующие приспособительные элементы:

Если совокупность этих приспособительных элементов оказывается недостаточной, то развивается тахикардия, направленная на поддержание СВ.

Закон, по которому желудочек приспосабливается к нагрузке сопротивлением, впервые открыл Г.Анреп (1912г., лаборатория Е.Старлинга).

Приспособительную реакцию сердца по закону Г. Анрепа и А. Хилла при увеличении нагрузки сопротивлением Ф.З.Меерсон объясняет следующим образом (1968 г.): по мере повышения нагрузки сопротивлением количество актиномиозиновых связей увеличивается. А количество свободных центров, способных реагировать между собой, в актиновых и миозиновых волокнах уменьшается. Поэтому с каждой, всё большей, нагрузкой количество вновь образующихся актиномиозиновых связей уменьшается в единицу времени.

Одновременно уменьшается и скорость сокращения, и количество механической и тепловой энергии, освобождающейся при распаде актиномиозиновых связей, постепенно приближаясь к нулю.

Итак, когда нагрузка сопротивлением увеличивается на 40-50%, адекватно ей увеличивается мощность и сила мышечного сокращения. При большем увеличении нагрузки эффективность этой приспособительной реакции утрачивается из-за потери мышцей способности расслабляться.

Другим фактором, со временем ограничивающим эту приспособительную реакцию, является, как было установлено Ф.З.Меерсоном и его сотрудниками (1968 г.), снижение сопряжения окисления и фосфорилирования на 27-28% на участке – «цитохром с» - «кислород», при этом в миокарде уменьшается количество АТФ и особенно креатинфосфата (КФ).

Приспособительную реакцию Г. Анрепа и А. Хилла S.Sarnoff назвал гомеометрической регуляцией (homoios по греч. - подобный; применительно к теме раздела - регуляция посредством такой же длины волокна).

Совокупность всех исследований, выполненных О.Франком, Е.Старлингом, Г.Анрепом, А.Хиллом и другими физиологами того периода позволила выделить два варианта сокращения сердечного волокна: изотоническое и изометрическое сокращения.

В соответствии с этим выделены два варианта работы желудочков сердца.

1. Когда желудочек работает преимущественно с нагрузкой по объему - он работает по варианту изотонического сокращения. При этом тонус мышцы изменяется в меньшей мере (изотония), преимущественно изменяется длина и поперечное сечение мышцы.

2. Когда желудочек работает преимущественно с нагрузкой по сопротивлению - он работает по варианту изометрического сокращения. При этом преимущественно изменяется напряжение мышцы (тонус), а её длина и поперечное сечение изменяются в меньшей мере или почти не изменяются (изометрия).

Однако при искусственной инотропной регуляции работы сердца норадреналином и др. аналогичными средствами может быть серьезная опасность. Если резко и значительно уменьшить введение инотропного средства или прекратить введение его, то может резко снизиться тонус миокарда.

Процесс наращивания напряжения является самым главным потребителем энергии в сердечном цикле. Кроме того, он идет в первую очередь. В физиологии существует закон, что первый процесс всегда старается как можно полнее использовать наличную энергию, чтобы завершить его целиком и полностью. Остаток энергии расходуется на выполнение следующего процесса и т.д. (т.е. каждый предыдущий процесс как Людовик XV: "после нас хоть потоп").

Каппиляры

Функциональной или обменной единицей считается совокупность сосудов от артериол до венул. Общая длина функциональной единицы составляет примерно 750 мкм.

Различают 3 типа капилляров:

Рисунок 5. Схема капилляра

Кроме того, крупные молекулы могут переноситься через капиллярную стенку путем пино- и эмиоцитоза. Подошедшую молекулу эндотелиальная клетка "обнимает", поглощает в протоплазму (пиноцитоз) и, переместив к другой части клетки "выталкивает" (эмиоцитоз). Обмен в капиллярах осуществляется в основном благодаря диффузии, а также фильтрации и реабсорбции.

Диффузия в капиллярах описывается уравнением Фика. Скорость диффузии очень велика. При движении по функциональной единице капилляра жидкость плазмы успевает 40 раз обменяться с жидкостью межклеточного пространства. Иными словами при общей длине функциональной единицы капилляра в 750 мкм (/40) через каждые примерно 19 мкм стоит как "регулировщик движения" закон Фика, который меняет вектор направления жидкости то в одну, то в противоположную сторону.

Фильтрация и реабсорбция в капиллярах описывается уравнением Старлинга. Их интенсивность определяется гидростатическим давлением в капилляре (Ргк), гидростатическим давлением в тканевой жидкости (Ргт), онкотическим давлением плазмы в капилляре (Рок), онкотическим давлением в тканевой жидкости (Рот) и коэффициентом фильтрации (К). К - соответствует проницаемости капиллярной стенки для изотонических растворов: 1 мл жидкости в 1 мин. на 100 г. ткани при Т 37 о С:

Реология крови

Кровь обладает по меньшей мере двумя свойствами: вязкостью и пластичностью. Поэтому кровь относят к нелинейно-вязкопластичной среде. Это означает, что главной особенностью такой среды является сочетание переменной вязкости с пластичностью. При этом переменная вязкость зависит от скорости деформации (скорости течения жидкости). Вязкость - это свойство жидкости, сдерживающее ее течение или перемещение.

На реологические свойства крови влияют многие факторы:

Под синдромом повышенной вязкости принято понимать комплекс изменений реологических свойств крови. Комплекс изменений составляют:

Регуляция кровообращения

б) Метаболические факторы: АТФ, АДФ, АМФ, особенно аденозин и молочная кислота, а также накопление Н+ оказывают выраженное местное сосудорасширяющее действие.

2. Нейрогуморальная регуляция.

С этим видом регуляции связывают:

1) К механизмам кратковременного действия относят:

а) барорецепторные рефлексы;

Все эти рефлексы могут реализовываться в течение нескольких секунд. Однако при постоянном раздражении (в течение нескольких дней) они либо полностью исчезают (барорецепторные рефлексы), либо ослабевают (хеморецепторные рефлексы, рефлекс на ишемию ЦНС).

А) Это рефлексы с аорты и ее верхних ветвей.

Барорецепторы обладают свойством адаптироваться к повышенному давлению. Однако при этом их функция не нарушается, то есть при еще большем повышении давления они реагируют, по окончанию их раздражения давление возвращается не на исходный, а на предыдущий, уровень и т.д.

Б) Это рефлексы с крупных вен и предсердий.

А-типа возбуждаются при сокращении предсердий и усиливают влияние симпатического отдела нервной системы. При усилении напряжения и растяжения стенки предсердия, обусловленные его перегрузкой объемом крови, при сокращении предсердия часто (но не всегда) возникает приступ тахикардии - рефлекс Бейнбриджа.

В-типа возбуждаются при чрезмерном растяжении предсердия до начала его сокращения. При этом усиливается влияние парасимпатического отдела сосудодвигательного центра, которое приводит к брадикардии. Одновременно с ней (особенность реакции) возникает сужение сосудов почек. Кроме всего этого, раздражение рецепторов крупных вен и предсердий через центры осморегуляции в гипоталамусе уменьшает секрецию гормона вазопрессина.

Рефлексы с артериальных хеморецепторов.

2). К механизмам промежуточного действия относят:

Различают прямую релаксацию напряжения. Суть её состоит в следующем: при внезапном увеличении объёма крови в сосуде, давление крови вначале резко повышается. При этом эластические волокна сосуда растягиваются, а мышечные волокна сокращаются. Затем, хотя объём крови в сосуде не изменяется и эластические волокна остаются в прежнем состоянии, мышечные волокна расслабляются, приводя свой тонус в соответствие со степенью растяжения эластических волокон. Давление в сосуде понижается.

Различают обратную релаксацию напряжения. При внезапном снижении объёма крови в сосуде давление крови вначале резко понижается. При этом усиливается напряжение эластических волокон сосуда, а мышечные волокна расслабляются. Затем хотя объём крови в сосуде не изменяется и эластические волокна остаются в прежнем состоянии, мышечные волокна сокращаются, приводя свой тонус в соответствие со степенью напряжения эластических волокон. Давление в сосуде повышается.

3). Механизмы длительного действия касаются регуляции связи: внутрисосудистый объём - ёмкость сосудистой системы - внеклеточный объём жидкости. Эта сложная регуляция осуществляется посредством:

В центральной регуляции кровообращения выделяют три уровня регуляции:

2. "Центры" гипоталамуса.

В ростральных отделах располагаются "трофотропные зоны". Раздражение сопровождается торможением сердечно-сосудистой системы и реакциями внутренних органов, способствующими восстановлению организма (потребление и переваривание пищи, активизируются меридианы: желудка - поджелудочной железы - селезенки, тонкого кишечника - сердца, печени - желчного пузыря).

Б. Неокортекс: наружная поверхность полушарий, особенно премоторная и моторная зоны. Их раздражение вызывает также разнонаправленные сердечно-

Определение показателей центральной гемодинамики

1. Основан на принципе A.Fick. Метод, основанный на принципе или гемодинамическом законе A.Fick исторически признан эталонным. Для специальности анестезия и интенсивная терапия методически он ценен тем, что его можно многократно использовать у одного и того же больного. Однако практически он пока считается достаточно трудоёмким.

3. Метод термодилюции, предложенный в 1968г. M.A.Brauthweite, K.D.Bredley и усовершенствованный в гг. W.Ganz, H.Swan. Это инвазивный метод, требующий введения многоканального катетера так, чтобы окончание одного канала было в полости правого предсердия, а другого (с высокоточным термистором в конце) - в легочной артерии. Кроме специального катетера в комплекс входит прибор, регистрирующий изменение температуры крови после введения "навески" раствора в правое предсердие, и рассчитывающий величину СВ. Метод многократный, так как не обладает эффектом накопления. При соблюдении технологии использования достаточно точный, по сравнению с методом, основанным на принципе A.Fick. Но требует определенных умений, пока всё ещё дорогостоящий, немаловажно и то, что он инвазивный. В целом он считается опасным и неприемлимым для большинства больниц.

4. Электрофизиологические методы: эхо-кардиографический, доплер-кардиографический, импедансный или реографический. В этой группе методов наибольшей точностью обладает реографический. Он наименее дорогостоящий, неинвазивный, его можно использовать многократно у одного и того же больного. Этот метод доступен для отделения интенсивной терапии больницы любой мощности. Даже в США, где наибольшее распространение получил метод термодилюции, начинает обосновываться предпочтение импедансному методу.

