Амфотерные оксиды и гидроксиды: физические и химические свойства, получение, применение. Амфотерные гидроксиды - вещества двойственной природы

Основания, амфотерные гидроксиды

Основания - это сложные вещества, состоя­щие из атомов металла и одной или нескольких гидроксогрупп (-OH). Общая формула Me +y (OH) y , где у - число гидроксогрупп, равное степени окисления металла Me. В таблице представлена классификация осно­ваний.


Свойства щелочей гидроксидов щелочных и щелочноземельных металлов

1. Водные растворы щелочей мылкие на ощупь, изменяют окраску индикаторов: лакмуса - в синий цвет, фенолфталеина - в малиновый.

2. Водные растворы диссоциируют:

3. Взаимодействуют с кислотами, вступая в реак­цию обмена:

Многокислотные основания могут давать сред­ние и основные соли:

4. Взаимодействуют с кислотными оксидами, об­разуя средние и кислые соли в зависимости от основности кислоты, соответствующей этому оксиду:

5. Взаимодействуют с амфотерными оксидами и гидроксидами:

а) сплавление:

б) в растворах:

6. Взаимодействуют с растворимыми в воде соля­ми, если образуется осадок или газ:

Нерастворимые основания (Cr(OH) 2 , Mn(OH) 2 и др.) взаимодействуют с кислотами и разлага­ются при нагревании:

Амфотерные гидроксиды

Амфотерными называют соединения, которые в зависимости от условий могут быть как доно­рами катионов водорода и проявлять кислотные свойства, так и их акцепторами, т. е. проявлять основные свойства.

Химические свойства амфотерных соединений

1. Взаимодействуя с сильными кислотами, они об­наруживают основные свойства:

Zn(OH) 2 + 2HCl = ZnCl 2 + 2H 2 O

2. Взаимодействуя со щелочами - сильными ос­нованиями, они обнаруживают кислотные свой­ства:

Zn(OH) 2 + 2NaOH = Na 2 ( комплексная соль)

Al(OH) 3 + NaOH = Na ( комплексная соль)

Комплексными называют соединения, в кото­рых хотя бы одна ковалентная связь образовалась по донорно-акцепторному механизму.


Общий метод получения оснований бази­руется на реакциях обмена, с помощью которых могут быть полу­чены как нерастворимые, так и растворимые основания.

CuSО 4 + 2КОН = Cu(OH) 2 ↓ + K 2 SО 4

К 2 СО 3 + Ва(ОН) 2 = 2 КОН + BaCO 3 ↓

При получении этим методом растворимых оснований в осадок выпадает нерастворимая соль.

При получении нерастворимых в воде оснований, обладающих ам­фотерными свойствами, следует избегать избытка щелочи, так как может произойти растворение амфотерного основания, например:

АlСl 3 + 4КОН = К[Аl(ОН) 4 ] + 3КСl

В подобных случаях для получения гидроксидов используют гид­роксид аммония, в котором амфотерные гидроксиды не растворяются:

АlСl 3 + 3NH 3 + ЗН 2 О = Аl(ОН) 3 ↓ + 3NH 4 Cl

Гидроксиды серебра и ртути настолько легко разлагаются, что при попытке их получения обменной реакцией вместо гидроксидов выпадают оксиды:

2AgNО 3 + 2КОН = Ag 2 О↓ + Н 2 О + 2KNO 3

В промышленности щелочи обычно получают электролизом вод­ных растворов хлоридов.

2NaCl + 2Н 2 О → ϟ → 2NaOH + H 2 + Cl 2

Щелочи можно также получить взаимодействием щелочных и щелочноземельных металлов или их оксидов с водой.

2Li + 2Н 2 О = 2LiOH + Н 2

SrO + Н 2 О = Sr(OH) 2


Кислоты

Кислотами называются сложные вещества, мо­лекулы которых состоят из атомов водорода, спо­собных замещаться на атомы металла, и кислот­ных остатков. При обычных условиях кислоты могут быть тверды­ми (фосфорная H 3 PO 4 ; крем­ниевая H 2 SiO 3) и жидкими (в чистом виде жидкостью будет серная кислота H 2 SO 4).

Такие газы, как хлороводород HCl, бромоводо­род HBr, сероводород H 2 S, в водных растворах об­разуют соответствующие кислоты. Числом ионов водорода, образуемых каждой молекулой кислоты при диссоциации, определяет­ся заряд кислотного остатка (аниона) и основность кислоты.

Согласно протолитической теории кислот и оснований, предло­женной одновременно датским химиком Брёнстедом и английским химиком Лоури, кислотой называют вещество, отщепляющее при данной реакции протоны, а основанием - вещество, способное при­нимать протоны.

кислота → основание + Н +

На основе таких представлений понятны основные свойства ам­миака, который благодаря наличию неподеленной электронной пары при атоме азота эффективно принимает протон при взаимо­действии с кислотами, образуя ион аммония посредством донорно­акцепторной связи.

HNO 3 + NH 3 ⇆ NH 4 + + NO 3 —

кислота основание кислота основание

Более общее определение кислот и оснований предложил амери­канский химик Г. Льюис. Он предположил, что кислотно-основные взаимодействия совсем не обязательно происходят с переносом про тона. В определении кислот и оснований по Льюису основная роль в химических реакциях отводится электронным парам.

Катионы, анионы или нейтральные молекулы, способные принять одну или несколько пар электронов, называют кислотами Льюиса.

Так, например, фторид алюминия AlF 3 - это кислота, так как он способен принимать электронную пару при взаимодействии с аммиаком.

AlF 3 + :NH 3 ⇆ :

Катионы, анионы или нейтральные молекулы, способные отда­вать электронные пары, называют основаниями Льюиса (аммиак - основание).

Определение Льюиса охватывает все кислотно-основные про­цессы, которые рассматривались ранее предложенными теориями. В таблице сопоставлены определения кислот и оснований, ис­пользуемые в настоящее время.

Номенклатура кислот

Поскольку существуют разные определения кислот, их классификация и номенклатура до­вольно условны.

По числу атомов водорода, способных к отщеплению в водном растворе, кислоты делят на одноосновные (например, HF, HNO 2), двухосновные (H 2 CO 3 , H 2 SO 4) и трехосновные (Н 3 РO 4).

По составу кислоты делят на бескислородные (НСl, H 2 S) и кисло­родсодержащие (НСlO 4 , HNO 3).

Обычно названия кислородсодержащих кислот производятся от названия неметалла с прибавлением окончаний -кая, -вая, если сте­пень окисления неметалла равна номеру группы. По мере понижения степени окисления суффиксы меняются (в порядке уменьшения сте­пени окисления металла): -оватая, истая, -оватистая:




Если рассмотреть полярность связи водород-неметалл в пределах периода, легко можно связать полярность этой связи с положени­ем элемента в Периодической системе. От атомов металлов, легко теряющих валентные электроны, атомы водорода принимают эти электроны, образуя устойчивую двухэлектронную оболочку типа оболочки атома гелия, и дают ионные гидриды металлов.

В водородных соединениях элементов III-IV групп Периодиче­ской системы бора, алюминия, углерода, кремния образуют кова­лентные, слабополярные связи с атомами водорода, не склонные к диссоциации. Для элементов V-VII групп Периодической системы в пределах периода полярность связи неметалл-водород увеличи­вается с зарядом атома, но распределение зарядов в возникающем диполе иное, чем в водородных соединениях элементов, склонных отдавать электроны. Атомы неметаллов, у которых для завершения электронной оболочки необходимо несколько электронов, оттяги­вают к себе (поляризуют) пару электронов связи тем сильнее, чем больше заряд ядра. Поэтому в рядах СН 4 - NH 3 - Н 2 O - HF или SiH 4 - PH 3 - H 2 S - НСl связи с атомами водорода, оставаясь кова­лентными, приобретают более полярный характер, а атом водорода в диполе связи элемент-водород становится более электроположи­тельным. Если полярные молекулы оказываются в полярном рас­творителе, может происходить процесс электролитической диссо­циации.

Обсудим поведение кислородсодержащих кислот в водных рас­творах. У этих кислот имеется связь Н-О-Э и, естественно, на по­лярность связи Н-О влияет связь О-Э. Поэтому эти кислоты диссо­циируют, как правило, легче, чем вода.

H 2 SO 3 + H 2 O ⇆ H з O + + HSO 3

HNO 3 + H 2 O ⇆ H з O + + NO 3

На нескольких примерах рассмотрим свойства кислородсодержа­щих кислот, образованных элементами, которые способны прояв­лять разную степень окисления. Известно, что хлорноватистая кис­лота НСlO очень слабая, хлористая кислота НСlO 2 также слабая, но сильнее хлорноватистой, хлорноватая кислота НСlO 3 сильная. Хлор­ная кислота НСlO 4 - одна из самых сильных неорганических кислот.


Для диссоциации по кислотному типу (с отщеплением иона Н) необходим разрыв связи О-Н. Как можно объяснить уменьшение прочности этой связи в ряду НСlO - НСlO 2 - НСlO 3 - НСClO 4 ? В этом ряду увеличивается число атомов кислорода, связанных с цен­тральным атомом хлора. Каждый раз, когда образуется новая связь кислорода с хлором, от атома хлора, а следовательно, и от одинар­ной связи О-Cl оттягивается электронная плотность. В результате электронная плотность частично уходит и от связи О-Н, которая из- за этого ослабляется.

Такая закономерность - усиление кислотных свойств с возрас танием степени окисления центрального атома - характерна не только для хлора, но и для других элементов. Например, азотная кис­лота HNO 3 , в которой степень окисления азота +5, более сильная, чем азотистая кислота HNO 2 (степень окисления азота +3); серная кислота H 2 SO 4 (S +6) более сильная, чем сернистая кислота H 2 SO 3 (S +4).

