Эффект доплера для звуковых волн. Школьная энциклопедия

Если источник звука и наблюдатель движутся друг относительно друга, частота звука, воспринимаемого наблюдателем, не совпадает с частотой источника звука. Это явление, открытое в 1842 г., носит название эффекта Доплера .

Звуковые волны распространяются в воздухе (или другой однородной среде) с постоянной скоростью, которая зависит только от свойств среды. Однако, длина волны и частота звука могут существенно изменяться при движении источника звука и наблюдателя.

Рассмотрим простой случай, когда скорость источника υ И и скорость наблюдателя υ Н относительно среды направлены вдоль прямой, которая их соединяет. За положительное направление для υ И и υ Н можно принять направление от наблюдателя к источнику. Скорость звука υ всегда считается положительной.

Рис. 2.8.1 иллюстрирует эффект Доплера в случае движущегося наблюдателя и неподвижного источника. Период звуковых колебаний, воспринимаемых наблюдателем, обозначен через T Н. Из рис. 2.8.1 следует:

Принимая во внимание

Если наблюдатель движется в направлении источника (υ Н > 0), то f Н > f И, если наблюдатель движется от источника (υ Н < 0), то f Н < f И.

На рис. 2.8.2 наблюдатель неподвижен, а источник звука движется с некоторой скоростью υ И. В этом случае согласно рис. 2.8.2 справедливо соотношение:

Отсюда следует:

Если источник удаляется от наблюдателя, то υ И > 0 и, следовательно, f Н < f И. Если источник приближается к наблюдателю, то υ И < 0 и f Н > f И.

В общем случае, когда и источник, и наблюдатель движутся со скоростями υ И и υ Н, формула для эффекта Доплера приобретает вид:

Это соотношение выражает связь между f Н и f И. Скорости υ И и υ Н всегда измеряются относительно воздуха или другой среды, в которой распространяются звуковые волны. Это так называемый нерелятивистский Доплер-эффект .

В случае электромагнитных волн в пустоте (свет, радиоволны) также наблюдается эффект Доплера. Так как для распространения электромагнитных волн не требуется материальная среда, можно рассматривать только относительную скорость υ источника и наблюдателя.

Выражение для релятивистского Доплер-эффекта имеет вид

где c - скорость света. Когда υ > 0, источник удаляется от наблюдателя и f Н < f И, в случае υ < 0 источник приближается к наблюдателю, и f Н > f И.

Доплер-эффект широко используется в технике для измерения скоростей движущихся объектов («доплеровская локация» в акустике, оптике и радио).

Под эффектом Доплера понимают изменение частоты, регистрируемой приемником волны, связанное с движением источника и приемника. Впервые теоретически этот эффект в акустике и оптике был обоснован австрийским физиком К. Доплером в 1842 г.

Рассмотрим вывод формулы, определяющей частоту упругой волны, воспринимаемой приемником, на примере двух частных случаев. 1. В среде находятся неподвижные источник и приемник звуковых волн . Испускаемые источником волны частоты и длины волны
, двигаясь со скоростью , достигают приемника и создают в нем колебания такой же частоты
(рис. 6.11,а). 2. Источник и испускаемая им волна движутся вдоль оси Ох. Приемник движется к ним навстречу. Отметим, что скорость волны зависит только от свойств среды и не зависит от движения приемника и источника. Поэтому движение источника при постоянной частоте излучаемых им колебаний приведет к изменению только длины волны. Действительно, источник за период колебаний пройдет расстояние
, а по закону сложения скоростей волна отойдет от источника на расстояние
, и поэтому ее длина волны
будет меньше (рис.6.11,б).

По отношению к приемнику волна в соответствии с законом сложения скоростей будет двигаться со скоростью
и для неизменной длины волны частота колебаний, воспринимаемых источником, изменится и будет равна

.

Если источник и приемник будут удаляться друг от друга, то тогда в формуле для частоты нужно изменить знаки. Следовательно, единая формула для частоты колебаний, воспринимаемой приемником, при движении источника и приемника по одной прямой, будет выглядеть следующим образом:

. (6.36)

Из этой формулы следует, что для наблюдателя, находящегося, например на станции, частота звукового сигнала приближающегося поезда (υ ПР =0, υ ИСТ >0)

будет больше, а при удалении от станции меньше. Если, например, взять скорость звука υ=340 м/с, скорость поезда υ=72 км/ч и частоту звукового сигнала ν 0 =1000 Гц (такая частота хорошо воспринимается человеческим ухом, причем ухо различает звуковые волны с разностью частот, большей 10 Гц), тогда частота сигнала, воспринимаемого ухом будет изменяться в пределах