Итак, посредством ипедансного метода определили величину УО в см 3 . Далее можно определить величины следующих показателей.

Из рисунка видно, что при нормальных величинах ЧСС (Х1) и УСВ (УО) (У1) мы имеем нормальную величину СВ (это площадь прямоугольника). Такую же площадь прямоугольника (такую же величину СВ) можно получить при брадикардии (Х2) с увеличенным УО (У2) и при выраженной тахикардии (Х3) со сниженным УО (У3). Все это качественно различные состояния организма, хотя во всех случаях СВ одинаков (площади всех трёх прямоугольников равны друг другу).

Дело в том, что тяжелым больным с целью обеспечения их энергией назначаются средства, имеющие соответствующую калорическую ценность (глюкоза и т.д.). При их назначении обычно исходят из того, что в условиях основного обмена (то есть когда человек в покое и не выполняет никакой физической нагрузки) энергетические потребности организма (в среднем) составляют приблизительно ккал/сут. В соответствии с этим подбирается количество и состав "питательных" растворов, которые вводятся больному в вену или через зонд в желудочно-кишечный тракт. Все это правильно, но с затаившейся ошибкой. Назначенные растворы являются всего лишь энергоносителями и не более. Чтобы из энергоносителя получить энергию, энергоноситель надо окислить (сжечь). Однако никто не определяет и не вычисляет: хватит ли фактически потребляемого больным кислорода на окисление

В более поздних публикациях часто используются другие названия этих вариантов кровообращения – гиперкинетический, нормо- или эукинетический и гипокинетический.

Клиническая диагностика вариантов кровообращения

Клинические признаки дисфункции сердечно-сосудистой системы:

Гипоциркуляторный вариант кровообращения

Уровень САД можно считать критерием наличия или отсутствия сердечной недостаточности: если при повышенной постнагрузке (ОПСС>1700) и холодных кожных покровах отсутствует физиологический прирост САД к ЧСС, то однозначно имеет место сердечная недостаточность – сердце не способно продавливать кровь через спазмированную периферию с достаточной силой. Подтверждением наличия сердечной недостаточности является нормальное или повышенное ЦВД.

Если сердце способно прокачать повышенную постнагрузку, то САД повышено (гипертонический криз) и потребность миокарда в кислороде высокая. Величина ЦВД будет зависеть от ЧСС и волемии. При тахикардии нормальное или повышенное ЦВД сигнализирует о скорой декомпенсации.

В любом случае – первоочередная задача врача – устранить причину повышенной постнагрузки и нормализовать ОПСС - снизить его, используя вазодилятаторы: изокет, магнезию, β-блокаторы, ганглиоблокаторы.

Для уточнения наличия этого варианта нарушения кровообращения можно провести пробу с магнезией или изокетом. Магнезию (при отсутствии противопоказаний – см.инструкцию по применению) вводят в количестве 5-10 мл болюсно в/в, контролируя ЧСС и АД. Изокет – 0,5мл 0,1% р-ра разводят до 20 мл физ.р-ром и вводят в/в 0,5-1мл под контролем ЧСС и АД. Проба считается положительной, если на фоне введения магнезии или изокета ЧСС уменьшается, а АД приближается к норме – исходно сниженное поднимается, а исходно повышенное снижается, улучшается состояние и кожных покровов.

Вопрос о необходимости объемной инфузии решают, ориентируясь на:

Проведение объёмной инфузии при отсутствии вышеперечисленного комплекса клинических и лабораторных признаков или до начала вазодилятации приведет к выдавливанию всей инфузии в интерстиций. При наличии признаков нормо- и гипергидратации объёмная инфузия не показана, так как необходимо вернуть жидкость из интерстиция в сосудистое русло, а не продолжать его переполнять. Необходимо понять, что сосуды не «резиновые», чтобы воспринимать объемную инфузию и вмещать ее без предварительного изменения тонуса – нужно сначала расслабить артериолы, увеличить количество функционирующих каппиляров, т.е. увеличить емкость «сосудистого вместилища». Резервная емкость венозной системы определяется изменением конфигурации вен из «сплющенных» до округлых и ориентировочно составляет не болеемл у взрослого человека и не может оправдать инфузионную терапию в несколько литров.

Нормоциркуляторный вариант кровообращения

Чаще всего свидетельствует о нормальном функционировании ССС. Однако при разной производительности сердца при разных условиях, но при нормальном ОПСС может быть и выраженная дисфункция ССС. Например, если достаточная производительность сердца и достаточный уровень АД поддерживается за счет тахикардии. Могут наблюдаться и клинические варианты, когда может иметь место артериальная гипотония или гипертензия на фоне любых нарушений ритма. В этих случаях имеет место отсутствие физиологического прироста АД к ЧСС, или его избыточный прирост. Состояние кожных покровов зависит от уровня АД.

Тактика коррекции будет зависеть от первопричины, которую необходимо устранить в первую очередь, и вида нарушений ритма. Необходимо учитывать воздействие на ОПСС препаратов, которые решено применять для лечения, чтобы не усугубить гемодинамическую ситуацию.

Гиперциркуляторный вариант кровообращения

Клинически характеризуется хорошим периферическим кровотоком даже при низком АД. Сопровождается компенсаторной тахикардией и высокой амплитудой плетизмограммы при контроле сатурации, опять же, несмотря на низкое АД. Обычно сопровождается повышенным диурезом. Диурез сохраняется даже при АД, меньшим, чем «почечный порог» - САД ниже 80 мм.рт.ст.

Дозу мезатона подбирают с учетом величины ЧСС и АД. Обычно достаточно введение 2-5мг мезатона в час (4мл мезатона на 20мл физ.р-ра, скорость перфузора – 1-3мл в час). Необходимо контролировать и состояние кожных покровов, чтобы со временем не перевести сосудистую недостаточность в периферический спазм. По мере стабилизации состояния, дозу мезатона уменьшают, опять же, ориентируясь на ЧСС, АД и состояние кожных покровов.

Гиперциркуляция достаточно часто сопровождает регионарные методы анестезии за счет симпатического блока и регионарной вазодилятации. В таких случаях, при отсутствии гемоконцентрации и явного дефицита жидкости, протекает благоприятно, так как хорошо коррегируется введением симпатомиметиков (эфедрин или мезатон дозировано или подкожно). Однако, в таких ситуациях достаточно часто применяют и объемную инфузию, заполняя дилятированные сосуды.

Влияние медикаментов на показатели кровообращения

Кардиотоническая поддержка

Дофамин в кардиотонической дозировке повышает производительность и выносливость сердца за счет оптимизации сердечного выброса – увеличения его скорости без повышения потребности в кислороде и без увеличения ОПСС. За счет этого уменьшается ЧСС, повышается АД.

Показанием для начала кардиотонической поддержки являются любые нарушения кровообращения, за исключением тех, которые сопровождаются артериальной гипертензией. Показанием для введение дофамина являются признаки задержки жидкости в интерстиции, хроническая или острая почечная недостаточность, особенно при олигоанурии. Хотя доказано, что дофамин не улучшает прогноз при ренальной ОПН, но улучшение почечного кровотока никому не помешает.

Дофамин особенно показан при тахикардии, обусловленной хронической или острой сердечной недостаточностью. Мнение, что дофамин противопоказан при тахикардии, основано на безграмотном его применении в слишком высокой дозе. Так же безграмотен отказ от применения дофамина со ссылкой на нормальное АД, несмотря на отсутствие прироста АД к ЧСС или наличие отеков, в т.ч. и интерстициальных.

В то же время следует помнить об опасности дофамина, а точнее опасности для жизни пациента при его передозировке. Именно дофамином добивают больных в шоковых состояниях, пытаясь поднять АД без устранения причины гипотонии - не устраняя высокую постнагрузку или не восполняя кровопотерю. Только безграмотный врач вводит ампулу дофамина (200мг – 5 мл 4%р-ра) в чистом виде или даже в разведении за несколько минут или за два-три часа. Такой дозой можно убить абсолютно здорового человека! 200 мг дофамина вводятся как минимум 5-8 часов!

Дозировка дофамина рассчитывается исходя из веса пациента: почечная – 3-5мкг/кг в минуту, кардиотоническая – 5-10 мкг/кг в минуту.

Одним из условий эффективного и безопасного применения дофамина является правило его введения через отдельный катетер или через отдельный просвет многопросветного катетера. Суть такой рекомендации в том, что если просвет катетера будет заполнен раствором дофамина, а это 2-3мл раствора, и в это время через катетер начать вводить другой раствор или препарат, то в кровоток попадет сразу несколько мг дофамина. Это, обычно, вызывает тахикардию, аритмию, артериальную гипертензию и может стать причиной остановки сердца. Именно поэтому также рекомендуется использовать растворы дофамина с низкой концентрацией – 1-2 ампулы (мг) разводят вмл физ.р-ра.

Объем циркулирующей крови (ОЦК) составляет 2,4 л на 1 м 2 поверхности тела у женщины и 2,8 л на 1 м 2 поверхности тела у мужчин, что соответствует 6,5 % массы тела женщин и 7,5 % массы тела мужчин [Шустер X. П. и др., 1981].

Величину ОЦК можно рассчитывать в миллилитрах на килограмм массы тела. У здоровых мужчин ОЦК составляет в среднем 70 мл/кг, у здоровых женщин — 65 мл/кг. Г. А. Рябов (1982) рекомендует для определения должной величины ОЦК использовать рассчетную таблицу, составленную Moore.

Для практической работы, особенно в экстренных случаях, при лечении острой кровопотери более удобен расчет величины кровопотери по отношению к ОЦК. Так, средний ОЦК взрослого человека с массой тела 70 кг составляет 5 л, из которых 2 л приходится на клеточные элементы — эритроциты, лейкоциты, тромбоциты (глобулярный объем) и 3 л — на плазму (плазматический объем) . Таким образом, в среднем ОЦК составляет 5—6 л, или 7 % массы тела Климанский В. А., Рудаев Я. А., 1984].