Получение кислот

1. Бескислородные кислоты могут быть полу­чены при непосредственном соединении неметаллов с водородом .

Н 2 + Сl 2 → 2НСl,

H 2 + S ⇆ H 2 S

2. Некоторые кислородсодержащие кислоты могут быть получе­ны взаимодействием кислотных оксидов с водой .

3. Как бескислородные, так и кислородсодержащие кислоты мож­но получить по реакциям обмена между солями и другими кислотами.

BaBr 2 + H 2 SO 4 = BaSO 4 ↓ + 2НВr

CuSO 4 + H 2 S = H 2 SO 4 + CuS↓

FeS + H 2 SO 4(pa зб) = H 2 S+FeSO 4

NaCl (T) + H 2 SO 4(конц) = HCl + NaHSO 4

AgNO 3 + HCl = AgCl↓ + HNO 3

CaCO 3 + 2HBr = CaBr 2 + CO 2 + H 2 O

4. Некоторые кислоты могут быть получены с помощью окислительно-восстановительных реакций.

Н 2 O 2 + SO 2 = H 2 SO 4

3Р + 5HNO 3 + 2Н 2 O = ЗН 3 РO 4 + 5NO 2

Кислый вкус, действие на индикаторы, элек­трическая проводимость, взаимодействие с метал­лами, основными и амфотерными оксидами, осно­ваниями и солями, образование сложных эфиров со спиртами - эти свойства являются общими для неорганических и органических кислот.

можно разделить на два типа ре­акций:

1) общие для кислот реакции связаны с образованием в водных рас­творах иона гидроксония Н 3 O + ;

2) специфические (т. е. характерные) реакции конкретных кислот.

Ион водорода может вступать в окислителъно-восстановительные реакции, восстанавливаясь до водорода, а также в реакции соединения с отрицательно заряженными или нейтральными ча­стицами, имеющими неподеленные пары электронов, т. е. в кис­лотно-основные реакции.

К общим свойствам кислот относятся реакции кислот с металла­ми, стоящими в ряду напряжений до водорода, например:

Zn + 2Н + = Zn 2+ + Н 2

К кислотно-основным реакциям относятся реакции с основными оксидами и основаниями, а также со средними, основными, а ино­гда и кислыми солями.

2 CO 3 + 4HBr = 2CuBr 2 + CO 2 + 3Н 2 O

Mg(HCO 3) 2 + 2НСl = MgCl 2 + 2СO 2 + 2Н 2 O

2KHSO 3 + H 2 SO 4 = K 2 SO 4 + 2SO 2 + 2H 2 O

Заметим, что многоосновные кислоты диссоциируют ступенчато, причем на каждой следующей ступени диссоциация проходит труд­нее, поэтому при избытке кислоты чаще всего образуются кислые соли, а не средние.

Са 3 (РO 4) 2 + 4Н 3 РO 4 = 3Са(Н 2 РO 4) 2

Na 2 S + Н 3 РО 4 = Na 2 HPO 4 + H 2 S

NaOH + H 3 PO 4 = NaH 2 PO 4 + Н 2 O

КОН + H 2 S = KHS + Н 2 O

На первый взгляд, может показаться удивительным образование кислых солей одноосновной фтороводородной (плавиковой) кислотой. Однако этот факт можно объяснить. В отличие от всех других галогеноводород­ных кислот плавиковая кислота в растворах частично полимеризована (благодаря образованию водородных связей) и в ней могут при­сутствовать разные частицы (HF) X , а именно H 2 F 2 , H 3 F 3 и т. д.

Частный случай кислотно-основного равновесия - реакции кис­лот и оснований с индикаторами, которые изменяют свою окраску в зависимости от кислотности раствора. Индикаторы использу­ются в качественном анализе для обнаружения кислот и основа­ний в растворах.

Самые часто применяемые индикаторы - лакмус нейтральной среде фиолетовый цвет, в кислой - красный, в щелочной - си­ний), метилоранж кислой среде красный, в нейтральной - оран­жевый, в щелочной - желтый), фенолфталеин сильнощелочной среде малиново-красный, в нейтральной и кислой - бесцветный).

Специфические свойства различных кислот могут быть двух типов: во-первых, реакции, приводящие к образованию нерастворимых солей, и, во-вторых, окислительно-восстановительные превращения. Если реакции, связанные с наличием у них иона Н + , общие для всех кислот (качественные реакции для обнаружения кислот), специфические реакции используются как качественные на отдельные кислоты:

Ag + + Cl — = AgCl (белый осадок)

Ва 2+ + SO 4 2- = BaSO 4(белый осадок)

3Ag + + PO 4 3 — = Ag 3 PO 4(желтый осадок)

Некоторые специфические реакции кислот обусловлены их окис­лительно-восстановительными свойствами.

Бескислородные кислоты в водном растворе могут только окисляться.

2КМnO 4 + 16НСl = 5Сl 2 + 2КСl + 2МnСl 2 + 8Н 2 O

H 2 S + Вг 2 = S + 2НВг

Кислородсодержащие кислоты могут окисляться только в том случае, если центральный атом в них находится в низшей или про­межуточной степени окисления, как, например, в сернистой кисло­те:

H 2 SO 3 + Сl 2 + Н 2 O = H 2 SO 4 + 2НСl

Многие кислородсодержащие кислоты, в которых центральный атом имеет максимальную степень окисления (S +6 , N +5 , Сг +6), прояв­ляют свойства сильных окислителей. Концентрированная H 2 SO 4 - сильный окислитель.

Сu + 2H 2 SO 4(конц) = CuSO 4 + SO 2 + 2Н 2 O

Pb + 4HNO 3 = Pb(NO 3) 2 + 2NO 2 + 2H 2 O

C + 2H 2 SO 4(конц) = CO 2 + 2SO 2 + 2H 2 O

Следует запомнить, что:

  • Растворы кислот реагируют с металлами, стоящими в электрохимическом ряду напряже­ний левее водорода, при соблюдении ряда усло­вий, важнейшим из которых является образование в результате реакции растворимой соли. Взаимо­действие HNO 3 и Н 2 SO 4 (конц.) с металлами проте­кает иначе.

Концентрированная серная кислота на холоде пассивирует алюминий, железо, хром.

  • В воде кислоты диссоциируют на катионы водорода и анионы кислотных остатков, например:


  • Неорганические и органические кислоты взаимодействуют с основными и амфотерными оксидами при условии, что образуется раствори­мая соль:
  • И те, и другие кислоты вступают в реакцию с основаниями. Многоосновные кислоты могут об­разовывать как средние, так и кислые соли (это реакции нейтрализации):

  • Реакция между кислотами и солями идет только в том случае, если образуется осадок или газ:


Взаимодействие H 3 PO 4 с известняком прекра­тится из-за образования на поверхности последнего нерастворимого осадка Ca 3 (PO 4) 2 .

Особенности свойств азотной HNO 3 и концен­трированной серной H 2 SO 4 (конц.) кислот обуслов­лены тем, что при их взаимодействии с простыми веществами (металлами и неметаллами) окислите­лями будут выступать не катионы H + , а нитрат- и сульфат-ионы. Логично ожидать, что в резуль­тате таких реакций образуется не водород H 2 , а получаются другие вещества: обязательно соль и вода, а также один из продуктов восстановле­ния нитрат- или сульфат-ионов в зависимости от концентрации кислот, положения металла в ряду напряжений и условий реакции (температуры, сте­пени измельченности металла и т. д.).

Эти особенности химического поведения HNO 3 и H 2 SO 4 (конц.) наглядно иллюстрируют тезис те­ории химического строения о взаимном влиянии атомов в молекулах веществ.


Часто путают понятия летучесть и устойчи­вость (стабильность). Летучими называют кисло­ты, молекулы которых легко переходят в газо­образное состояние, то есть испаряются. Например, соляная кислота является летучей, но устойчивой, стабильной кислотой. О летучести нестабильных кислот судить нельзя. На­пример, нелетучая, нераство­римая кремниевая кислота разлагается на воду и SiO 2 . Водные растворы соляной, азотной, серной, фосфорной и ряда других кислот не име­ют окраски. Водный раствор хромовой кислоты H 2 CrO 4 имеет желтую окраску, марганцевой кислоты HMnO 4 - малиновую.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Тема: Основные классы соединений, их свойства и типичные реакции

Урок: Амфотерные гидроксиды

С греческого языка слово «amphoteros» переводится как «тот и другой». Амфотерность - это двойственность кислотно-основных свойств вещества. Амфотерными называют гидроксиды, которые в зависимости от условий могут проявлять как кислотные, так и основные свойства.

Примером амфотерного гидроксида может служить гидроксид цинка. Формула этого гидроксида в основной форме - Zn(OH) 2 . Но можно записать формулу гидроксида цинка в кислотной форме, поставив на первое место атомы водорода, как в формулах неорганических кислот: H 2 ZnO 2 (Рис. 1). Тогда ZnO 2 2- будет кислотным остатком с зарядом 2-.