=

Если источник и приемник движутся со скоростями, направленными под углом к соединяющей их прямой, то тогда для расчета частоты , воспринимаемой приемником, нужно брать проекции их скоростей на эту прямую (рис. 6.11,в):

. (6.37)

Эффект Доплера наблюдается и для электромагнитных волн. Но в отличие от

упругих волн, ЭМВ могут распространяться в отсутствии среды, в вакууме. Следовательно, для ЭМВ не имеет значения скорость движения источника и приемника относительно среды. Для ЭМВ необходимо рассматривать относительную скорость движения источника и приемника, учитывать при этом преобразования Лоренца и замедление хода времени в движущейся системе отсчета.

Рассмотрим продольный эффект Доплера. Выведем формулу для частоты ЭМВ, фиксируемой приемником, в частном случае – источник и приемник движутся навстречу друг другу в направлении соединяющей их прямой. Пусть имеются две И.С.О. – неподвижная И.С.О. К (в ней находится неподвижный приемник ЭМВ) и движущаяся относительно нее вдоль совпадающих осей координат Ох и Ох′ И.С.О. К ′ (в ней находится неподвижный источник ЭМВ) (рис. 6.12,а).

Рассмотрим, что наблюдается в И.С.О. К и К" .

1. И.С.О. К . Источник ЭМВ неподвижен и находится в начале оси координат Ох ′ (рис. 6.12,а). Он излучает в И.С.О. К ′ ЭМВ с периодом
, частоты
и длины волны
.

Приемник движется, но его движение не влияет на изменение частоты принимаемого сигнала. Это связано с тем, что, согласно второму постулату С.Т.О., скорость ЭМВ относительно приемника будет всегда равна с, и поэтому частота принимаемой приемником волны в И.С.О. К" будет также равна ,

2. И.С.О. К . Приемник ЭМВ неподвижен, а источник ЭМВ движется в направлении оси Ох со скоростью . Поэтому для источника необходимо учесть релятивистский эффект замедления времени. Это означает, что период волны, излучаемой источником в этой инерциальной системе отсчета, будет больше периода волны в И.С.О.
().

Для длины волны , излучаемой источником в направлении приемника, можно записать

Это выражение позволяет для периода Т и частоты воспринимаемой приемником ЭМВ в И.С.О. К, записать следующие формулы:


, (6.38)

где учтено, что скорость ЭМВ относительно приемника в И.С.О. К равна с .

В случае удаления источника и приемника необходимо в формуле (6.38) изменить знаки. При этом фиксируемая приемником частота излучения будет уменьшаться по сравнению с частотой волны, излучаемой источником, т.е. наблюдается красное смещение спектра видимого света.

Как видно, в выражение (6.38) не входит скорость источника и приемника по отдельности, входит только скорость их относительного движения.

Для ЭМВ также наблюдается поперечный эффект Доплера , который связан с эффектом замедления времени в движущейся инерциальной системе отсчета. Возьмем момент времени, когда скорость источника ЭМВ будет перпендикулярна линии наблюдения (рис. 6.12,б), тогда движение источника к приемнику не происходит и поэтому длина излучаемой им волны не изменяется (
). Остается только релятивистский эффект замедления времени

,
. (6.39)

Для поперечного эффекта Доплера изменение частоты будет существенно меньше, чем для продольного эффекта Доплера. Действительно, отношение частот, найденных по формулам (6.38) и (6.39), для продольного и поперечного эффектов будет значительно меньше единицы:
.

Поперечный эффект Доплера был подтвержден экспериментально, что еще раз доказало справедливость специальной теории относительности.

Приведенные здесь доводы в пользу формулы (6.39) не претендуют на строгость, но они дают правильный результат. В общем случае, для произвольного угла между линией наблюдения и скоростью движения источника , можно записать следующую формулу

, (6.40) где угол - это угол между линией наблюдения и скоростью движения источника см. (рис. 6.12, б).

Поперечный эффект Доплера отсутствует для упругих волн в среде. Это связано с тем, что, для определения частоты волны, воспринимаемой приемником, берутся проекции скоростей на прямую, соединяющую источник и приемник см. (рис. 6.11,в), а замедление времени для упругих волн отсутствует.

Эффект Доплера находит широкое практическое применение, например для измерения скоростей движения звезд, галактик по доплеровскому (красному) смещению линий в спектрах их излучения; для определения скоростей движущихся целей в радиолокации и гидролокации; для измерения температуры тел по доплеровскому уширению линий излучения атомов и молекул и т.д.