Объем циркулирующей крови у здоровых людей (в миллилитрах)

Масса
тела, кг
Мужчины Женщины
нормостеники (7,0)* гиперстеники (6,0) гипостеники (6,5) с развитой мускулатурой (7,5) нормостеники (6,5) гиперстеники (5,5) гипостеники (6,0) с развитой
мускулатурой (7,0)
40 2800 2400 2600 3000 2600 2200 2400 2800
45 3150 2700 2920 3370 2920 2470 2700 3150
50 3500 3000 3250 3750 3250 2750 3000 3500
55 3850 3300 3570 4120 3570 3020 3300 3850
60 4200 3600 3900 4500 3900 3300 3600 4200
65 4550 3900 4220 4870 4220 3570 3900 4550
70 4900 4200 4550 5250 4550 3850 4200 4900
75 5250 4500 4870 5620 4870 4120 4500 5250
80 5600 4800 5200 6000 5200 4400 4800 5600
85 5950 5100 5520 6380 5520 4670 5100 5950
90 6300 5400 5850 6750 5850 4950 5400 6300
95 6650 5700 6170 7120 6170 5220 5700 6650

В венах циркулирует 70—80 % крови, в артериях — 15—20 % и в капиллярах 5—7,5 % [Малышев В. Д., 1985]. В целом в сердечно-сосудистой системе циркулирует 80 %, в паренхиматозных органах — 20 % ОЦК.

ОЦК характеризуется относительным постоянством. Это обеспечивается механизмами саморегуляции. Регуляция ОЦК является сложным и многоступенчатым процессом, но в конечном итоге он сводится к перемещению жидкости между кровью и внесосудистым пространством и к изменениям выведения жидкости из организма [Левите Е. М. и др., 1975; Селезнев С. А. и др., 1976; Клецкин С. 3., 1983].

В то же время ОЦК — величина, весьма вариабельная даже для одного человека в зависимости от его физического статуса и состояния гомеостаза. Люди, систематически занимающиеся спортом, имеют большой ОЦК. На величину ОЦК влияют возраст, пол, профессия, температура окружающей среды, величина атмосферного давления и другие факторы.

В ответ на острую кровопотерю в организме развиваются патофизиологические изменения, носящие сначала компенсаторно-защитный характер и обеспечивающие сохранение жизни. Некоторые из них мы рассмотрим ниже.


«Инфузионно-трансфузионная терапия острой кровопотери»,
Е.А. Вагнер, В.С. Заугольников

Веномоторный эффект компенсирует потерю 10—15 % ОЦК (500—700 мл) у взрослого человека, если тот не страдает каким-либо хроническим заболеванием и у него нет признаков гиповолемического шока или дефицита ОЦК. Такая «централизация» кровообращения биологически целесообразна, ибо какое-то время сохраняется кровоснабжение жизненно важных органов (мозг, сердце, легкие). Однако сама по себе она может явиться причиной развития тяжелых…


Реакция системного кровотока при острой кровопотере и геморрагическом шоке вначале дают защитный эффект. Однако длительная вазоконстрикция в связи с развитием ацидоза и накоплением повышенных концентраций тканевых метаболитов — вазодилататоров приводит к изменениям, которые считают ответственными за развитие декомпенсированного обратимого и необратимого шока. Так, сокращение артериол ведет к уменьшению тканевого кровотока и оксигенации, вызывая снижение рН…


Реакции, развивающиеся в ответ на снижение ОЦК, приводят к снижению объемного кровотока в тканях и развитию компенсаторных механизмов, направленных на коррекцию сниженного кровотока. Одним из таких компенсаторных механизмов является гемодилюция — поступление внесосудистой, внеклеточной жидкости в сосудистое русло. При геморрагическом шоке наблюдается прогрессирующая гемодилюция, которая возрастает с тяжестью шока. Гематокрит служит показателем уровня гемодилюции. В…


Восполнение дефицита белков плазмы происходит за счет мобилизации лимфы из всех лимфатических сосудов. Под воздействием повышенных концентраций адреналина и возбуждения симпатической нервной системы развивается спазм мелких лимфатических сосудов. Содержащаяся в них лимфа выталкивается в венозные коллекторы, чему способствует пониженное венозное давление. Объем лимфы в грудном лимфатическом протоке после кровотечения быстро увеличивается. Это способствует увеличению ОЦК…


Периферический кровоток зависит не только от перфузионного артериального давления, ОЦК и тонуса сосудов. Важная роль принадлежит реологическим свойствам крови и в первую очередь ее вязкости. Симпатико-адреналовая стимуляция приводит к пре- и посткапиллярной вазоконстрикции, в результате чего значительно уменьшается тканевая перфузия. Тканевый кровоток в капиллярах замедляется, что создает условия для агрегации эритроцитов и тромбоцитов и развития…


Расстройства кровообращения при острой кровопотере и геморрагическом шоке и массивная инфузионная терапия могут вызвать дыхательную недостаточность, которая нарастает через несколько часов после операции. Она проявляется нарушением легочно-капиллярной мембранной проницаемости — интерстициальным отеком легкого, т. е. одним из вариантов «шокового легкого». Травма и острая кровопотеря вызывают гипервентиляцию. При геморрагическом шоке минутная вентиляция обычно в 1 1/2—2…


Экспериментальные и клинические исследования показали, что при острой кровопотере отмечается снижение почечного кровотока на 50—70 % с селективным снижением кортикального кровотока . Кортикальный кровоток составляет приблизительно 93 % почечного. Селективное снижение почечного -кровотока вследствие преклубочковой артериальной вазоконстрикции снижает клубочковое давление до уровня, при котором клубочковая фильтрация уменьшается или прекращается, развиваются олигурия или анурия. Гемодинамические…


Острая кровопотеря, особенно массивная, часто вызывает нарушения функции печени. Они обусловлены в первую очередь снижением печеночного кровотока, главным образом артериального . Возникающая ишемия печени приводит к развитию центролобу-лярного некроза IRauber, Floguet, 1971]. Нарушается функция печени: возрастает содержание трансаминазы, снижается количество протромбина, наблюдаются гипо-альбуминемия и гиперлакцидемия. Вследствие рассасывания гематомы или в результате массивной…


Показателем изменения метаболизма является образование в качестве конечного продукта молочной кислоты вместо нормального конечного продукта аэробного метаболизма — СO2. В результате развивается метаболический ацидоз. Количество буферных оснований прогрессивно снижается, и хотя рано развивается респираторная компенсация, при геморрагическом шоке она часто неадекватна. Изучая изменения метаболизма у больных с кровопотерей и шоком А. Лабори (1980) установил, что…


Острая кровопотеря в результате уменьшенного венозного возраста (абсолютная или относительная гиповолемия) приводит к снижению сердечного выброса. В связи с освобождением катехоламинов в окончаниях постганглионарных симпатических нервов прекапиллярной и посткапиллярной частей сосудистой системы происходит максимальная стимуляция адренокортикальной секреции. Реакции организма на острую уровопотерю «Инфузионно-трансфузионная терапия острой кровопотери»,Е.А. Вагнер, В.С. Заугольников


А.П. Ястребов, А.В. Осипенко, А.И. Воложин, Г.В. Порядин, Г.П. Щелкунова

Глава 2. Патофизиология системы крови.

Кровь – важнейшая составная часть организма, обеспечивающая его гомеостаз. Она переносит к тканям кислород из легких и удаляет из тканей углекислоту (дыхательная функция), доставляет клеткам различные необходимые для жизнедеятельности вещества (транспортная функция), участвует в терморегуляции, в поддержании водного баланса и выведении токсических веществ (дезинтоксикационная функция), в регуляции кислотно-основного состояния. От количества крови зависит величина артериального давления и работа сердца, функция почек и других органов и систем. Лейкоциты обеспечивают клеточный и гуморальный иммунитет. Тромбоциты вместе с плазменными факторами свертывания останавливают кровотечение.

Кровь состоит из плазмы и форменных элементов – эритроцитов, лейкоцитов и тромбоцитов. В 1 литре крови на долю форменных элементов (главным образом эритроцитов) приходится у мужчин 0,41 – 0,53 литра (гематокрит = 41 – 53 %), а у женщин – 0,36 – 0,48 литра (гематокрит = 36 – 48 %). Количество крови у человека составляет 7 – 8 % от массы его тела, т.е. у человека массой около 70 кг – около 5 литров.

При любой анемии количество эритроцитов в крови снижается (гематокрит- Нt – ниже нормы), но объем циркулирующей крови (ОЦК) сохраняется нормальным за счет плазмы. Такое состояние называется олигоцитемическая нормоволемия. В этом случае из-за дефицита гемоглобина (Нв) уменьшается кислородная емкость крови и развивается гипоксия гемического (кровяного) типа.

При увеличении в крови числа эритроцитов (эритроцитоз) на фоне нормального ОЦК развивается полицитемическая нормоволемия (Ht выше нормы). В большинстве случаев эритроцитоз, исключая некоторые патологические формы (см. ниже), компенсирует гипоксии различного генеза благодаря повышению кислородной емкости крови. При значительных увеличениях гематокрита может повышаться вязкость крови и сопровождаться нарушениями микроциркуляции.

Изменения объема циркулирующей крови (ОЦК)

Уменьшение ОЦК называется гиповолемией. Различают 3 формы гиповолемий:

Простая гиповолемия возникает в первые минуты (часы) после массивной острой кровопотери, когда на фоне уменьшения ОЦК гематокрит остается нормальным (скрытая анемия). При этом в зависимости от степени уменьшения ОЦК может наблюдаться падение артериального давления (АД), уменьшение сердечного выброса (УОС, МОС), тахикардия, перераспределение кровотока, выброс депонированной крови, уменьшение диуреза, нарушения мозгового кровообращения вплоть до потери сознания и другие последствия. Из-за ослабления микроциркуляции и уменьшения общего количества Нb развивается гипоксия циркуляторного и гемического типа.

Олигоцитемическая гиповолемия характеризуется уменьшением ОЦК и снижением гематокрита. Такое состояние может развиться у больных, страдающих тяжелой анемией, осложненной острым кровотечением или обезвоживанием, например, при лейкозах, апластических анемиях, лучевой болезни, злокачественных опухолях, некоторых болезнях почек и т.п. При этом развивается очень тяжелая гипоксия смешанного типа, обусловленная как дефицитом Нв, так и нарушением центрального и периферического кровообращения.

Лучшим способом коррекции простой и олигоцитемической гиповолемии является переливание крови или кровезаменителей.