Рис. 1. Формулы гидроксида цинка

Особенностью амфотерного гидроксида является то, что в нем мало различаются по прочности связи О-Н и Zn-O. Отсюда и двойственность свойств. В реакциях с кислотами, готовыми отдать катионы водорода, гидроксиду цинка выгодно разрывать связь Zn-O, отдавая ОН-группу и выступая в роли основания. В результате таких реакций образуются соли, в которых цинк является катионом, поэтому их называют солями катионного типа:

Zn(OH) 2 + 2HCl = ZnCl 2 + 2H 2 O

(основание)

В реакциях со щелочами гидроксид цинка выступает в роли кислоты, отдавая водород. При этом образуются соли анионного типа (цинк входит в состав кислотного остатка - аниона цинката). Например, при сплавлении гидроксида цинка с твердым гидроксидом натрия образуется Na 2 ZnO 2 - средняя соль анионного типа цинкат натрия:

H 2 ZnO 2 + 2NaOH (ТВ.) = Na 2 ZnO 2 + 2H 2 O

(кислота)

При взаимодействии с растворами щелочей амфотерные гидроксиды образуют растворимые комплексные соли. Например, при взаимодействии гидроксида цинка с раствором гидроксида натрия образуется тетрагидроксоцинкат натрия:

Zn(OH) 2 + 2NaOH = Na 2

2- - сложный анион, который принято заключать в квадратные скобки.

Таким образом, амфотерность гидроксида цинка обусловлена возможностью существования ионов цинка в водном растворе в составе как катионов, так и анионов. Состав этих ионов зависит от кислотности среды. В щелочной среде устойчивы анионы ZnO 2 2- , а в кислотной среде устойчивы катионы Zn 2+ .

Амфотерные гидроксиды - нерастворимые в воде вещества, и при нагревании они разлагаются на оксид металла и воду:

Zn(OH) 2 = ZnO + H 2 O

2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O

2Al(OH) 3 = Al 2 O 3 + 3H 2 O

Степень окисления металла в гидроксиде и оксиде должна быть одинаковой.

Амфотерные гидроксиды - нерастворимые в воде соединения, поэтому их можно получить по реакции обмена между раствором соли переходного металла и щелочью. Например, гидроксид алюминия образуется при взаимодействии растворов хлорида алюминия и гидроксида натрия:

AlCl 3 + 3NaOH = Al(OH) 3 ↓ + 3NaCl

При сливании данных растворов образуется белый желеподобный осадок гидроксида алюминия (Рис. 2).

Но при этом нельзя допустить избытка щелочи, ведь амфотерные гидроксиды растворяются в щелочах. Поэтому вместо щелочи лучше использовать водный раствор аммиака. Это слабое основание, в котором гидроксид алюминия не растворяется. При взаимодействии хлорида алюминия с водным раствором аммиака образуется гидроксид алюминия и хлорид аммония:

AlCl 3 + 3NH 3 . H 2 O = Al(OH) 3 ↓ + 3NH 4 Cl

Рис. 2. Образование осадка гидроксида алюминия

Список литературы

  1. Новошинский И. И., Новошинская Н. С. Химия. Учебник для 10 класса общеобр. учрежд. Профильный уровень. - М.: ООО «ТИД «Русское слово - РС», 2008. (§54)
  2. Кузнецова Н. Е., Литвинова Т. Н., Лёвкин А. Н. Химия: 11 класс: Учебник для учащихся общеобраз. учрежд. (профильный уровень): в 2-х ч. Ч. 2. М.: Вентана-Граф, 2008. (с. 110-111)
  3. Радецкий А.М. Химия. Дидактический материал. 10-11 классы. - М.: Просвещение, 2011.
  4. Хомченко И. Д. Сборник задач и упражнений по химии для средней школы. - М.: РИА «Новая волна»: Издатель Умеренков, 2008.

Амфотерные соединения

Химия – это всегда единство противоположностей.

Посмотрите на периодическую систему.

Некоторые элементы (почти все металлы, проявляющие степени окисления +1 и +2) образуют основные оксиды и гидроксиды. Например, калий образует оксид K 2 O, и гидроксид KOH. Они проявляют основные свойства, например взаимодействуют с кислотами.

K2O + HCl → KCl + H2O

Некоторые элементы (большинство неметаллов и металлы со степенями окисления +5, +6, +7) образуют кислотные оксиды и гидроксиды. Кислотные гидроксиды – это кислородсодержащие кислоты, их называют гидроксидами, потому что в строении есть гидроксильная группа, например, сера образует кислотный оксид SO 3 и кислотный гидроксид H 2 SO 4 (серную кислоту):

Такие соединения проявляют кислотные свойства, например они реагируют с основаниями:

H2SO4 + 2KOH → K2SO4 + 2H2O

А есть элементы, образующие такие оксиды и гидроксиды, которые проявляют и кислотные, и основные свойства. Это явление называется амфотерностью . Таким оксидам и гидроксидам и будет приковано наше внимание в этой статье. Все амфотерные оксиды и гидроксиды — твердые вещества, нерастворимые в воде.

Для начала, как определить является ли оксид или гидроксид амфотерным? Есть правило, немного условное, но все-таки пользоваться им можно:

Амфотерные гидроксиды и оксиды образуются металлами, в степенях окисления +3 и +4 , например (Al 2 O 3 , Al (OH ) 3 , Fe 2 O 3 , Fe (OH ) 3)

И четыре исключения: металлы Zn , Be , Pb , Sn образуют следующие оксиды и гидроксиды: ZnO , Zn ( OH ) 2 , BeO , Be ( OH ) 2 , PbO , Pb ( OH ) 2 , SnO , Sn ( OH ) 2 , в которых проявляют степень окисления +2, но не смотря на это, эти соединения проявляют амфотерные свойства .

Наиболее часто встречающиеся амфотерные оксиды (и соответствующие им гидроксиды): ZnO, Zn(OH) 2 , BeO, Be(OH) 2 , PbO, Pb(OH) 2 , SnO, Sn(OH) 2 , Al 2 O 3 , Al(OH) 3 , Fe 2 O 3 , Fe(OH) 3 , Cr 2 O 3 , Cr(OH) 3 .

Свойства амфотерных соединений запомнить не сложно: они взаимодействуют с кислотами и щелочами .

  • с взаимодействием с кислотами все просто, в этих реакциях амфотерные соединения ведут себя как основные:

Al 2 O 3 + 6HCl → 2AlCl 3 + 3H 2 O

ZnO + H 2 SO 4 → ZnSO 4 + H 2 O

BeO + HNO 3 → Be(NO 3 ) 2 + H 2 O

Точно так же реагируют гидроксиды:

Fe(OH) 3 + 3HCl → FeCl 3 + 3H 2 O

Pb(OH) 2 + 2HCl → PbCl 2 + 2H 2 O

  • С взаимодействием со щелочами немного сложнее. В этих реакциях амфотерные соединения ведут себя как кислоты, и продукты реакции могут быть различными, все зависит от условий.

Или реакция происходит в растворе, или реагирующие вещества берутся твердые и сплавляются.

    Взаимодействие основных соединений с амфотерными при сплавлении.

Разберем на примере гидроксида цинка. Как уже говорилось ранее, амфотерные соединения взаимодействуя с основными, ведут себя как кислоты. Вот и запишем гидроксид цинка Zn (OH ) 2 как кислоту. У кислоты водород спереди, вынесем его: H 2 ZnO 2 . И реакция щелочи с гидроксидом будет протекать как будто он – кислота. «Кислотный остаток» ZnO 2 2- двухвалентный:

2K OH (тв.) + H 2 ZnO 2(тв.) (t ,сплавление)→ K 2 ZnO 2 + 2H 2 O

Полученное вещество K 2 ZnO 2 называется метацинкат калия (или просто цинкат калия). Это вещество – соль калия и гипотетической «цинковой кислоты» H 2 ZnO 2 (солями такие соединения называть не совсем правильно, но для собственного удобства мы про это забудем). Только гидроксид цинка записывать вот так: H 2 ZnO 2 – нехорошо. Пишем как обычно Zn (OH ) 2 , но подразумеваем (для собственного удобства), что это «кислота»:

2KOH (тв.) + Zn (OH ) 2(тв.) (t ,сплавление)→ K 2 ZnO 2 + 2H 2 O

С гидроксидами, в которых 2 группы ОН, все будет так же как и с цинком:

Be(OH) 2( тв .) + 2NaOH ( тв .) (t ,сплавление)→ 2H 2 O + Na 2 BeO 2 (метабериллат натрия, или бериллат)

Pb(OH) 2( тв .) + 2NaOH ( тв .) (t ,сплавление)→ 2H 2 O + Na 2 PbO 2 (метаплюмбат натрия, или плюмбат)

С амфотерными гидроксидов с тремя группами OH (Al (OH ) 3 , Cr (OH ) 3 , Fe (OH ) 3) немного иначе.

Разберем на примере гидроксида алюминия: Al (OH ) 3 , запишем в виде кислоты: H 3 AlO 3 , но в таком виде не оставляем, а выносим оттуда воду:

H 3 AlO 3 – H 2 O → HAlO 2 + H 2 O .

Вот с этой «кислотой» (HAlO 2) мы и работаем:

HAlO 2 + KOH → H 2 O + KAlO 2 (метаалюминат калия, или просто алюминат)

Но гидроксид алюминия вот так HAlO 2 записывать нельзя, записываем как обычно, но подразумеваем там «кислоту»:

Al(OH) 3( тв .) + KOH ( тв .) (t ,сплавление)→ 2H 2 O + KAlO 2 (метаалюминат калия)

То же самое и с гидроксидом хрома:

Cr(OH) 3 → H 3 CrO 3 → HCrO 2

Cr(OH) 3( тв .) + KOH ( тв .) (t ,сплавление)→ 2H 2 O + KCrO 2 (метахромат калия,

НО НЕ ХРОМАТ, хроматы – это соли хромовой кислоты).

С гидроксидами содержащими четыре группы ОН точно так же: выносим вперед водород и убираем воду:

Sn(OH) 4 → H 4 SnO 4 → H 2 SnO 3

Pb(OH) 4 → H 4 PbO 4 → H 2 PbO 3

Следует помнить, что свинец и олово образуют по два амфотерных гидроксида: со степенью окисления +2 (Sn (OH ) 2 , Pb (OH ) 2), и +4 (Sn (OH ) 4 , Pb (OH ) 4).