В акустике изменение частоты, обусловленное эффектом Доплера, определяется скоростями движения источника и приемника по отношению к среде, являющейся носителем звуковых волн (см. формулу (103.2)). Для световых волн также существует эффект Доплера. Однако особой среды, которая служила бы носителем электромагнитных волн, не существует. Поэтому доплеровское смещение частоты световых волн определяется только относительной скоростью источника и приемника.

Свяжем с источником света начало координат системы К, а с приемником - начало координат системы К (рис. 151.1). Оси направим, как обычно, вдоль вектора скорости v, с которой система К (т. е. приемник) движется относительно системы К (т е. источника). Уравнение плоской световой волны, испускаемой источником по направлению к приемнику, будет в системе К иметь вид

Здесь и - частота волны, фиксируемая в системе отсчета, связанной с источником, т. е. частота, с которой колеблется источник. Мы предполагаем, что световая волна распространяется в вакууме; поэтому фазовая скорость равна с.

Согласно принципу относительности законы природы имеют одинаковый вид во всех инерциальных системах отсчета. Следовательно, в системе К волна (151.1) описывается уравнением

где - частота, фиксируемая в системе отсчета К т. е. частота, воспринимаемая приемником. Мы снабдили штрихами все величины, кроме с, которая одинакова во всех системах отсчета.

Уравнение волны в системе К можно получить из уравнения в системе К, перейдя от с помощью преобразований Лоренца.

Заменив в и t согласно формулам (63.16) 1-го тома, получим

(роль играет v). Последнее выражение легко привести к виду

Уравнение (151.3) описывает в системе К ту же волну, что и уравнение (151.2). Поэтому должно выполняться соотношение

Изменим обозначения: частоту источника со обозначим через а частоту приемника - через . В результате формула примет вид

Перейдя от круговой частоты к обычной, получим

(151.5)

Фигурирующая в формулах (151.4) и (151.5) скоростью приемника по отношению к источнику есть величина алгебраическая. При удалении приемника и согласно при приближении приемника к источнику так что со

В случае, если формулу (151.4) можно приближенно записать следующим образом:

Отсюда, ограничившись членами порядка получим

(151.6)

Из этой формулы можно найти относительное изменение частоты:

(151.7)

(под подразумевается ).

Можно показать, что, кроме рассмотренного нами продольного эффекта, для световых волн существует также поперечный эффект Доплера. Он заключается в уменьшении воспринимаемой приемником частоты, наблюдающемся в том случае, когда вектор относительной скорости направлен перпендикулярно к прямой, проходящей через приемник, и источник (когда, например, источник движется по окружности, в центре которой помещаемся приемник).

В этом случае частота в системе источника связана с частотой со в системе приемника соотношением

Относительное изменение частоты при поперечном эффекте Доплера

пропорционально квадрату отношения и, следовательно, значительно меньше, чем при продольном эффекте, для которого относительное изменение частоты пропорционально первой степени

Существование поперечного эффекта Доплера было доказано экспериментально Айвсом в 1938 г. В опытах Айвса определялось изменение частоты излучения атомов водорода в каналовых лучах (см. последний абзац § 85). Скорость атомов составляла примерно 106 м/с. Эти опыты представляют собой непосредственное экспериментальное подтверждение справедливости преобразований Лоренца.

В общем случае вектор относительной скорости можно разложить на две составляющие, одна из которых направлена вдоль луча, а другая - перпендикулярно к лучу. Первая составляющая обусловит продольный, вторая - поперечный эффект Доплера.

Продольный эффект Доплера используется для определения радиальной скорости звезд. Измерив относительное смещение линий в спектрах звезд, можно по формуле (151.4) определить

Тепловое движение молекул светящегося газа приводит вследствие эффекта Доплера к уширению спектральных линий. Из-за хаотичности теплового движения все направления скоростей молекул относительно спектрографа равновероятны. Поэтому в регистрируемом прибором излучении присутствуют все частоты, заключенные в интервале от до где - частота, излучаемая молекулами, v - скорость теплового движения (см. формулу (151.6)). Таким образом, регистрируемая ширина спектральной линии составит Величину

(151.10)

называют доплеровской шириной спектральной линии (под v подразумевается наиболее вероятная скорость молекул). По величине доплеровского уширения спектральных линий можно судить о скорости теплового движения молекул, а следовательно, и о температуре светящегося газа.