Полицитемическая гиповолемия характеризуется уменьшением ОЦК и увеличением Ht. Ее причиной главным образом является гипогидратация, когда из-за дефицита воды в организме уменьшается объем плазмы крови. И хотя при этом кислородная емкость крови остается нормальной (Нb в норме), развивается гипоксия циркуляторного типа, так как в зависимости от степени обезвоживания (см. патофизиологию водно-электролитного обмена) уменьшение ОЦК приводит к падению АД, уменьшению сердечного выброса, нарушению центрального и периферического кровообращения, уменьшению фильтрации в клубочках почек, развитию ацидоза. Важным следствием является увеличение вязкости крови, затрудняющее и без того ослабленную микроциркуляцию, повышающее риск образования тромбов.

Для восстановления ОЦК необходимо вливать жидкости, вводить препараты, снижающие вязкость крови и улучшающие ее реологические свойства, дезагреганты, антикоагулянты.

Увеличение ОЦК называется гиперволемией . Различают также 3 формы гиперволемий: простая, олигоцитемическая и полицитемическая.

Простая гиперволемия может наблюдатьсяпосле массивных гемотрансфузий и сопровождаться увеличением АД и МОС. Обычно носит временный характер, т.к., благодаря включению регуляторных механизмов, ОЦК возвращается к норме.

Олигоцитемическая гиперволемия характеризуется увеличением ОЦК и снижением гематокрита. Развивается обычно на фоне гипергидратаций, когда увеличение воды в организме сопровождается увеличением объема плазмы крови. Особенно опасно такое состояние у больных с почечной недостаточностью и хронической, застойной сердечной недостаточностью, т.к. при этом повышается АД, развивается перегрузка сердца и его гипертрофия, возникают отеки, в том числе опасные для жизни. Гиперволемия и гипергидратация у этих больных обычно поддерживается активацией РААС и развитием вторичного альдостеронизма.

Для восстановления ОЦК следует использовать диуретики, блокаторы РААС (главным образом блокаторы АПФ – см. патофизиологию водно-электролитного обмена).

На фоне почечной недостаточности у больных обычно развивается и анемия, которая в свою очередь еще больше уменьшает гематокрит, а состояние больного усугубляется развитием гипоксии гемического типа.

Полицитемическая гиперволемия характеризуется увеличением ОЦК и увеличением гематокрита. Классическим примером такого состояния является хроническое миелопролиферативное заболевание (см. ниже) – эритремия (болезнь Вакеза). У больных резко увеличено в крови содержание всех форменных элементов - особенно эритроцитов, а также тромбоцитов и лейкоцитов. Заболевание сопровождается артериальной гипертензией, перегрузкой сердца и его гипертрофией, нарушениями микроциркуляции и высоким риском тромбообразования. Больные часто умирают от инфарктов и инсультов. Принципы терапии см.ниже.

Регуляция кроветворения

Существуют специфические и неспецифические механизмы регулирования гемопоэза. К специфическим - относятся коротко- и длиннодистантные регуляторные механизмы.

Короткодистантные (локальные) механизмы регуляции кроветворения работают в системе гемопоэзиндуцирующего микроокружения (ГИМ) и распространяются преимущественно на I и II классы клеток кроветворного костного мозга. Морфологически ГИМ включает три компонента.

1. Тканевой - представлен клеточными элементами: костномозговыми, фибробластами, ретикулярными, стромальными механоцитами, жировыми, макрофагами, эндотелиальными клетками; волокнами и основным веществом соединительной ткани (коллагеном, гликозаминогликанами и т.д.). Клетки соединительной ткани активно участвуют в разнообразных межклеточных взаимодействиях и осуществляют транспорт метаболитов. Фибробласты вырабатывают большое количество биологически активных веществ: колониестимулирующий фактор, ростовые факторы, факторы, регулирующие остеогенез и т.п. В регуляции гемопоэза важную роль играют моноциты-макрофаги. Для костного мозга характерно наличие эритробластических островков - структурно-функциональных образований с центрально расположенным макрофагом, окруженным слоем эритроидных клеток, одной из функций которых является передача железа развивающимся эритробластам. Показано существование островков и для гранулоцитопоэза. Вместе с этим макрофаги вырабатывают КСФ, интерлейкины, факторы роста и другие биологически активные вещества, а также обладают морфогенетической функцией.

Существенное влияние на кроветворные клетки оказывают лимфоциты, которые вырабатывают вещества, действующие на пролиферацию стволовых кроветворных клеток, интерлейкины, обеспечивающие цитокиновый контроль пролиферации, межклеточные взаимодействия в ГИМ и многое другое.

Основное вещество соединительной ткани костного мозга представлено коллагеном, ретикулином, эластином, образующими сеть, в которой расположены кроветворные клетки. В состав основного вещества входят гликозаминогликаны (ГАГ), играющие большую роль в регуляции кроветворения. Они по-разному влияют на гемопоэз: кислые ГАГы поддерживают гранулоцитопоэз, нейтральные - эритропоэз.

Экстрацеллюлярная жидкость костного мозга содержит разнообразные и высокоактивные ферменты, практически отсутствующие в плазме крови.

2. Микрососудистый – представлен артериолами, капиллярами, венулами. Этот компонент обеспечивает оксигенацию, а также регуляцию поступления и выхода клеток в кровоток.

3. Нервный - осуществляет связь между кровеносными сосудами и стромальными элементами. Основная масса нервных волокон и окончаний сохраняет топографическую связь с кровеносными сосудами, тем самым регулирует клеточную трофику и вазомоторные реакции.

В целом локальный контроль гемопоэза осуществляется путем взаимодействия трех его компонентов.

Начиная с коммитированных клеток в регуляции гемопоэза на ведущую роль выходят механизмы длиннодистантной регуляции , имеющие для каждого ростка специфические факторы.

Длиннодистантная регуляция эритропоэза осуществляется в основном двумя системами: 1) эритропоэтин и ингибитор эритропоэза; 2) кейлон и антикейлон.

Центральное место в регуляции эритропоэза занимает эритропоэтин , выработка которого возрастает при действии на организм экстремальных факторов (различные виды гипоксий), требующих мобилизации эритроцитов. Эритропоэтин по химической природе относится к гликопротеинам. Основное место образования - почки. Эритропоэтин действует главным образом на эритропоэтин-чувствительные клетки, стимулируя их к пролиферации и дифференцировке. Его действие реализуется через систему циклических нуклеотидов (главным образом через цАМФ). Наряду со стимулятором, в регуляции эритропоэза участвует и ингибитор эритропоэза. Он образуется в почках, возможно в лимфатической системе и селезенке при полицитемии (увеличении числа эритроцитов в крови), при повышении парциального давления кислорода во вдыхаемом воздухе. Химическая природа близка к альбуминам.

Действие связано с угнетением дифференцировки и пролиферации эритроидных клеток, либо нейтрализации эритропоэтина, либо нарушение его синтеза.

Следующей системой является "кейлон-антикейлон". Обычно они выделяются зрелыми клетками и специфичны для каждого вида клеток. Кейлон - биологически активное вещество, ингибирующее пролиферацию той же клетки, которая ее выработала. Напротив, эритроцитарный антикейлон стимулирует вступление делящихся клеток в фазу синтеза ДНК. Предполагается, что данная система регулирует пролиферативную активность эритробластов, а при действии экстремальных факторов в действие вступает эритропоэтин.

Длиннодистантная регуляция лейкопоэза распространяет свое действие на коммитированные клетки, пролиферирующие и созревающие клетки костного мозга и осуществляется различными механизмами. Большое значение в регуляции лейкопоэза принадлежит колониестимулирующему фактору (КСФ), который действует на коммитированные клетки-предшественники миелопоэза и на более дифференцированные клетки гранулоцитопоэза, активируя в них синтез ДНК. Он образуется в костном мозге, лимфоцитах, макрофагах, стенке сосудов, а также ряда других клеток и тканей. Уровень КСФ в сыворотке крови регулируется почками. КСФ гетерогенен. Есть сведения, что КСФ может регулировать гранулоцитомоноцитопоэз (ГМ-КСФ), моноцитопоэз (М-КСФ), продукцию эозинофилов (ЭО-КСФ).

Не менее важную роль в регуляции лейкопоэза играют лейкопоэтины . В зависимости от вида клеток, пролиферацию которых стимулируют лейкопоэтины, выделяют несколько их разновидностей: нейтрофилопоэтин, моноцитопоэтин, эозинофилопоэитин, лимфоцитопоэтины. Лейкопоэтины образуются различными органами: печенью, селезенкой, почками, лейкоцитами. Особое место среди лейкопоэтинов занимает Leukocytosis Inducing factor (LIF), который способствует переходу депонированных гранулоцитов из костного мозга в циркулирующую кровь.

К гуморальным регуляторам лейкопоэза относят термостабильный и термолабильный факторы лейкоцитоза, выделенные Менкиным биохимическим путем из очага воспаления.

В настоящее время в качестве регуляторов лейкопоэза рассматриваются интерлейкины (цитокины) - продукты жизнедеятельности лимфоцитов и макрофагов, являющиеся одним из важнейших механизмов связи иммунокомпетентных клеток и регенерирующих тканей. Их основное свойство заключается в способности регулировать рост и дифференцировку кроветворных и иммунокомпетентных клеток. Они включаются в сложную сеть цитокинового контроля пролиферации и дифференцировки не только кроветворной, но и костной тканей. Существует несколько видов интерлейкинов. Так, ИЛ-2 является специфическим индуктором образования Т-лимфоцитов. ИЛ-3 - стимулирует пролиферативную активность различных ростков кроветворения. ИЛ-4 - продукт активированных Т-лимфоцитов, стимулирует выработку В-лимфоцитов. Вместе с этим, ИЛ-1 служит одним из важнейших системных регуляторов остеогенеза, оказывает активирующее влияние на пролиферацию и синтез белков фибробластами, регулирует рост и функциональное состояние остеобластов.

Наряду со стимуляторами, в регуляции лейкопоэза участвуют и ингибиторы . Помимо термостабильных и термолабильных факторов лейкопении Менкина, есть сведения о существовании ингибитора гранулоцитопоэза. Его основным источником являются гранулоциты и клетки костного мозга. Выделены гранулоцитарные кейлон и антикейлон.