И эти гидроксиды будут образовывать разные «соли»:

Степень окисления

Формула гидроксида

Sn (OH ) 2

Pb (OH ) 2

Sn (OH ) 4

Pb (OH ) 4

Формула гидроксида в виде кислоты

H 2 SnO 2

H 2 PbO 2

H 2 SnO 3

H 2 PbO 3

Соль (калиевая)

K 2 SnO 2

K 2 PbO 2

K 2 SnO 3

K 2 PbO 3

Название соли

метастаннАТ

метаблюмбАТ

Те же принципы, что и в названиях обычных «солей», элемент в высшей степени окисления – суффикс АТ, в промежуточной – ИТ.

Такие «соли» (метахроматы, метаалюминаты, метабериллаты, метацинкаты и т.д.) получаются не только в результате взаимодействия щелочей и амфотерных гидроксидов. Эти соединения всегда образуются, когда соприкасаются сильноосновный «мир» и амфотерный (при сплавлении). То есть точно так же как и амфотерные гидроксиды со щелочами будут реагировать и амфотерные оксиды, и соли металлов, образующих амфотерные оксиды (соли слабых кислот). И вместо щелочи можно взять сильноосновный оксид, и соль металла, образующего щелочь (соль слабой кислоты).

Взаимодействия:

Запомните, реакции, приведенные ниже, протекают при сплавлении.

    Амфотерного оксида с сильноосновным оксидом:

ZnO (тв.) + K 2 O (тв.) (t ,сплавление)→ K 2 ZnO 2 (метацинкат калия, или просто цинкат калия)

    Амфотерного оксида со щелочью:

ZnO (тв.) + 2KOH (тв.) (t ,сплавление)→ K 2 ZnO 2 + H 2 O

    Амфотерного оксида с солью слабой кислоты и металла, образующего щелочь:

ZnO (тв.) + K 2 CO 3( тв .) (t, сплавление)→ K 2 ZnO 2 + CO 2

    Амфотерного гидроксида с сильноосновным оксидом:

Zn(OH) 2 (тв.) + K 2 O (тв.) (t ,сплавление)→ K 2 ZnO 2 + H 2 O

    Амфотерного гидроксида со щелочью:

Zn (OH ) 2(тв.) + 2KOH (тв.) (t ,сплавление)→ K 2 ZnO 2 + 2H 2 O

    Амфотерного гидроксида с солью слабой кислоты и металла, образующего щелочь:

Zn (OH ) 2(тв.) + K 2 CO 3(тв.) (t ,сплавление)→ K 2 ZnO 2 + CO 2 + H 2 O

    Соли слабой кислоты и металла, образующего амфотерные соединение с сильноосновным оксидом:

ZnCO 3 (тв.) + K 2 O (тв.) (t ,сплавление)→ K 2 ZnO 2 + CO 2

    Соли слабой кислоты и металла, образующего амфотерные соединение со щелочью:

ZnCO 3(тв.) + 2KOH (тв.) (t ,сплавление)→ K 2 ZnO 2 + CO 2 + H 2 O

    Соли слабой кислоты и металла, образующего амфотерные соединение с солью слабой кислоты и металла, образующего щелочь:

ZnCO 3(тв.) + K 2 CO 3( тв .) (t, сплавление)→ K 2 ZnO 2 + 2CO 2

Ниже представлена информация по солям амфотерных гидроксидов, красным помечены наиболее встречающиеся в ЕГЭ.

Гидроксид

Гидроксид в виде кислоты

Кислотный остаток

Название соли

BeO

Be(OH) 2

H 2 BeO 2

BeO 2 2-

K 2 BeO 2

Метабериллат (бериллат)

ZnO

Zn(OH) 2

H 2 ZnO 2

ZnO 2 2-

K 2 ZnO 2

Метацинкат (цинкат)

Al 2 O 3

Al(OH) 3

HAlO 2

AlO 2

KAlO 2

Метаалюминат (алюминат)

Fe 2 O 3

Fe(OH) 3

HFeO 2

FeO 2 —

KFeO 2

Метаферрат (НО НЕ ФЕРРАТ)

Sn(OH) 2

H 2 SnO 2

SnO 2 2-

K 2 SnO 2

Pb(OH) 2

H 2 PbO 2

PbO 2 2-

K 2 PbO 2

SnO 2

Sn (OH ) 4

H 2 SnO 3

SnO 3 2-

K 2 SnO 3

МетастаннАТ (станнат)

PbO 2

Pb (OH ) 4

H 2 PbO 3

PbO 3 2-

K 2 PbO 3

МетаблюмбАТ (плюмбат)

Cr 2 O 3

Cr(OH) 3

HCrO 2

CrO 2 —

KCrO 2

Метахромат (НО НЕ ХРОМАТ)

    Взаимодействие амфотерных соединений с растворами ЩЕЛОЧЕЙ (здесь только щелочи).

В ЕГЭ это называют «растворением гидроксида алюминия (цинка, бериллия и т.д.) щелочи». Это обусловлено способностью металлов в составе амфотерных гидроксидов в присутствии избытка гидроксид-ионов (в щелочной среде) присоединять к себе эти ионы. Образуется частица с металлом (алюминием, бериллием и т.д.) в центре, который окружен гидроксид-ионами. Эта частица становится отрицательно-заряженной (анионом) за счет гидроксид-ионов, и называться этот ион будет гидроксоалюминат, гидроксоцинкат, гидроксобериллат и т.д.. Причем процесс может протекать по-разному металл может быть окружен разным числом гидроксид-ионов.

Мы будем рассматривать два случая: когда металл окружен четырьмя гидроксид-ионами , и когда он окружен шестью гидроксид-ионами .

Запишем сокращенное ионное уравнение этих процессов:

Al(OH) 3 + OH — → Al(OH) 4 —

Образовавшийся ион называется Тетрагидроксоалюминат-ион. Приставка «тетра-» прибавляется, потому что гидроксид-иона четыре. Тетрагидроксоалюминат-ион имеет заряд -, так как алюминий несет заряд 3+, а четыре гидроксид-иона 4-, в сумме получается -.

Al(OH) 3 + 3OH — → Al(OH) 6 3-

Образовавшийся в этой реакции ион называется гексагидроксоалюминат ион. Приставка «гексо-» прибавляется, потому что гидроксид-иона шесть.

Прибавлять приставку, указывающую на количество гидроксид-ионов обязательно . Потому что если вы напишете просто «гидроксоалюминат», не понятно, какой ион вы имеете в виду: Al (OH ) 4 — или Al (OH ) 6 3- .

При взаимодействии щелочи с амфотерным гидроксидом в растворе образуется соль. Катион которой – это катион щелочи, а анион – это сложный ион, образование которого мы рассмотрели ранее. Анион заключается в квадратные скобки .

Al (OH ) 3 + KOH → K (тетрагидроксоалюминат калия)

Al (OH ) 3 + 3KOH → K 3 (гексагидроксоалюминат калия)

Какую именно (гекса- или тетра-) соль вы напишете как продукт – не имеет никакого значения. Даже в ответниках ЕГЭ написано: «…K 3 (допустимо образование K ». Главное не забывайте следить, чтобы все индексы были верно проставлены. Следите за зарядами, и имейте ввиду, что сумма их должна быть равна нулю.

Кроме амфотерных гидроксидов, со щелочами реагируют амфотерные оксиды. Продукт будет тот же. Только вот если вы запишете реакцию вот так:

Al 2 O 3 + NaOH → Na

Al 2 O 3 + NaOH → Na 3

Но эти реакции у вас не уравняются. Надо добавить воду в левую часть, взаимодейтсиве ведь происходит в растворе, воды там дотаточно, и все уравняется:

Al 2 O 3 + 2NaOH + 3H 2 O → 2Na

Al 2 O 3 + 6NaOH + 3H 2 O → 2Na 3

Помимо амфотерных оксидов и гидроксидов, с растворами щелочей взаимодействуют некоторые особо активные металлы, которые образуют амфотерные соединения. А именно это: алюминий, цинк и бериллий. Чтобы уравнялось, слева тоже нужна вода. И, кроме того, главное отличие этих процессов – это выделение водорода:

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

2Al + 6NaOH + 6H 2 O → 2Na 3 + 3H 2

В таблице ниже приведены наиболее распространенные в ЕГЭ примеры свойства амфотерных соединений:

Амфотерное вещество

Название соли

Al 2 O 3

Al(OH) 3

Тетрагидроксоалюминат натрия

Al(OH) 3 + NaOH → Na

Al 2 O 3 + 2NaOH + 3H 2 O → 2Na

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

Na 3

Гексагидроксоалюминат натрия

Al(OH) 3 + 3NaOH → Na 3

Al 2 O 3 + 6NaOH + 3H 2 O → 2Na 3

2Al + 6NaOH + 6H 2 O → 2Na 3 + 3H 2

Zn(OH) 2

K 2

Тетрагидроксоцинкат натрия

Zn(OH) 2 + 2NaOH → Na 2

ZnO + 2NaOH + H 2 O → Na 2

Zn + 2NaOH + 2H 2 O → Na 2 + H 2

K 4

Гексагидроксоцинкат натрия

Zn(OH) 2 + 4NaOH → Na 4

ZnO + 4NaOH + H 2 O → Na 4

Zn + 4NaOH + 2H 2 O → Na 4 + H 2

Be(OH) 2

Li 2

Тетрагидроксобериллат лития

Be(OH) 2 + 2LiOH → Li 2

BeO + 2LiOH + H 2 O → Li 2

Be + 2LiOH + 2H 2 O → Li 2 + H 2

Li 4

Гексагидроксобериллат лития

Be(OH) 2 + 4LiOH → Li 4

BeO + 4LiOH + H 2 O → Li 4

Be + 4LiOH + 2H 2 O → Li 4 + H 2

Cr 2 O 3

Cr(OH) 3

Тетрагидроксохромат натрия

Cr(OH) 3 + NaOH → Na

Cr 2 O 3 + 2NaOH + 3H 2 O → 2Na

Na 3

Гексагидроксохромат натрия

Cr(OH) 3 + 3NaOH → Na 3

Cr 2 O 3 + 6NaOH + 3H 2 O → 2Na 3

Fe 2 O 3

Fe(OH) 3

Тетрагидроксоферрат натрия

Fe(OH) 3 + NaOH → Na

Fe 2 O 3 + 2NaOH + 3H 2 O → 2Na

Na 3

Гексагидроксоферрат натрия

Fe(OH) 3 + 3NaOH → Na 3

Fe 2 O 3 + 6NaOH + 3H 2 O → 2Na 3

Полученные в этих взаимодействиях соли реагируют с кислотами, образуя две другие соли (соли данной кислоты и двух металлов):

2Na 3 + 6H 2 SO 4 → 3Na 2 SO 4 + Al 2 (SO 4 ) 3 + 12H 2 O

Вот и все! Ничего сложного. Главное не путайте, помните что образуется при сплавлении, что в растворе. Очень часто задания по этому вопросу попадаются в B части.

Амфотерность (двойственность свойств) гидроксидов и оксидов многих элементов проявляется в образовании ими двух типов солей. Например, для гидроксида и оксида алюминия:

а) 2Al(OH)3 + 3SO3 = Al2(SO4)3 + 3H2O

Al2О3 + 3H2SO4 = Al2(SO4)3 + 3H2O

б) 2Al(OH)3 + Na2O = 2NaAlO2 + 3H2O (в расплаве)

Al2О3 + 2NaOH(т) = 2NaAlO2 + H2O (в расплаве)

В реакциях (а) Al(OH)3 и Al2О3 проявляют свойства оснóвных гидроксидов и оксидов, то есть они подобно щелочам реагируют с кислотами и кислотными оксидами, образуя соль, в которой алюминий является катионом Al3+.

Напротив, в реакциях (б) Al(OH)3 и Al2О3 выполняют функцию кислотных гидроксидов и оксидов, образуя соль, в которой атом алюминия AlIII входит в состав аниона (кислотного остатка) AlО2−.

Сам элемент алюминий проявляет в этих соединениях свойства металла и неметалла. Следовательно, алюминий - амфотерный элемент.

Подобные свойства имеют также элементы А-групп - Be, Ga, Ge, Sn, Pb, Sb, Bi и другие, а также большинство элементов Б-групп - Cr, Mn, Fe, Zn, Cd и другие.

Например, амфотерность цинка доказывают такие реакции:

а) Zn(OH)2 + N2O5 = Zn(NO3)2 + H2O

ZnO + 2HNO3 = Zn(NO3)2 + H2O

б) Zn(OH)2 + Na2O = Na2ZnO2 + H2O

ZnO + 2NaOH(т) = Na2ZnO2 + H2O

Если амфотерный элемент имеет в соединениях несколько степеней окисления, то амфотерные свойства наиболее ярко проявляются для промежуточной степени окисления.

Например, у хрома известны три степени окисления: +II, +III и +VI. В случае CrIII кислотные и оснóвные свойства выражены примерно в равной степени, тогда как у CrII наблюдается преобладание оснóвных свойств, а у CrVI - кислотных свойств:

CrII → CrO, Cr(OH)2 → CrSO4

CrIII → Cr2O3, Cr(OH)3 → Cr2(SO4)3 или KCrO2

CrVI → CrO3, H2CrO4 → K2CrO4

Очень часто амфотерные гидроксиды элементов в степени окисления +III существуют также в мета-форме, например:

AlO(OH) - метагидроксид алюминия

FeO(OH) - метагидроксид железа (орто-форма "Fe(OH)3" не существует).

Амфотерные гидроксиды практически нерастворимы в воде, наиболее удобный способ их получения - осаждение из водного раствора с помощью слабого основания - гидрата аммиака:

Al(NO3)3 + 3(NH3 · H2O) = Al(OH)3↓ + 3NH4NO3 (20 °C)

Al(NO3)3 + 3(NH3 · H2O) = AlO(OH)↓ + 3NH4NO3 + H2O (80 °C)

В случае использования избытка щелочей в обменной реакции подобного типа гидроксид алюминия осаждаться не будет, поскольку алюминий в силу своей амфотерности переходит в анион:

Al(OH)3(т) + OH− = −

Примеры молекулярных уравнений реакций этого типа:


Al(NO3)3 + 4NaOH(избыток) = Na + 3NaNO3

ZnSO4 + 4NaOH(избыток) = Na2 + Na2SO4

Образующиеся соли относятся к числу комплексных соединений (комплексных солей): они включают комплексные анионы − и 2−. Названия этих солей таковы:

Na - тетрагидроксоалюминат натрия

Na2 - тетрагидроксоцинкат натрия

Продукты взаимодействия оксидов алюминия или цинка с твердой щелочью называются по-другому:

NaAlO2 - диоксоалюминат(III) натрия

Na2ZnO2 - диоксоцинкат(II) натрия

Подкисление растворов комплексных солей этого типа приводит к разрушению комплексных анионов:

− → Al(OH)3 → Al3+

Например: 2Na + CO2 = 2Al(OH)3↓ + NaHCO3

Для многих амфотерных элементов точные формулы гидроксидов низвестны, поскольку из водного раствора вместо гидроксидов выпадают гидратированные оксиды, например MnO2 · nH2O, Sb2O5 · nH2O.

Амфотерные элементы в свободном виде взаимодействуют как с типичными кислотами, так и со щелочами:

2Al + 3H2SO4(разб.) = Al2(SO4)3 + H2

2Al + 6H2O + 4NaOH(конц.) = 2Na + 3H2

В обеих реакциях образуются соли, причем рассматриваемый элемент в одном случае входит в состав катиона, а во втором - в состав аниона.

Галогениды алюминия в обычных условиях - бесцветные кристаллические

вещества. В ряду галогенидов алюминия AlF3 сильно отличается по свойствам

от своих аналогов. Он тугоплавок, мало растворяется в воде, химически

неактивен. Основной способ получения AlF3 основан на действии безводного HF

на Al2O3 или Al:

Al2O3 + 6HF = 2AlF3 + 3H2O

Соединения алюминия с хлором, бромом и иодом легкоплавки, весьма

реакционноспособны и хорошо растворимы не только в воде, но и во многих

органических растворителях. Взаимодействие галогенидов алюминия с водой

сопровождается значительным выделением теплоты. В водном растворе все они

сильно гидролизованы, но в отличие от типичных кислотных галогенидов

неметаллов их гидролиз неполный и обратимый. Будучи заметно летучими уже

при обычных условиях, AlCl3, AlBr3 и AlI3 дымят во влажном воздухе

(вследствие гидролиза). Они могут быть получены прямым взаимодействием

простых веществ.

Комплексные галогениды (галогенометаллаты) содержат комплексные анионы, в к-рых атомы галогенов являются лигандами, напр. гексахлороплатинат(IV) калияK2, гептафторотанталат(V) натрия Na, гексафтороарсенат(V) лития Li. наиб. термич. устойчивостью обладают фторо-, оксофторо- и хлорометаллаты. По характеру связей к комплексным галогенидам близки ионные соед. с катионами NF4+, N2F3+, C1F2+, XeF+ и др.

Для многих галогенидов характерны ассоциация и полимеризация в жидкой и газовой фазах с образованием мостиковых связей. наиб. склонны к этому галогенидыметаллов I и II групп, А1С13, пентафториды Sb и переходных металлов, оксофториды состава MOF4. Известны галогениды со связью металл - металл, напр. Hg2Cl2.

Фториды значительно отличаются по св-вам от др. галогенидов. Однако в простых галогенидах эти отличия выражены менее резко, чем в самих галогенах, а в комплексных галогенидах-слабее, чем в простых.

Многие ковалентные галогениды (особенно фториды)-сильные к-ты Льюиса, напр. AsF5, SbF5, BF3, A1C13. Фториды входят в состав сверхкислот. Высшие галогениды восстанавливаются металлами и Н2, напр.:

Галогениды металлов V-VIII групп, кроме Сr и Мn, восстанавливаются Н2 до металлов, напр.: WF6 + 3Н2 -> W + 6HF

Многие ковалентные и ионные галогениды металлов взаимодействуют между собой с образованием комплексных галогенидов, напр.: КС1 + ТаС15 -> К[ТаС16]

Более легкие галогены могут вытеснять более тяжелые из галогенидов. Кислород может окислять галогениды с выделением С12, Вr2 и I2. Одна из характерных р-ций ковалентных галогенидов-взаимод. с водой (гидролиз) или ее парами при нагр. (пирогидролиз), приводящее к образованию оксидов, окси- или

оксогалогенидов, гидроксидов и галогеноводородов. Исключение составляют CF4, CC14 и SF6, устойчивые к парам воды при высоких т-рах.

Галогениды получают непосредственно из элементов, взаимод. галогеноводородов или галогеноводородных к-т с элементами, оксидами, гидроксидами или солями, а также обменными р-циями.