λ, воспринимаемой наблюдателем при движении источника колебаний и наблюдателя относительно друг друга. Возникновение Доплера эффекта проще всего объяснить на следующем примере. Пусть неподвижный источник в однородной среде без дисперсии испускает волны с периодом Т 0 = λ 0 /υ, где λ 0 - длина волны, υ - фазовая скорость волны в данной среде. Неподвижный наблюдатель будет принимать излучение с таким же периодом Т 0 и той же длиной волны λ 0 . Если же источник S движется с некоторой скоростью V s в сторону наблюдателя Р (приёмника), то длина принимаемой наблюдателем волны уменьшится на величину смещения источника за период Т 0 , то есть λ = λ 0 -V S T 0 , а частота ω соответственно увеличится: ω = ω 0 /(1 - V s /υ). Принимаемая частота увеличивается, если источник неподвижен, а наблюдатель приближается к нему. При удалении источника от наблюдателя принимаемая частота уменьшается, что описывается той же формулой, но с изменённым знаком скорости.

В общем случае, когда и источник, и приёмник движутся относительно неподвижной среды с нерелятивистскими скоростями V S и V P под произвольными углами θ S и θ Р (рис.), принимаемая частота равна (1):

Максимальное увеличение частоты происходит при движении источника и приёмника навстречу друг другу (θ S = 0, θ Р = π), а уменьшение - при взаимном удалении источника и наблюдателя (θ S = π, θ Р = 0). Если же источник и приёмник движутся с одинаковыми по величине и направлению скоростями, Доплера эффекта отсутствует.

При скоростях движения, сравнимых со скоростью света с в вакууме, необходимо принять во внимание релятивистский эффект замедления времени (смотри Относительности теория); в результате для неподвижного наблюдателя (V P = 0) принимаемая частота излучения (2)

где β = V S /с. В этом случае смещение частоты имеет место и при θ S = π/2 (так называемый поперечный Доплера эффект). Для электромагнитных волн в вакууме в любой системе отсчёта υ = с и в формуле (2) под V S нужно понимать относительную скорость источника.

В средах с дисперсией, когда фазовая скорость υ зависит от частоты ω, соотношения (1), (2) могут допускать несколько значений ω для заданных ω 0 и V S то есть в точку наблюдения под одним и тем же углом могут приходить волны с разными частотами (так называемый сложный Доплера эффект). Дополнительные особенности возникают при движении источника со скоростью V S > υ, когда на поверхности конуса углов, удовлетворяющих условию cosθ S = υ/V S , знаменатель в формуле (2) обращается в нуль, - имеет место так называемый аномальный Доплера эффект. В этом случае внутри указанного конуса частота растёт с увеличением угла θ S , тогда как при нормальном Доплера эффекте под большими углами θ S излучаются меньшие частоты.

Разновидностью Доплера эффекта является так называемый двойной Доплера эффект - смещение частоты волн при отражении их от движущихся тел, поскольку отражающий объект можно рассматривать сначала как приёмник, а затем как переизлучатель волн. Если ω 0 и υ 0 - частота и фазовая скорость волны, падающей на плоскую границу, то частоты ω i вторичных (отражённых и прошедших) волн, распространяющихся со скоростями υ i , определяются как (3)

где θ 0 , θ i - углы между волновым вектором соответствующей волны и нормальной составляющей скорости V движения отражающей поверхности. Формула (3) справедлива и в том случае, когда отражение происходит от движущейся границы изменения состояния макроскопически неподвижной среды (например, волны ионизации в газе). Из неё следует, в частности, что при отражении от границы, движущейся навстречу волне, частота повышается, причём эффект тем больше, чем меньше разница скоростей границы и отражённой волны.

Для нестационарных сред изменение частоты распространяющихся волн может происходить даже для неподвижных излучателя и приемника - так называемый параметрический эффект Доплера.

Доплера эффект назван в честь К. Доплера, который впервые теоретически обосновал его в акустике и оптике (1842). Первое экспериментальное подтверждение Доплера эффекта в акустике относится к 1845. А. Физо (1848) ввёл понятие доплеровского смещения спектральных линий, которое было обнаружено позднее (1867) в спектрах некоторых звёзд и туманностей. Поперечный Доплера эффект был обнаружен американскими физиками Г. Айвсом и Д. Стилуэллом в 1938. Обобщение Доплера эффекта на случай нестационарных сред принадлежит В. А. Михельсону (1899); на возможность сложного Доплера эффекта в средах с дисперсией и аномального Доплера эффекта при V > υ впервые указали В. Л. Гинзбург и И. М. Франк (1942).