Контроль за гемопоэзом осуществляется и на уровне зрелых, специализированных клеток, утративших дифференцировочные возможности и сопровождается активным разрушением таких клеток. При этом образующиеся продукты распада клеток крови оказывают стимулирующее действие на кроветворение. Так, продукты разрушения эритроцитов способны активировать эритропоэз, а продукты распада нейтрофилов - нейтрофилопоэз. Механизм действия таких регуляторов связан: с прямым действием на костный мозг, опосредуется через образование гемопоэтинов, а также путем изменения гемопоэзиндуцирующего микроокружения.

Такой механизм регулирования кроветворения встречается и в физиологических условиях. Он связан с внутрикостномозговой деструкцией клеток крови и подразумевает разрушение в нем маложизнеспособных клеток эритроидного и гранулоцитарного ряда - понятие о "неэффективных" эритро- и лейкопоэзе.

Наряду со специфической регуляцией гемопоэза существует ряд неспецифических механизмов, оказывающих воздействие на метаболизм многих клеток организма, включая и кроветворные.

Эндокринная регуляция кроветворения . Существенное влияние на кровь и кроветворение оказывает гипофиз . В экспериментах на животных установлено, что гипофизэктомия вызывает развитие микроцитарной анемии, ретикулоцитопении, уменьшение клеточности костного мозга.

Гормон передней доли гипофиза АКТГ увеличивает в периферической крови содержание эритроцитов и гемоглобина, угнетает миграцию стволовых кроветворных клеток и уменьшает эндогенное колониеобразование, одновременно угнетает лимфоидную ткань. СТГ - потенцирует реакцию эритропоэтинчувствительных клеток на эритропоэтин и не влияет на клетки-предшественники гранулоцитов и макрофагов. Средняя и задняя доли гипофиза не оказывают заметного действия на гемопоэз.

Надпочечники . При адреналэктомии уменьшается клеточность костного мозга. Глюкокортикоиды стимулируют костномозговое кроветворение, ускоряя созревание и выход в кровь гранулоцитов, с одновременным уменьшением числа эозинофилов и лимфоцитов.

Половые железы . Мужские и женские половые гормоны по-разному влияют на кроветворение. Эстрогены обладают способностью тормозить костномозговое кроветворение. В эксперименте введение эстрона приводит к развитию остеосклероза и замещению костного мозга костной тканью со снижением числа стволовых кроветворных клеток. Андрогены - стимулируют эритропоэз. Тестостерон при введении животным стимулирует все звенья образования гранулоцитов.

В целом, гормоны обладают прямым действием на пролиферацию и дифференцировку кроветворных клеток, изменяют их чувствительность к специфическим регуляторам, формируют гематологические сдвиги, характерные для стресс-реакции.

Нервная регуляция кроветворения . Кора головного мозга оказывает регулирующее влияние на гемопоэз. При экспериментальных неврозах развивается анемия и ретикулоцитопения. Различные отделы гипоталамуса могут по-разному воздействовать на кровь. Так, стимуляция заднего гипоталамуса стимулирует эритропоэз, переднего - тормозит эритропоэз. При удалении мозжечка может развиться макроцитарная анемия.

Влияние нервной системы на кроветворение реализуется и через изменение гемодинамики. Симпатический и парасимпатический отделы нервной системы играют определенную роль в изменении состава крови: раздражение симпатического отдела и его медиаторы увеличивает число клеток крови, парасимпатический - уменьшает.

Наряду с указанной специфической и неспецифической регуляцией существуют механизмы иммунологической и метаболической регуляции кроветворения. Так, регулирующее влияние иммунной системы на кроветворение базируется на общности этих систем и важнейшей роли лимфоцитов в гемопоэзе, а также наличии у лимфоцитов морфогенетической функции, которая обеспечивает постоянство клеточного состава организма.

Метаболический контроль осуществляется путем прямого (метаболиты выступают в качестве индукторов пролиферации клеток) и опосредованного (метаболиты изменяют метаболизм клеток и тем самым действуют на пролиферацию - циклические нуклеотиды) влияния на кроветворение.

Патофизиология эритрона.

Эритрон – это совокупность зрелых и незрелых клеток красной крови – эритроцитов. Эритроциты рождаются в красном костном мозге из стволовой клетки, как и все другие форменные элементы. Монопотентными клетками, из которых могут развиваться только эритроциты, являются БОЕэр (бурстобразующие единицы эритроидные), которые под влиянием почечных эритропоэтинов (ЭПО), интерлейкина –3 (ИЛ-3) и колониестимулирующих факторов (КСФ) превращаются в КОЕэр (колониеобразующие единицы эритроидные), также реагирующие на ЭПО, и затем - в эритробласты. Эритробласты, одновременно пролиферируя, дифференцируются в пронормоциты, далее – нормоциты базофильные, -нормоциты полихроматофильные и нормоциты оксифильные. Нормоциты (старое название нормобласты) – это класс созревающих ядерных предшественников эритроцитов. Последней клеткой, способной к делению, является полихроматофильный нормоцит. На стадии нормоцитов происходит синтез гемоглобина. Оксифильные нормоциты, теряя ядра, через стадию ретикулоцита превращаются в зрелые безъядерные оксифильные эритроциты. 10 – 15 % предшественников эритроцитов гибнет еще в костном мозге, что носит название «неэффективный эритропоэз ».

В периферической крови здорового человека ядерных предшественников эритроцитов быть не должно. Из незрелых клеток красного ростка в крови в норме встречаются только ретикулоциты (или полихроматофильные эритроциты) от двух до десяти на тысячу (2-10%o или 0,2 – 1%). Ретикулоциты (клетки содержащие в цитоплазме сетчатую зернистость – остатки полирибосом) выявляются только при специальной суправитальной окраске красителем бриллианткрезилблау. Эти же клетки при окраске по Райту или по Романовскому-Гимза, воспринимая и кислые и основные красители, имеют сиреневый цвет цитоплазмы без зернистости.

Основную массу клеток периферической крови составляют зрелые безядерные оксифильные эритроциты. Их количество у мужчин – 4–5 ´ 10 12 /л, у женщин – 3,7–4,7 ´ 10 12 /л. Поэтому гематокрит у мужчин – 41–53%, а у женщин – 36–48%. Общее содержание гемоглобина (Нb) – 130–160 г/л у мужчин и 120–140 г/л у женщин. Среднее содержание гемоглобина (ССГ = Нb г/л:число Эр/л) - 25,4 – 34,6 пг/кл. Средняя концентрация гемоглобина (СКГ = Нb г/л:Нt л/л) – 310 – 360 г/л концентрата эритроцитов. Средняя концентрация клеточного гемоглобина (СККГ) = 32 – 36%. Средний диаметр эритроцитов 6 – 8 мкм, а средний объем клетки (СОК или MCV) – 80 – 95 мкм 3 . Скорость оседания эритроцитов (СОЭ) у мужчин – 1 – 10 мм /час, а у женщин – 2 – 15 мм/час. Осмотическая резистентность эритроцитов (ОРЭ), т.е. их устойчивость к гипотоническим растворам NaCl: минимальная – 0,48 – 0,44%, а максимальная – 0,32 – 0,28% NaCl. Благодаря своей двояковогнутой форме нормальные эритроциты имеют резерв прочности при попадании в гипотоническую среду. Их гемолизу предшествует перемещение воды в клетки и превращение их в легко разрушающиеся сфероциты.

Максимальная продолжительность жизни эритроцитов в крови – 100 – 120 суток. Разрушаются отжившие эритроциты в ретикулоэндотелиальной системе, главным образом в селезенке («кладбище эритроцитов»). При разрушении эритроцитов путем последовательных превращений образуется пигмент билирубин.

Патология эритрона может выражаться как в изменении количества эритроцитов, так и в изменении их морфологических и функциональных свойств. Нарушения могут происходить на этапе их рождения в костном мозге, на этапе их циркуляции в периферической крови и на этапе их гибели в РЭС.

Эритроцитозы

Эритроцитоз – состояние, характеризующееся увеличением содержания эритроцитов и гемоглобина в единице объема крови и повышением гематокрита, без признаков системной гиперплазии костномозговой ткани. Эритроцитоз может быть относительным и абсолютным, приобретенным и наследственным.

Относительный эритроцитоз является следствием уменьшения объема плазмы крови главным образом на фоне гипогидратации (см. выше полицитемическая гиповолемия). Из-за уменьшения объема плазмы в единице объема крови увеличивается содержание эритроцитов, гемоглобина и растет Ht, повышается вязкость крови и нарушается микроциркуляция. И хотя кислородная емкость крови не изменяется, ткани могут испытывать кислородное голодание по причине нарушения кровообращения.

Абсолютные эритроцитозы приобретенные (вторичные) обычно являются адекватной реакцией организма на гипоксию тканей. При дефиците кислорода в воздухе (например, у жителей высокогорья), при хронической дыхательной и сердечной недостаточности, при увеличении сродства Нb к О 2 и ослаблении диссоциации оксигемоглобина в тканях, при угнетении тканевого дыхания и т.п. включается универсальный компенсаторный механизм: в почках (главным образом) вырабатываются эритропоэтины (ЭПО), под влиянием которых чувствительные к ним клетки (см. выше) усиливают свою пролиферацию и в кровь из костного мозга поступает большее число эритроцитов (так называемый физиологический , гипоксический, компенсаторный эритроцитоз). Это сопровождается увеличением кислородной емкости крови и усилением ее дыхательной функции.

Абсолютные эритроцитозы наследственные (первичные) могут быть нескольких видов:

· Аутосомно-рецессивный дефект в аминокислотных участках Нb, ответственных за его дезоксигенацию, приводит к увеличению сродства Нb к кислороду и затрудняет диссоциацию оксигемоглобина в тканях, которые получают меньше кислорода. В ответ на гипоксию развивается эритроцитоз.

· Понижение в эритроцитах 2,3 – дифосфоглицерата (может снижаться на 70%) также приводит к увеличению сродства Нв к кислороду и затруднению диссоциации оксигемоглобина. Результат аналогичный – в ответ на гипоксию вырабатываются ЭПО и усиливается эритропоэз.

· Постоянная повышенная продукция эритропоэтинов почками, которые по причине аутосомно-рецессивного генетического дефекта перестают адекватно реагировать на уровень оксигенации тканей.