Галогениды широко используют в технике как исходные в-ва для получения галогенов, щелочных и щел.-зем. металлов, как компоненты стекол и др. неорг. материалов; они являются промежут. продуктами в произ-ве редких и нек-рых цветных металлов, U, Si, Ge и др.

В природе галогениды образуют отдельные классы минералов, в к-рых представлены фториды (напр., минералы флюорит, криолит) и хлориды (сильвин, карналлит).Бром и иод входят в состав нек-рых минералов в виде изоморфных примесей. Значительные кол-ва галогенидов содержатся в воде морей и океанов, в соляных и подземных рассолах. Некоторые галогениды, напр. NaCl, К.С1, СаС12, входят в состав живых организмов.

Криоли́т (от др.-греч. κρύος - мороз + λίθος - камень) - редкий минерал из класса природных фторидов, гексафтороалюминат натрия Na3. Кристаллизуется в моноклинной сингонии; кубовидные кристаллы и двойниковые пластины встречаются редко. Обычно образует бесцветные, белые или серые кристаллические скопления со стеклянным блеском, часто заключают в себе кварц, сидерит, пирит, галенит, халькопирит, колумбит, касситерит. Возможна окраска примесями органических веществ.

В настоящее время разработаны методы получения искусственного криолита. Искусственно получается путём взаимодействия фторида алюминия с фторидом натрия, а также действием плавиковой кислоты на гидроксид алюминия в присутствии соды. Используется в процессе электролитического получения алюминия, в производстве плавиковой кислоты, стекла и эмалей.

Квасцы. Квасцы - групповое название двойных солей состава МЭ(SO4)2 . 12H2O, где М - калий K, рубидий Rb, цезий Cs, аммоний NH4, а Э - алюминий Al, хром Cr, железо Fe и другие элементы в степени окисления (+III), дающие при диссоциации солей трехзарядные катионы.

Квасцы хорошо растворяются в воде, их водные растворы имеют вяжущий кисловатый вкус и кислую реакцию из-за гидролиза, например:

3+ + H2O <<здесь знак обратимости >> 2+ + H3O+

При нагревании квасцы сначала плавятся в содержащейся в них воде, а затем эту воду теряют, образуя безводные соли. Дальнейшее нагревание превращает квасцы в смесь оксидов металлов. Алюмо-калиевые квасцы могут быть получены при видоизменении процесса производства очищенного сульфата алюминия. Вначале производят варку каолина с серной кислотой. По окончании нейтрализации серной кислоты в реактор добавляют сульфат натрия из расчета получения натриевых квасцов. Последние, вследствие своей большой растворимости, находятся в растворе. После разбавления раствора до плотности 1,33 г/см3 его отделяют от осадка кремнезема, охлаждают и смешивают с насыщенным раствором хлорида калия. При этом в осадок выделяются алюмо-калиевые квасцы, плохо растворимые при невысокой температуре. В маточном растворе после отделения кристаллов алюмо-калиевых квасцов остаются растворимые примеси - соединения железа и хлорид натрия 89.

В процессе гидролиза гидратированные ионы алюминия теряют протоны, образуя последовательные гидро-оксо-комплексы. Когда последний нейтральный комплекс теряет воду, образуется нерастворимая гидроокись А1(ОН)3.

Комплексные ионы [А1(Н20)5ОН]2+ и [А1(Н20)4(ОН)2]+ остаются в растворе, тогда как гидроокись А1(ОН)3 осаждается сразу после своего образования. Осаждение происходит при значениях рН > 3. Полностью до образования гидроокиси алюминия гидролиз протекает при условии нейтрализации образующихся протонов, например щелочью.

Глубокий гидролиз соли сернокислого алюминия широко применяют для очистки питьевых и сточных вод. Выделяющийся при гидролизе гидроксоний вступает в реакцию с обычно содержащимися в воде бикарбонатами Н30+ + НС03 = С02 + 2Н20. В этом случае конечными продуктами гидролиза являются коллоидная гидроокись алюминия и углекислота.

При коагуляции золя гидроокиси алюминия получается объемистый студенистый осадок, который захватывает взвешенные частицы и бактерии и увлекает их на дно отстойника. Расход сернокислого алюминия, необходимый для очистки воды, зависит от состава и количества находящихся в воде загрязнений. Дозы сернокислого алюминия для очистки природных вод и для до-очистки сточных вод колеблются в пределах 3 - 15 мг/л по А1203, а для физико-химической очистки городских сточных вод достигают 30-50 мг/л по А1203. Расход сернокислого алюминия должен обеспечить образование достаточно большой массы хлопьев, что необходимо для изъятия из воды находящихся в ней загрязнений. Значение рН раствора должно быть снижено до 6,5-7,6, что соответствует минимальной растворимости в воде гидроокиси алюминия. При большем или меньшем значении рН часть алюминия остается в воде в растворенном состоянии. В водах с малой щелочностью, когда содержание бикарбонатов недостаточно для нейтрализации выделяющейся кислоты, процесс гидролиза из-за сильного понижения рН не доходит до конца. Для повышения щелочности, завершения процесса гидролиза и уменьшения содержание в воде растворенного алюминия в воду одновременно с коагулян1 том вводят известь и соду.

Если не проводить нейтрализацию накапливающихся при гидролизе протонов, то процесс гидролиза замедляется, что приводит к наступлению гидролитического равновесия, которое может быть охарактеризовано степенью и константой гидролиза. Гидролиз растворов сернокислого алюминия, который является реакцией замещения сульфатных ионов в А12(804)3 ионами ОН", образующимися за счет диссоциации воды, может быть представлен в общем виде уравнением

2А13+ + (3 - -|-) ЭОГ + аОН" + ад^АЦОНЦБОЖ --^ЭОГ + ад,

где а - степень и основность замещения.

Это уравнение показывает, что решающее влияние на смещение вправо оказывает концентрация ионов ОН- в растворе, т. е. степень диссоциации воды. Как известно, для солей со слабым основанием и сильной кислотой степень гидролиза к связана с константой гидролиза А-, концентрацией соли (с, моль"л), ионным произведением воды кю и константой диссоциации основания кь следующим соотношением:

/г = УкЦс = УкиЛъс.

Если А-, мало изменяется с температурой, то кш увеличивается значительно, что и вызывает существенный рост степени гидролиза с повышением температуры.

Н. И. Еремин на основании полученных экспериментальных данных вывел уравнения зависимости степени гидролиза раствора от температуры и концентрации

для сернокислого алюминия:

1ё к = - 2,23 + 0,05с + 0,0036т7 + 18 УЦс, для аммониевых квасцов:

18 Л = -1,19 +0,29с+ 0,0016Г + 18угЩ для калиевых квасцов:

\ёк= - 1,17 + 0,29с + 0,00167 + 18 УПс,

для натриевых квасцов:

18к = - 1,18 + 0,29с + 0,0016т7 + \ё УПс.

Как видно из этих уравнений, влияние концентрации на степень гидролиза для квасцов более значительно, чем сернокислого алюминия.

Бор. Получение бора. Химические свойства. Диагональное сходство бора с кремнием. Гидриды бора. Диборан. Особенности химической связи в молекуле диборана. Галогениды бора. Кислородные соединения бора. Оксид бора и борные кислоты. Бура. Получение борной кислоты. Боросиликатные стёкла. Борноэтиловый эфир.

Бор - элемент тринадцатой группы (по устаревшей классификации - главной подгруппы третьей группы), второго периода периодической системы химических элементов с атомным номером 5. Обозначается символом B (лат. Borum). В свободном состоянии бор - бесцветное, серое или красное кристаллическое либо тёмное аморфное вещество. Известно более 10 аллотропных модификаций бора, образование и взаимные переходы которых определяются температурой, при которой бор был получен

Получение. Наиболее чистый бор получают пиролизом бороводородов. Такой бор используется для производства полупроводниковых материалов и тонких химических синтезов.

Метод металлотермии (чаще восстановление магнием или натрием):

Термическое разложение паров бромида бора на раскаленной (1000-1200 °C) вольфрамовой проволоке в присутствии водорода (метод Ван-Аркеля):

Физические свойства . Чрезвычайно твёрдое вещество (уступает только алмазу, нитриду бора (боразону), карбиду бора, сплаву бор-углерод-кремний, карбиду скандия-титана). Обладает хрупкостью и полупроводниковыми свойствами (широкозонный

полупроводник). У бора самый высокий предел прочности на разрыв 5,7 ГПа

В природе бор находится в виде двух изотопов 10В (20 %) и 11В (80 %)[.

10В имеет очень высокое сечение поглощения тепловых нейтронов, поэтому 10В в составе борной кислоты применяется в атомных реакторах для регулирования реактивности.

Химические свойства . Ионы бора окрашивают пламя в зелёный цвет.

По многим физическим и химическим свойствам неметалл бор напоминает кремний.

Химически бор довольно инертен и при комнатной температуре взаимодействует только со фтором:

При нагревании бор реагирует с другими галогенами с образованием тригалогенидов, с азотом образует нитрид бора BN, с фосфором - фосфид BP, с углеродом - карбиды различного состава (B4C, B12C3, B13C2). При нагревании в атмосфере кислорода или на воздухе бор сгорает с большим выделением теплоты, образуется оксид B2O3:

С водородом бор напрямую не взаимодействует, хотя известно довольно большое число бороводородов (боранов) различного состава, получаемых при обработке боридов щелочных или щелочноземельных металлов кислотой:

При сильном нагревании бор проявляет восстановительные свойства. Он способен, например, восстановить кремний или фосфор из их оксидов:

Данное свойство бора можно объяснить очень высокой прочностью химических связей в оксиде бора B2O3.