Доплера эффект позволяет измерять скорости движения источников излучения и рассеивающих волны объектов и находит широкое практическое применение. В астрофизике Доплера эффект используется для определения скорости движения звёзд, а также скорости вращения небесных тел. Измерения доплеровского красного смещения линий в спектрах излучения удалённых галактик привели к выводу о расширяющейся Вселенной. Доплеровское уширение спектральных линий излучения атомов и ионов даёт способ измерения их температуры. В радио- и гидролокации Доплера эффект используется для измерения скорости движущихся целей, для определения их на фоне неподвижных отражателей и т. п.

Лит.: Франкфурт У. И., Френк А. М. Оптика движущихся тел. М., 1972; Угаров В. А. Специальная теория относительности. 2-е изд. М., 1977; Франк И. М. Эйнштейн и оптика // Успехи физических наук. 1979. Т. 129. Вып. 4; Гинзбург В. Л. Теоретическая физика и астрофизика: Дополнительные главы. 2-е изд. М., 1981; Ландсберг Г. С. Оптика. 6-е изд. М., 2003.

Звук может восприниматься человеком по-разному, если источник звука и слушатель движутся относительно друг друга. Он может казаться более высоким или более низким, чем есть на самом деле.

Если источник звуковых волн и приёмник находятся в движении, то частота звука, которую воспринимает приёмник, отличается от частоты источника звука. При их сближении частота увеличивается, а при удалении уменьшается. Это явление называется эффектом Доплера , по имени учёного, его открывшего.

Эффект Доплера в акустике

Многим из нас приходилось наблюдать, как изменяется тон гудка поезда, двигающегося с большой скоростью. Он зависит от частоты звуковой волны, которую улавливает наше ухо. При приближении поезда эта частота увеличивается, и сигнал становится более высоким. При удалении от наблюдателя частота уменьшается, и мы слышим более низкий звук.

Такой же эффект наблюдается, когда движется приёмник звука, а источник неподвижен, или когда в движении находятся оба.

Почему изменяется частота звуковой волны, объяснил австрийский физик Кристиан Доплер. В 1842 г. он впервые описал эффект изменения частоты, названный эффектом Доплера .

Когда приёмник звука приближается к неподвижному источнику звуковых волн, за единицу времени он встречает на своём пути больше волн, чем если бы он находился в неподвижном состоянии. То есть он воспринимает более высокую частоту и слышит более высокий тон. Когда же он удаляется, число пересечённых в единицу времени волн уменьшается. И звук кажется более низким.

При движении источника звука к приёмнику он словно догоняет волну, созданную им же. Её длина уменьшается, следовательно, увеличивается частота. Если же он удаляется, то длина волны становится больше, а частота меньше.

Как вычислить частоту принимаемой волны

Звуковая волна способна распространяться только в среде. Её длина λ зависит от скорости и направления её движения.

где ω 0 - круговая частота, с которой источник испускает волны;

с - скорость распространения волн в среде;

v - скорость, с которой движется источник волн относительно среды. Её значение положительно, если источник движется навстречу приёмнику, и отрицательно, если он удаляется.

Неподвижный приёмник воспринимает частоту

Если же источник звука неподвижен, а приёмник движется, то частота, которую он будет воспринимать, равна

где u - скорость приёмника относительно среды. Она имеет положительное значение, если приёмник движется навстречу источнику, и отрицательное, если он удаляется.

В общем случае формула частоты, воспринимаемой приёмником, имеет вид:

Эффект Доплера наблюдается для волн любой частоты, а также электромагнитного излучения.

Где применяется эффект Доплера

Эффект Доплера используют везде, где нужно измерить скорость объектов, которые способны излучать или отражать волны. Главное условие для появления этого эффекта - движение источника волн и приёмника относительно друг друга.

Радар Доплера - это прибор, испускающий радиоволну, а затем измеряющий частоту отражённой от движущегося объекта волны. По изменению частоты сигнала он определяет скорость объекта. Такие радары используют сотрудники ГИБДД, чтобы выявить нарушителей, превышающих допустимую скорость. Применяют эффект Доплера в морской и воздушной навигации, в детекторах движения в охранных системах, для измерения скорости ветра и облаков в метеорологии и др.

Мы часто слышим о таком исследовании в кардиологии, как доплеровская эхокардиография. Эффект Доплера используют в этом случае для определения скорости движения клапанов сердца, скорости кровотока.

И даже скорость движения звёзд, галактик и других небесных тел научились определять по смещению спектральных линий с помощью эффекта Доплера.