· Генетически обусловленная усиленная пролиферация эритроидных клеток в костном мозге без увеличения ЭПО.

Наследственные эритроцитозы являются патологическими , характеризуются увеличением Ht, вязкости крови и нарушением микроциркуляции, гипоксией тканей (особенно при увеличении сродства Нb к О 2), увеличением селезенки (рабочая гипертрофия), могут сопровождаться головными болями, повышенной утомляемостью, варикозным расширением сосудов, тромбозами и другими осложнениями.

Анемии

Анемия (дословно – бескровие, или общее малокровие ) – это клинико-гематологический синдром, характеризующийся уменьшением содержания гемоглобина и (за редким исключением) числа эритроцитов в единице объема крови .

В результате уменьшения количества эритроцитов снижается и показатель гематокрита.

Поскольку для всех анемий характерен низкий уровень гемоглобина, а значит снижена кислородная емкость крови и нарушена ее дыхательная функция, то у всех больных, страдающих анемией, развивается гипоксический синдром гемического типа . Его клинические проявления: бледность кожных покровов и слизистых оболочек, слабость, повышенная утомляемость, головокружение, может быть головная боль, одышка, сердцебиение с тахикардией или аритмией, боли в сердце, иногда изменения на ЭКГ. Так как на фоне низкого гематокрита снижается вязкость крови, то следствием этого обычно является ускорение СОЭ (чем меньше эритроцитов, тем быстрее они оседают), а также такие симптомы, как шум в ушах, систолический шум на верхушке сердца и шум «волчка» на яремных венах.

Классификации анемий.

Существует несколько подходов к классификации анемий: по патогенезу, по типу эритропоэза, по цветовому показателю (ЦП), по СККГ (см. выше), по диаметру эритроцитов и по СОК (см. выше), по функциональному состоянию костного мозга (его регенераторной способности).

По патогенезу все анемии делят на три группы:

Анемии, вследствие нарушенного кровообразования (гемопоэза). В эту группу входят все дефицитные анемии: железодефицитные (ЖДА), В 12 - и фолиеводефицитные анемии, сидеробластные анемии (СБА), анемии при дефиците белка, микроэлементов и других витаминов, а также анемии, обусловленные нарушениями самого костного мозга – гипо-и апластические анемии. В последние годы отдельно рассматривают анемии при хронических заболеваниях (АХЗ).

  • Анализ собственного капитала по данным отчета об изменениях капитала.

  • Гематокрит, или htc, представляет собой один из показателей, определяемых при расшифровке общего анализа крови. Его выяснение имеет значение для выявления ряда различных патологий. Удобство метода заключается в том, что определяют этот показатель автоматически с помощью анализатора.

    Норма hct

    Нормальный показатель hct зависит от половой принадлежности, а также от возраста. Норма для разных категорий пациентов выглядит таким образом:

    • мужчины от 18 до 45 лет - 39–49 %;
    • мужчины от 45 лет и старше - 40–50 %;
    • женщины от 18 до 45 лет - 35–45 %;
    • женщины от 45 лет и старше - 35–47 %;
    • новорожденные дети - 33–65 %;
    • дети от 2 недель до 1 года - 33–44 %;
    • дети от 1 года до 5 лет - 32–41 %;
    • дети от 6 лет до 11 лет - 33–41 %;
    • подростки от 12 до 17 лет: парни - 35–45 %; девушки - 34–44 %.

    Причины повышения hct

    Повышение показателя hct возможно в случаях:

    1. Продолжительной гипоксии (недостатка кислорода): при этом организм старается повысить эффективность транспортировки кислорода по кровяной системе от легких во все клетки организма, повышая количество гемоглобина и абсолютное содержание эритроцитов (в которых находится гемоглобин). Проявляется у курящих людей, туристов, которые побывали высоко в горах, людей с заболеваниями дыхательной системы, горцев.
    2. Дегидратации (обезвоживания): зачастую возникает при наличии инфекционных заболеваний ЖКТ, перитоните, обширных ожогах.
    3. Болезни крови и онкологических заболеваний почек: чрезмерная густота крови может указывать на наличие лейкоза либо рака почек. При этом повышается образование эритропоэтина. При подозрении на такие патологии следует пройти дополнительное обследование.

    Уровень hct в анализе крови может повышаться в случае увеличения количества эритроцитов в крови. Подобное состояние наблюдается при таких заболеваниях и состояниях:

    1. Развитии поликистоза почек либо гидронефроза.
    2. Эритремии.
    3. Длительной терапии глюкокортикостероидами.

    Причины снижения hct

    Снижение hct встречается реже, чем его повышение. Понижение показателя hct возможно в таких случаях:

    1. Наличия сильного кровотечения.
    2. Беременности.
    3. При медленном формировании эритроцитов.
    4. Наличия анемии.
    5. При увеличении объема крови в организме.
    6. При быстрой гибели эритроцитов.
    7. Разжижения крови.

    Понижение значения гематокрита иногда свидетельствует о присутствии такой патологии, как гипопластическая анемия.

    Гипергидратация не говорит о том, что пациент употребляет повышенное количество жидкости, но при этом в крови присутствует ее чрезмерное количество. Причиной развития такого состояния часто являются отравление, почечная недостаточность, присутствие в организме вирусов либо других возбудителей инфекции. Все эти факторы приводят к отклонению показателя hct от нормы.

    Наличие гиперпротеинемии говорит о том, что белок в организме усиленно вбирает жидкость, и это приводит к уменьшению густоты крови. А увеличение количества белка в крови может свидетельствовать о заболеваниях печени.

    Общий анализ крови помогает определить уровень гематокрита. Такой результат будет выражаться в процентном соотношении форменных составляющих к общему объему крови. Этот показатель также отражает содержание эритроцитов в крови, так как эти клетки составляют основную массу форменных элементов. Иногда показатель гематокрита выражается в литрах на литр.

    Пониженный показатель гематокрита в анализе должен обратить на себя особое внимание пациентов, так как свидетельствует о плохом здоровье.

    Сегодня этот анализ делают в различных диагностических центрах и специализированных клиниках.

    Существуют и другие причины сниженного показателя hct:

    1. Снижение значения hct может происходить при наличии воспалительных процессов в хронической форме.
    2. Снижение гематокрита также может свидетельствовать о возникновении онкологии.
    3. Зачастую показатель снижается при соблюдении строгой диеты, голодании либо неправильном рационе.
    4. Показатель может снижаться при длительном соблюдении постельного режима.
    5. Значение hct может быть ниже нормы при болезнях сердца и почек. При наличии таких заболеваний повышается объем циркулирующей плазмы, что приводит к снижению гематокрита.

    В случае снижения уровня hct следует пройти комплексное обследование организма. Комплекс диагностических мероприятий поможет установить причину понижения гематокрита и своевременно выявить развитие заболевания.

    Иногда встречаются случаи неправильного определения показателя hct. При расшифровке анализа крови такой показатель зачастую бывает понижен. В таком случае можно сказать о ложном показателе гематокрита.

    Ложное понижение гематокрита возможно в таких случаях:

    1. При заборе крови на анализ пациент находится в лежачем положении.
    2. При длительном сжимании вены жгутом.
    3. В случае разжижения крови. Такая ситуация возможна, если кровь для анализа отбирается в месте недавнего вливания.

    Уровень hct при беременности

    Гематокрит является показателем количества гемоглобина в крови пациента. При беременности повышается количество эритроцитов в крови, так как общий объем ее в организме возрастает. При посещении врача-гинеколога беременным женщинам в обязательном порядке проводится исследование на гематокрит. Если в расшифровке его показатель снижен, то это может указывать на развитие анемии. При отсутствии каких-либо заболеваний при беременности уровень гематокрита увеличивается и приходит в норму в последнем триместре беременности.

    Естественно, что при беременности в организме женщины происходят значительные изменения, которые оказывают влияние на кровеносную систему. Во время родов женщина может потерять значительное количество крови. В случае пониженного гематокрита на момент родов женщине может потребоваться переливание крови, чтобы избежать угрозы ее жизни.

    Признаки патологии и лечение

    На снижение показателя hct может указывать:

    • регулярная усталость;
    • повышение сердцебиения (тахикардия);
    • бледность кожных покровов;
    • наличие одышки;
    • выпадение волос.

    Признаки сильнее проявляются при беременности и в случае острой анемии.

    При пониженном уровне гематокрита в расшифровке анализа крови следует избавиться от причины такого состояния. Если к нарушениям привел некорректный рацион, пациенту назначают прием препаратов с содержанием железа, а также особую диету, включающую употребление в пищу продуктов с его повышенным содержанием. К таким продуктам относятся: печень, орехи, яблоки, яйца, фрукты и мясо красных сортов. Повысить гематокрит можно с помощь Гематогена.

    Если показатель понизился в связи с приемом каких-либо препаратов, следует отказаться от их употребления. При беременности снижение уровня hct не связано с болезнями, для его повышения назначается прием препаратов, которые содержат в составе железо.

    В целом избавление от патологии предполагает лечение заболеваний, повлекших за собой снижение гематокрита. Соответственно, лечение назначается в зависимости от причины возникновения такого состояния.

    В заключение следует сказать, что уровень гематокрита является достаточно важным показателем в расшифровке анализа крови, отклонения его от нормы могут свидетельствовать о множестве нарушений в организме. Нужно помнить, что понижение уровня hct может означать наличие таких заболеваний, как анемия, кровотечение, развитие онкологии. Именно поэтому достаточно важно своевременно выявить такое состояние и обратиться за помощью к специалисту для установления причины его возникновения.

    Венозное давление

    Кровяное давление человека – это напряжение, которое оказывает кровь на стенки сосудов человека. Когда говорят о давлении, зачастую речь идет об артериальном давлении (которое кровь оказывает на артерии). Все знают его норму, а многие имеют дома механический или электронный тонометр для его измерения. Кроме артериального давления, у человека определяют венозное кровяное давление.

    Венозное кровяное давление показывает, с какой силой кровь из вен давит на сердце. Этот показатель является важным фактором определения здоровья человека, и отклонение его от нормы может свидетельствовать о наличии заболеваний сердца и легких.

    Норма давления крови из вен на сердце

    Вены – это сосуды, по которым кровь движется к сердцу, в отличие от артерий, где она идет от сердца к органам. В сравнении с остальными видами, давление в венах считается самым.