При отсутствии окислителей бор устойчив к действию растворов щелочей. В горячей азотной, серной кислотах и в царской водке бор растворяется с образованием борной кислоты

Оксид бора - типичный кислотный оксид. Он реагирует с водой с образованием борной кислоты:

При взаимодействии борной кислоты со щелочами возникают соли не самой борной кислоты - бораты (содержащие анион BO33−), а тетрабораты, например:

Бор - полупроводник, диагональное сходство с кремнием:

1) Оба тугоплавкие, твердые, полупроводники. В – серо-черный, Si- серый.

I1(B)=8.298 эВ; I1(Si)=8.151 эВ. Оба не склонны к образованию катионов.

2) Оба химически инертны (хотя бор все-таки растворяется в горячих кислотах-окислителях. Оба растворяются в щелочах.

2B + KOH + 2H2O ® 2KBO2 + 3H2

Si + 2KOH + H2O®K2SiO3+ 2H2

3) При высоких температурах реагируют с металлами, образуя бориды и силициды - Ca3B2;Mg2Si- тугоплавкие, электропроводные соединения.

Кислородные соединения бора. В2О3- кислотный оксид (SiO2 тоже) - оба полимерные, стеклообразные, только В2О3образует плоские сетки, аSiO2- трехмерные структуры. Отличие между ними в том, что оксид бора легко гидратируется, а песок (SiO2), как известно, нет.

H3BO3- ортоборная кислота.

H3BO3«HBO2+H2Oметаборная кислота (100оС)

4HBO2«H2B4O7+H2Oтетраборная кислота (140оС) - слабая, обе Кд

H2B4O7«2B2O3+H2Oпрактически одинаковы - нет кислых солей

Ортоборная кислота слабая, иногда ее диссоциацию пишут

B(OH)3 + H2O « B(OH)4 + H+

Образует сложные эфиры со спиртами: H3BO3+3CH3OH®B(OCH3)3+3H2O

Свойства. Бор известен в аморфной (коричневой) и кристаллической (черной) формах, т.пл. 2300°С, т.кип. 3700°С, р = 2,34 г/см3. Кристаллическая решетка бора очень прочна, это проявляется в его высокой твердости, низкой энтропии, и высокой температуре плавления. Бор-полупроводник. Неметалличность бора отвечает его положению в периодической системе - между бериллием и углеродом и по диагонали- рядом с кремнием. Поэтому у бора проявляется сходство не только с алюминием, но и с кремнием. Из его положения следует также, что соединения бора с азотом должны быть по электронному строению и свойствам похожи на углерод.

2ВН3(г) - В2Н6(г);

дельта G= - 126 кДж

3NaBH4+4BF3 ->2В2Н6 + 3NaBF4

6H2 (г) + 2ВС13 (г) ->В2Н6(г) + 6НСl(г)

Диборан В2Н6 - энергичный восстановитель, на воздухе он самовоспламеняется

В2Н6+3О2 =>В2О3+ЗН2О

С водой взаимодействует с выделением водорода;

В2Н6+6Н2О =>. 2Н3ВО3+6Н2

В среда эфира В2Н6 реагирует с гидридом лития, образуя борогидрид

B2H6+2LiH => 2LiBH4

Чаще, чем Li, используютNa, получаемый по реакции-

4NaH + B(OCH3)3 => Na + 3NаОСН3

В2О3 + ЗС => 2В + ЗСО

2B2O3+P4O10 => 4BPO4

Н3ВО3+Н2O => [В(ОН)4] + H

При нейтрализации Н3ВО3 не образуются ортобораты , содержащие ион (ВО3)3-, а получаются тетрабораты, метабораты или соли других полиборных кислот:

4Н3ВО3+2NаОН => Na2BO4 + 7Н2О Н3ВО3 +NaOH=>NaBO2 + 2Н2О

Окси́д бо́ра B2O3 - ангидрид борной кислоты, бесцветное, довольно тугоплавкое стекловидное или кристаллическое вещество горьковатого вкуса, диэлектрик.

Стеклообразный оксид бора имеет слоистую структуру (расстояние между слоями 0.185 нм), в слоях атомы бора расположены внутри равносторонних треугольников ВО3 (d В-О=0.145 нм). Эта модификация плавится в интервале температур 325-450 °C и обладает высокой твёрдостью. Она получается при нагревании бора на воздухе 700 °C или обезвоживанием ортоборной кислоты. Кристаллический В2О3, который получают осторожным отщеплением воды от метаборной кислоты НВО2, существует в двух модификациях - с гексагональной кристаллической решёткой, при 400 °C и 2200 МПа переходящей в моноклинную.

В промышленности из природных боратовсплавлением с содой получают буру . При обработке природных минералов бора серной кислотой образуется борная кислота . Из борной кислоты H3BO3 прокаливанием получают оксид B2O3, а затем его или буру восстанавливают активными металлами (магнием или натрием) до свободного бора:

B2O3 + 3Mg = 3MgO + 2B,

2Na2B4O7 + 3Na = B + 7NaBO2.

При этом в виде серого порошка образуется аморфный бор. Кристаллический бор высокой чистоты можно получить перекристаллизацией, но в промышленности его чаще получают электролизом расплавленных фтороборатов или термическим разложением паров бромида бора BBr3 на раскаленной до 1000-1500 °C танталовой проволоке в присутствии водорода:

2BBr3 + 3H2 = 2B + 6HBr

Возможно также использование крекинга бороводородов:

В4H10 = 4B + 5H2.

Бо́рная кислота́ (ортоборная кислота) - слабая кислота, имеющая химическую формулу H3BO3. Бесцветное кристаллическое вещество в виде чешуек без запаха, имеет слоистую триклинную решетку, в которой молекулы кислоты соединены водородными связями в плоские слои, слои соединены между собой межмолекулярными связями (d= 0,318 нм).

Метаборная кислота (HBO2) также представляет собой бесцветные кристаллы. Она существует в трех модификациях - наиболее устойчивой γ-НВО2 с кубической решеткой, β-НВО2 с моноклинной решеткой и α-НВО2 с ромбической решеткой.

При нагревании ортоборная кислота теряет воду и сначала переходит в метаборную кислоту, затем в тетраборную H2B4O7. При дальнейшем нагревании обезвоживается до борного ангидрида.

Борная кислота проявляет очень слабые кислотные свойства . Она сравнительно мало растворима в воде. Ее кислотные свойства обусловлены не отщеплением протона Н+, а присоединением гидроксильного аниона:

Ka = 5.8·10−10 моль/л; pKa = 9.24.

Она легко вытесняется из растворов своих солей большинством других кислот. Соли ее, называемые боратами, производятся обычно от различных полиборных кислот, чаще всего - тетраборной Н2В4О7, которая является значительно более сильной кислотой, чем ортоборная. Очень слабые признаки амфотерности B(OH)3 проявляет, образуя малоустойчивый гидросульфат бора В(HSO4)3.

При нейтрализации ортоборной кислоты щелочами в водных растворах не образуются ортобораты, содержащие ион (ВО3)3−, поскольку ортобораты гидролизуются практически полностью, вследствие слишком малой константы образования [В(ОН)4]−. В растворе образуются тетрабораты, метабораты или соли других полиборных кислот:

Избытком щелочи они могут быть переведены в метабораты:

Мета- и тетрабораты гидролизуются, но в меньшей степени (реакции, обратные приведенным).

В подкисленных водных растворах боратов устанавливаются следующие равновесия:

Наиболее распространенной солью борной кислоты является декагидрат тетрабората натрия Na2B4O7·10H2O (техническое название - бура).

При нагревании борная кислота растворяет оксиды металлов, образуя соли.

Со спиртами в присутствии концентрированной серной кислоты образует эфиры:

Образование борнометилового эфира В(ОСН3)3 является качественной реакцией на Н3ВО3 и соли борных кислот, при поджигании борнометиловый эфир горит красивым ярко-зеленым пламенем.

Боросиликатное стекло - стекло обычного состава, в котором заменяют щелочные компоненты в исходном сырье на окись бора (B2O3). Этим достигается повышенная химическая стойкость и малый коэффициент температурного расширения - до 3,3·10−6 при 20 °C у лучших образцов. У боросиликатного стекла он очень мал, меньше только у кварцевого стекла (почти в 10 раз). Это позволяет стеклу не трескаться при резких изменениях температуры. Этим обусловлено его применение в качестве противопожарного и в других случаях, когда необходима термическая стойкость.

Использование В быту, для изготовления посуды для открытого огня, заварочных чайников. Применяется как материал для лабораторной посуды, а также для химической промышленности и других отраслей, например, в качестве материала теплообменника для тепловых электростанций. Также применяется для изготовления дешевых гитарных слайдов. Также боросиликатное стекло может применяться для изготовления пипеток для ИКСИ, биопсии бластомера, которая проводится для проведения предимплантационной генетической диагностики с использованием в качестве генетического материала биопсийных клеток. Существует 3 варианта пипеток с внутренним диаметром от 4 µм до 7,5 µм. Длина пипетки составляет от 60 до 75 мм и имеет угол скоса 30°. Пипетки предназначены для одноразового использования.

Общая характеристика элементов IVA подгруппы. Строение атомов. Степени окисления. Распространённость и формы нахождения в природе. Аллотропные модификации углерода. Физические и химические свойства. Разновидности чёрного графита: кокс, древесный уголь, сажа.

Общая характеристика элементов IVA группы К элементам главной подгруппы IV группы относятся C, Si, Ge, Sn, Pв. Электронная формула внешнего валентного уровня nS2np2, то есть имеют 4 валентных электрона и это р - элементы, поэтому находятся в главной подгруппе IV группы. ││││ │↓│ np nS В основном состоянии атома два электрона спарены, а два – неспарены. Предвнешняя электронная оболочка углерода имеет 2 электрона, кремния – 8, а Ge, Sn, Pв – по 18 электронов. Поэтому Ge, Sn, Pв объединены в подгруппу германия (это – полные электронные аналоги). В этой подгруппе р – элементов, как и в остальных подгруппах р–элементов, свойства атомов элементов изменяются периодически.