    Показатели давления венозной крови отображаются в миллиметрах водного столба. Нормальным считается давление в пределах от 60 до 100 мм вод. ст. Это средний показатель, который меняется при любых движениях тела человека.

    Для определения кровяного давления в правом предсердии измеряют центральное венозное давление

    На поток крови в венах могут влиять такие факторы:

    1. Общий объем крови. При сильном обезвоживании организма или значительных кровопотерях у больного происходит резкое снижение давления.
    2. Тонус и эластичность вен. Заболевания вен негативно отражаются на потоке крови из-за видоизменения их стенок.
    3. Дыхательный процесс. Вены, находящиеся в грудной клетке человека, ежесекундно подвергаются изменениям в процессе дыхания. При выдохе давление увеличивается, а при вдохе – понижается.
    4. Сокращение сердечных мышц. При сердечных сокращениях происходит движение потока крови по венам. При энергичных и увеличенных сокращениях, связанных с физической активностью, объем крови увеличивается.
    5. Работа скелетных мышц. В процессе физических нагрузок мышцы человека активно сокращаются, что повышает венозное давление.

    Измерение давления венозной крови – очень важная процедура, которая может выражать общее состояние больного, а также показывать, подходит ли пациенту уже назначенное лечение.

    Измерение давления вен на предсердие необходимо в таких ситуациях:

    1. Перед проведением операций на сердце.
    2. При необходимости провести больному искусственную вентиляцию легких.
    3. При значительных кровопотерях человека.

    Методика измерения

    Измерение давления вен осуществляется прямым и непрямым методом. Первый метод показывает точный результат, так как при его измерении больному вводят в вену катетер и измеряют давление напрямую. Второй (непрямой) метод показывает менее точные и часто завышенные показатели.

    Измерение венозного давления проводят прямым и непрямым методами

    Для измерения давления прямым методом, необходимо ввести катетер в верхнюю или нижнюю полую вену. Полые вены – это две основные вены, которые впадают в сердце человека. Нижняя полая вена несет кровь из нижних частей тела – брюшной полости, нижних конечностей и органов таза, а верхняя – из области головы, шеи, груди и верхних конечностей.

    Аппарат Вальдмана считается одним из точных методов определения такого давления. Это самый популярный способ, который используется при реабилитационном лечении больных, и выполнить его самому в домашних условиях не получится.

    Для определения давления аппаратом Вальдмана понадобится:

    • катетер;
    • флеботонометр (стеклянная трубка, соединенная со штативом, на котором находится шкала измерения давления);
    • изотонический раствор натрия хлорида.

    Кроме аппарата Вальдмана, давление венозной крови можно измерять такими способами:

    • с помощью водного манометра;
    • при помощи тензометрического датчика (тогда показатель давления отобразится на мониторе).

    Во время измерения давления больной должен находиться в положении лежа. Процедуру проводят утром на пустой желудок, после полного расслабления пациента.

    Опасность повышенного давления в венах

    При повышенном давлении в венах у больного заметна пульсация внутренней яремной вены, которая находится на шее человека снаружи сонной артерии. Если результатом измерения венозного давления больного оказался показатель, который выше 110 мм вод. ст., тогда он свидетельствует о возможных сердечно-сосудистых заболеваниях пациента.

    Давление в венах зависит от множества факторов в том числе и возраста

    Основные причины повышенного потока крови к правому предсердию:

    1. Гиперволемия.
    2. Сердечная недостаточность.
    3. Аритмия.
    4. Легочная гипертензия.
    5. Инфаркт миокарда.
    6. Нарушение деятельности правого желудочка.

    На повышенное венозное напряжения крови в организме может также повлиять дисфункция почек, при которой появляется избыточное количество жидкости в организме (гипергидратация). На сердечную недостаточность в такой ситуации часто указывает наличие тахикардии или гипотонии.

    Так как показатель венозного потока крови является величиной непостоянной, врач устанавливает факт повышенного давления при определении общей картины протекания конкретного заболевания. В случаях, когда больному необходимо переливание крови, во время проведения этой процедуры всегда контролируют уровень кровяного венозного давления который может доходить до 200 мм вод. ст.

    Пониженный показатель венозного потока крови

    Венозная гипотония у пациента возникает при понижении показателя до 30 мм вод. ст. и ниже. Она может наступить при физическом истощении больного и потере мышечной массы, в связи с отсутствием движения в процессе болезни. При употреблении больным большого количества диуретиков, которые выводят жидкость, также происходит резкое снижение давления вен.

    Повышение центрального венозного давления обусловлено гиперволемией и сердечной недостаточностью правых отделов сердца

    Низкий показатель венозного давления может предполагать такие процессы:

    1. Заражение организма через кровь.
    2. Нарушения в работе нервной системы функций, отвечающих за кровообращение и дыхание.
    3. Анафилактический шок.
    4. Сильное отравление организма (при обильной рвоте и диарее происходит быстрая потеря жидкости).
    5. Наличие астении.
    6. Употребление препаратов, расширяющих сосуды.

    На уменьшение объема венозной крови в организме может также повлиять развитие сахарного диабета, болезни желудка и почек.

    Оценка состояния больного и показателя его давления происходит в комплексе с результатами всех анализов и необходимых исследований.

    Лечение при отклонениях показателя от нормы

    Показатель венозного давления – важный фактор, влияющий на общее состояние человека. В отличие от артериального давления, венозное не является симптоматическим, для его нормализации необходимо устранить первопричину отклонения показателя. Перед утверждением лечения проводится медицинская диагностика больного, которая показывает врачу общую картину здоровья пациента. При назначении терапии врач должен учитывать возможные противопоказания.

    Для общей профилактики больному могут быть назначены флеботоники и ангиопротекторы – препараты, влияющие на общий тонус вен, улучшающие их состояние и стимулирующие обмен веществ в организме. Чаще всего назначается «Венотон», «Детралекс», «Веносмин». При пониженном уровне давления из-за нехватки циркулирующей крови больному проводят вливание инфузийных растворов или кровезаменителей. Низкое давление часто сопровождается гипоксией, при которой человеку назначают препараты для улучшения мозгового кровообращения.

    Если у пациента существуют сердечно-сосудистые заболевания или повышенное АД, лечение должно быть направлено на нормализацию работы сердечной мышцы. Часто больному назначают различные виды диуретиков, ингибиторов АПФ, антагонистов кальция и другие гипертензивные препараты, снижающие давление.

    Прогноз

    Проблемы венозного потока зачастую возникают при тяжелых заболеваниях человека, поэтому прогноз выздоровления зависит от самой причины возникновения этого перепада.

    1. Выздоровление при заболеваниях сердца и легких зависит от конкретного протекания болезни и её тяжести.
    2. При низком объеме венозной крови необходимо вовремя восполнить недостаток жидкости в организме с помощью внутривенных вливаний.

    Большинство причин, влияющих на изменение давления в венах, будут положительно спрогнозированы при быстром предоставлении медицинской помощи больному. Отличной профилактикой сердечных заболеваний послужит правильное питание и правильный режим питья человека. Свежий воздух и умеренные физические нагрузки станут залогом здоровья сердца и сосудов.

    Post navigation

    Причины, симптомы, лечение гиповолемического шока

    Ряд факторов может вызывать резкое и выраженное уменьшение объема циркулирующей в организме крови, и такое нарушение провоцирует наступление гиповолемического шока. Это критическое состояние может провоцироваться разными причинами: массивной кровопотерей, безвозвратной утратой плазмы, передепонированием части крови в капилляры или приводящей к обезвоживанию рвотой или диареей.

    В норме в организме человека присутствует определенный объем крови. Около 80-90% от общего объема является циркулирующей кровью, а 10-20% – депонированной. Первая часть выполняет функции крови, а вторая является своеобразным «запасом» и скапливается в селезенке, печени и костях.

    Если значительная часть циркулирующей крови утрачивается, то происходит раздражение барорецепторов, и депонированная часть выходит в кровеносное русло. Такое «пополнение» помогает организму справляться с нехваткой крови, и сердце может нормально функционировать.

    Если же объема депонированной крови оказалось недостаточно для пополнения кровяного русла (например, кровопотеря была очень массивной), то периферические сосуды резко суживаются, а кровь циркулирует только по центральным сосудам и доставляется в головной мозг, сердце и легкие. Другие органы начинают страдать от гипоксии и недостаточности кровообращения, у больного развивается гиповолемический шок, и при отсутствии своевременной помощи может наступить летальный исход.

    По своей сути гиповолемический шок является компенсаторной реакцией. При определенных условиях он помогает организму справиться со снижением объема циркулирующей крови. Однако при невозможности полной компенсации шоковая реакция становится декомпенсированной и вызывает смерть больного.

    В этой статье мы ознакомим вас с причинами, симптомами и методами лечения гиповолемического шока. Эта информация поможет вам вовремя распознать это критическое состояние и принять необходимые меры по его устранению.

    Причины

    Гиповолемия. Схематическое изображение

    Вызвать развитие гиповолемического шока могут четыре основные причины:

    • массивное наружное или внутреннее кровотечение;
    • утрата плазмы крови или ее жидкой части при различных патологических процессах или травмах;
    • обезвоживание при выраженной рвоте или диарее;
    • передепонирование значительного объема крови в капилляры.

    Причинами кровопотери могут становиться массивные кровотечения, возникающие при тяжелых травмах, переломах, некоторых заболеваниях желудочно-кишечного тракта, дыхательной, мочеполовой системы и других органов. Массивная потеря плазмы более характерна для обширных ожогов, а плазмоподобная жидкость может безвозвратно утрачиваться, скапливаясь в кишечнике, при кишечной непроходимости, перитонитах или остром приступе панкреатита. Утрата изотонической жидкости провоцируется сильной рвотой или диареей, возникающей при кишечных инфекциях: сальмонеллезе, холере, стафилококковой интоксикации и пр. А при травматическом шоке и некоторых острых инфекциях значительная часть крови может депонироваться в капиллярах.