Таким образом, сверху вниз в подгруппе радиус атома увеличивается, поэтому энергия ионизации уменьшается, поэтому способность отдавать электроны увеличивается, а тенденция к дополнению внешней электронной оболочки до октета резко уменьшается, поэтому от С к Рв увеличиваются восстановительные свойства и металлические свойства, а неметаллические свойства уменьшаются. Углерод и кремний – типичные неметаллы, у Ge уже появляются металлические свойства и по внешнему виду он похож на металл, хотя и является полупроводником. У олова уже металлические свойства преобладают, а свинец – типичный металл. Имея 4 валентных электрона, атомы в своих соединениях могут проявлять степени окисления от минимальной (-4) до максимальной (+4), причём для них характерны чётные С.О.: -4, 0, +2, +4; С.О. = -4 характерна для С и Si с металлами. Характер связи с другими элементами. Углерод образует только ковалентные связи, кремний тоже преимущественно образует ковалентные связи. Для олова и свинца, особенно в С.О. = +2, более характерен ионный характер связи (например, Рв(NO3)2). Ковалентность определяется валентной структурой атома. У атома углерода 4 валентные орбитали и максимальная ковалентность равна 4. У остальных элементов ковалентность может быть больше четырех, так как есть валентный d-подуровень (например, H2). Гибридизация. Тип гибридизации определяется типом и числом валентных орбиталей. У углерода есть лишь S- и р-валентные орбитали, поэтому может быть Sp (карбин, СО2, CS2), Sp2 (графит, бензол, COCl2), Sp3-гибридизация (CH4, алмаз, CCl4). Для кремния самая характерная Sp3 – гибридизация (SiO2, SiCl4), но у него есть валентный d-подуровень, поэтому есть также Sp3d2-гибридизация, например, H2. IV группа ПСЭ – это середина таблицы Д.И.Менделеева. Здесь ярко прослеживается резкое изменение свойств от неметаллов к металлам. Отдельно рассмотрим углерод, затем – кремний, затем элементы подгруппы германия.

Атом (от греческого atomos - неделимый) - одноядерная, неделимая частица химического элемента, носитель свойства вещества. Вещества состоят из атомов. Сам атом состоит из положительно заряженного ядра и отрицательно заряженного электронного облака. В целом атом электронейтрален. Размер атома полностью определяется размером его электронного облака, поскольку размер ядра ничтожно мал по сравнению с размером электронного облака. Ядро состоит из Z положительно заряженных протонов (заряд протона соответствует +1 в условных единицах) и N нейтронов, которые не несут на себе заряда (протоны и нейтроны называют нуклонами). Таким образом, заряд ядра определятся только количеством протонов и равен порядковому номеру элемента в таблице Менделеева. Положительный заряд ядра компенсируется отрицательно заряженными электронами (заряд электрона -1 в условных единицах), которые формируют электронное облако. Количество электронов равно количеству протонов. Массы протонов и нейтронов равны (соответственно 1 и 1 а.е.м.). Масса атома определятся массой его ядра, поскольку масса электрона примерно в 1850 раз меньше массы протона и нейтрона и в расчетах редко учитывается. Количество нейтронов можно узнать по разности между массой атома и количеством протонов (N=A-Z). Вид атомов какого-либо химического элемента с ядром, состоящим из строго определённого числа протонов (Z) и нейтронов (N) называется нуклидом.

Поскольку в ядре атома сосредоточена практически вся масса, но его размеры ничтожно малы по сравнению с общим объемом атома, то ядро условно принимается материальной точкой покоящейся в центре атома, а сам атом рассматривается как система электронов. При химической реакции ядро атома не затрагивается (кроме ядерных реакций), как и внутренние электронные уровни, а участвуют только электроны внешней электронной оболочки. По этой причине необходимо знать свойства электрона и правила формирования электронных оболочек атомов.

Сте́пень окисле́ния (окислительное число, формальный заряд) - вспомогательная условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций. Она указывает на состояние окисления отдельного атома молекулы и представляет собой лишь удобный метод учёта переноса электронов: она не является истинным зарядом атома в молекуле (см. #Условность).

Представления о степени окисления элементов положены в основу и используются при классификации химических веществ, описании их свойств, составлении формул соединений и их международных названий (номенклатуры). Но особенно широко оно применяется при изучении окислительно-восстановительных реакций.

Понятие степень окисления часто используют в неорганической химии вместо понятия валентность.

Степень окисления атома равна численной величине электрического заряда, приписываемого атому в предположении, что электронные пары, осуществляющие связь, полностью смещены в сторону более электроотрицательных атомов (то есть исходя из предположения, что соединение состоит только из ионов).

Степень окисления соответствует числу электронов, которое следует присоединить к положительному иону, чтобы восстановить его до нейтрального атома, или отнять от отрицательного иона, чтобы окислить его до нейтрального атома:

Al3+ + 3e− → Al

S2− → S + 2e− (S2− − 2e− → S)

Углерод - вещество с самым[источник не указан 1528 дней] большим числом аллотропических модификаций (более 8 уже обнаружены).

Аллотропные модификации углерода по своим свойствам наиболее радикально отличаются друг от друга, от мягкого к твёрдому, непрозрачного к прозрачному, абразивного к смазочному, недорогого к дорогому. Эти аллотропы включают аморфные аллотропы углерода (уголь, сажа), нанопена, кристаллические аллотропы - нанотрубка, алмаз, фуллерены, графит, лонсдейлит и церафит.

Классификация аллотропов углерода по характеру химической связи между атомами:

Алмаз (куб)

Лонсдейлит (гексагональный алмаз)

Фуллерены (C20+)

Нанотрубки

Нановолокна

Астралены

Стеклоуглерод

Колоссальные нанотрубки

Смешанные sp3/sp2 формы:

Аморфный углерод

Углеродные нанопочки

Углеродная нанопена

Другие формы: C1 - C2 - C3 - C8

Углеро́д (химический символ - C, лат. Carboneum) - химический элемент четырнадцатой группы (по устаревшей классификации - главной подгруппы четвёртой

группы), 2-го периода периодической системы химических элементов. порядковый номер 6, атомная масса - 12,0107.

Физические свойства .

Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими свойствами. Разнообразие модификаций обусловлено способностью углерода образовывать химические связи разного типа.

Видеоурок 2: Амфотерные гидроксиды. Опыты

Лекция: Характерные химические свойства оснований и амфотерных гидроксидов


Гидроксиды и их классификация


Как вы уже знаете основания образуются атомами металлов и гидроксогруппой (ОН -), поэтому иначе их называют гидроксидами. Существует несколько классификаций оснований.

1. По отношению к воде они подразделяются на:

    растворимые,

    нерастворимые.

К растворимым основаниям относятся гидроксиды щелочных и щелочноземельных металлов, поэтому их называют щелочами. В эту же группу можно отнести и гидроксид аммония, но он в отличии от первых, является более слабым электролитом. Основания, образованные остальными металлами в воде не растворяются. Щелочи в водном р-ре диссоциируются полностью до катионов металла и анионов гидроксид - ионов ОН - . К примеру: NaOH → Na + + OH - .


2. По взаимодействию с иными химическими веществами гидроксиды делятся на:

    основные гидроксиды,

    кислотные гидроксиды (кислородсодержащие кислоты),

    амфотерные гидроксиды.

Данное деление зависит от заряда катиона металла. Когда заряд катиона равен +1 или +2, то гидроксид будет обладать основными свойствами. Амфотерными основаниями считаются гидроксиды, катионы металла которых имеют заряд, равный +3 и +4.

Но существует ряд исключений:

    La(OH) 3 , Bi(OH) 3 , Tl(OH) 3 – основания;

    Be (OH) 2 , Sn (OH) 2 , Pb(OH) 2 , Zn(OH) 2 , Ge(OH) 2 - амфотерными основания.

Химические свойства оснований

Основания способны реагировать с кислотами и кислотными оксидами. В ходе взаимодействия происходит образование солей и воды:

    Ва(ОН) 2 + СО 2 → ВаСО 3 + Н 2 О;

    КОН + HCl → KCl + Н 2 О.

Щелочи, гидроксид аммония всегда реагируют с растворами солей, только в случае образования нерастворимых оснований:

    2КОН + FeCl 2 → 2КCl + Fe(ОН) 2 ;

    6NH 4 OH + Al 2 (SO 4) 3 → 2Al(OH) 3 + 3(NH 4)2SO 4 .

Реакция кислоты с основанием именуется нейтрализацией. В ходе данной реакции, катионы кислот Н+ и анионы оснований ОН- образуют молекулы воды. После чего, среда раствора становится нейтральной. В результате начинается выделение тепла. В растворах, это ведет к постепенному нагреву жидкости. В случае крепких растворов, тепла более чем достаточно, чтобы жидкость начала кипеть. Необходимо помнить, что реакция нейтрализации происходит достаточно быстро.


Химические свойства амфотерных гидроксидов


Амфотерные основания реагируют и с кислотами и со щелочами. В ходе взаимодействия происходит образование соли и воды. При прохождении какой - либо реакции с кислотами, амфотерные основания всегда проявляют свойства типичных оснований:

    Cr(OH) 3 + 3HCl → CrCl 3 + 3H 2 O .

В ходе реакции со щелочами, амфотерные основания способны проявлять свойства кислот. В процессе сплавления со щелочами, образуется соль и вода.