    Механизм развития

    В развитии гиповолемического шока выделяют три фазы:

    1. Под воздействием вышеописанных факторов объем циркулирующей крови снижается и к сердцу поступает меньший объем венозной крови. В результате его ударный объем и центральное венозное давление снижается. В организме запускаются компенсаторные механизмы, и часть межтканевой жидкости поступает в капилляры.
    2. Резкое уменьшение объема циркулирующей крови стимулирует симпатоадреналовую систему и провоцирует раздражение барорецепторов. В ответ на это увеличивается выработка катехоламинов, и уровень адреналина и норадреналина в крови существенно повышается. Под их воздействием периферические сосуды резко суживаются, а частота сердечных сокращений повышается. Такие изменения приводят к сокращению подачи крови к мышцам, коже и почти всем внутренним органам. Организм подобным образом пытается компенсировать дефицит крови, и она доставляется только к жизненноважным органам – сердцу, мозгу и легким. На протяжении непродолжительного времени такая защита оказывается эффективной, но длительная недостаточность кровообращения в других тканях и органах приводит к их ишемии и гипоксии. При быстром восстановлении объема крови после первой шоковой реакции наступает нормализация состояния. Если же этот объем не был быстро пополнен, то сужение периферических сосудов сменяется параличом, а объем циркулирующей крови уменьшается еще больше из-за перехода жидкой части крови в ткани.
    3. Эта стадия и является гиповолемическим шоком. Из-за постоянного снижения объема крови ее приток к сердцу становится меньшим, и артериальное давление снижается. Все органы начинают страдать от ишемии, и развивается полиорганная недостаточность. От недостатка крови ткани и органы страдают в следующей последовательности: кожа, мышцы скелета и почки, органы брюшной полости и, в последнюю очередь, сердце, мозг и легкие.

    Можно сделать следующий вывод: гиповолемический шок может быть компенсированным и декомпенсированным. При компенсации степень уменьшения объема крови позволяет поддерживать нормальное кровоснабжение жизненноважных органов. Критическое уменьшение объема крови вызывает некомпенсированную шоковую реакцию, которая при отсутствии своевременного пополнения кровяного русла и реанимационных мероприятий быстро приводит к смерти пострадавшего.

    Симптомы

    Выраженность клинических симптомов при гиповолемическом шоке всецело зависит от объема и скорости утраты крови. Кроме этого, течение этого жизнеугрожающего состояния может зависеть и от ряда других дополнительных факторов: возраст, конституция пострадавшего и наличие у него тяжелых заболеваний (особенно сахарного диабета, патологий сердца, почек или легких).

    Основные симптомы гиповолемического шока таковы:

    • нарастающее учащение пульса и слабый пульс;
    • гипотония;
    • головокружение;
    • сонливость;
    • бледность с акроцианозом губ и ногтевых фаланг;
    • тошнота;
    • одышка;
    • изменения сознания (от заторможенности до возбуждения).

    При появлении признаков шока рекомендуется сразу вызвать бригаду «Скорой». Такая экстренность объясняется тем, что шок может прогрессировать, и устранить причины его развития и восполнить утраченную жидкость или кровь возможно только при помощи врача.

    Длительное отсутствие достаточного объема крови в организме может вызвать:

    • необратимые повреждения почек и головного мозга;
    • сердечный приступ;
    • гангрену конечностей;
    • летальный исход.

    Специалисты выделяют четыре степени тяжести гиповолемического шока.

    I степень

    Наблюдается при утрате не более 15% от объема циркулирующей крови. В таких случаях, если пострадавший лежит, то у него отсутствуют признаки кровопотери. Единственным ее симптомом может быть тахикардия, возникающая при переходе тела в вертикальное положение – частота пульса возрастает на 20 ударов.

    II степень

    Наблюдается при утрате 20-25% циркулирующей крови. У пострадавшего, находящегося в вертикальном положении, наблюдаются следующие симптомы кровопотери:

    • гипотония (систолическое давление не ниже 100 мм рт. ст.);
    • тахикардия (не более 100 ударов в минуту).

    В горизонтальном положении тела показатели давления возвращаются в норму и общее самочувствие улучшается.

    III степень

    Наблюдается при утрате 30-40% циркулирующей крови. У больного появляется бледность, кожа становится прохладной на ощупь, снижается объем выделяемой мочи. Артериальное давление опускается ниже отметки 100 мм рт. ст., а пульс учащается до более 100-110 ударов в минуту.

    IV степень

    Наблюдается при утрате более 40% циркулирующей крови. У пострадавшего кожа становится бледной, мраморной и холодной на ощупь. Давление значительно снижается, а пульс на периферических артериях не прощупывается. Отмечается нарушение сознания (вплоть до комы).

    Неотложная помощь

    Гиповолемию I степени устраняют путем питья подсоленной воды либо специальных растворов для регидратации

    Легкие проявления гиповолемии могут устраняться приемом слегка подсоленной воды (выпивать ее следует медленно, небольшими глотками). При сильном поносе, рвоте или высокой температуре, вызывающей обильное потоотделение, больному следует пить как можно больше чая, морсов, соков, отваров или соляных растворов (Рингера, Регидрон и пр.). Немедленное обращение к врачу при таких гиповолемических реакциях так же является обязательным.

    При выявлении более тяжелых признаков шока – значительное снижение давление, ослабление и учащение пульса, бледности и похолодания кожных покровов – необходимо вызвать «Скорую» и приступить к оказанию доврачебной неотложной помощи:

    1. Уложить пострадавшего на ровную поверхность, приподняв ноги примерно на 30 см. Обеспечить ему покой и неподвижность. Если пострадавший находится в бессознательном состоянии, то для профилактики захлебывания рвотными массами голову необходимо повернуть набок.
    2. При подозрении на травму спины или головы воздержаться от перемещения больного или выполнять эти действия крайне бережно и аккуратно.
    3. При наружном кровотечении провести его остановку: иммобилизация конечности, давящая повязка или наложение жгута (обязательно указать время его наложения). При внутреннем кровотечении приложить к области его источника пузырь со льдом.
    4. При открытых ранах очистить их от видимых загрязнений, обработать антисептическим раствором и наложить повязку из стерильного бинта.
    5. Обеспечить оптимальный температурный режим. Пострадавший должен находиться в тепле.

    Что делать нельзя

    1. Предлагать больному воду, чай или другие жидкости, т. к. их попадание в дыхательные пути может провоцировать удушье.
    2. Приподнимать голову, т. к. такое действие вызовет еще больший отток крови от головного мозга.
    3. Вынимать застрявшие в ране предметы (нож, прут, стекло и т. п.), т. к. такое действие может усилить кровотечение.

    Медицинская помощь на догоспитальном этапе

    После прибытия «Скорой» начинается выполнение инфузионной терапии, направленной на восполнение утраченной крови. Для этого вену больного пунктируют и вводят физиологический раствор, 5% раствор глюкозы, Альбумина или Реополиглюкина. Кроме этого, вводятся сердечные гликозиды, оказывающие поддержку сердечной деятельности, и другие средства для симптоматической терапии.

    Во время транспортировки больного в стационар медики проводят постоянный контроль показателей артериального давления и пульса. Их измерение выполняется через каждые 30 минут.

    Лечение

    В зависимости от предварительного диагноза больного с гиповолемическим шоком госпитализируют в отделение реанимации лечебного учреждения хирургического профиля или в палату интенсивной терапии инфекционного отделения. После проведения диагностики, объем которой определяется клиническим случаем, принимается решение о необходимости хирургического лечения или составляется план консервативной терапии.

    Цели лечения при гиповолемическом шоке направлены на:

    • восстановление объема циркулирующей крови;
    • нормализацию кровообращения головного мозга, легких, сердца и устранение гипоксии;
    • стабилизацию кислотно-щелочного и электролитного баланса;
    • нормализацию кровоснабжения почек и восстановление их функций;
    • поддержку деятельности головного мозга и сердца.

    Хирургическое лечение

    Необходимость в проведении хирургической операции возникает при невозможности устранения причины утраты крови другими способами. Метод и сроки проведения вмешательства в таких случаях определяются клиническим случаем.

    Консервативная терапия

    Больного с гиповолемическим шоком госпитализируют в палату реанимации и интенсивной терапии

    После поступления в стационар и постановки предварительного диагноза для восстановления утраченной крови из вены больного выполняется забор крови для определения группы и резус-фактора. Пока этот показатель неизвестен, в подключичную вену устанавливают катетер или пунктируют 2-3 вены для вливания больших объемов жидкости и крови. Для контроля объема выводимой мочи и эффективности коррекции шокового состояния в мочевой пузырь вводится катетер.

    Для восполнения объема крови могут применяться:

    • кровезаменители (растворы Полиглюкина, Реополиглюкина, Альбумина, Протеина);
    • плазма крови;
    • одногруппная кровь.

    Объем вводимых жидкостей определяется индивидуально для каждого пациента.

    Для устранения ишемии, приводящей к кислородному голоданию тканей и органов, больному проводится оксигенотерапия. Для введения газовой смеси могут использоваться носовые катетеры или кислородная маска. В некоторых случаях рекомендуется искусственная вентиляция легких.

    Для устранения последствий гиповолемического шока может быть показано введение следующих лекарственных препаратов:

    • глюкокортикоиды – применяются в больших дозировках для устранения спазма периферических сосудов;
    • раствор Натрия бикарбоната – для устранения ацидоза;
    • Панангин – для устранения дефицита калия и магния.

    Если показатели гемодинамики не стабилизируются, артериальное давление остается низким и по мочевому катетеру выделяется менее 50-60 мл мочи за 1 час, то для стимуляции диуреза рекомендуется введение Маннитола. А для поддержания деятельности сердца вводятся растворы Добутамина, Допамина, Адреналина или/и Норадреналина.

    На устранение гиповолемического шока указывают следующие показатели:

    • стабилизация показателей артериального давление и пульса;
    • выведение мочи по 50-60 мл в час;
    • повышение центрального венозного давления до отметки 120 мм вод. ст.

    После стабилизации состояния больного назначается лечение, направленное на устранение заболевания, вызвавшего гиповолемический шок. Его план определяется данными диагностических исследований и составляется индивидуально для каждого больного.

    Гиповолемический шок наступает при критическом снижении объема циркулирующей крови. Это состояние сопровождается уменьшением ударного объема сердца и снижением наполнения его желудочков. В результате кровоснабжение тканей и органов становится недостаточным и развивается гипоксия и метаболический ацидоз. Такое состояние пациента всегда требует немедленной медицинской помощи, которая может заключаться в проведении хирургической операции для остановки кровотечения и консервативной терапии, направленной на устранение причин и последствий шока.