Парасимпатические воздействия на сердце. Влияние на сердце блуждающего нерва

И блуждающие, и симпатические нервы оказывают на сердце 5 влияний:

    хронотропный (изменяют частоту сердечных сокращений);

    инотропный (изменяют силу сердечных сокращений);

    батмотропный (влияют на возбудимость миокарда);

    дромотропный (влияет на проводимость);

    тонотропный (влияют на тонус миокарда);

То есть они оказывают влияние на интенсивность обменных процессов.

Парасимпатическая нервная система — отрицательные все 5 явлений; симпатическая нервная система — все 5 явлений положительные.

Влияние парасимпатических нервов.

Отрицательное влияние n.vagus связано с тем, что его медиатор ацетилхолин взаимодействует с М-холинорецепторами.

Отрицательное хронотропное влияние — за счёт взаимодействия между ацетилхолином с М-холинорецепторами синоартиального узла. в результате открываются калиевые каналы (повышается проницаемость для К+), в результате уменьшается скорость медленной диастолической спонтанной поляризации, в итоге уменьшается количество сокращений в минуту (за счёт увеличения продолжительности действия потенциала действия).

Отрицательное инотропное влияние — ацетилхолин взаимодействует с М-холинорецепторами кардиомиоцитов. В результате тормозится активность аденилатциклазы и активируется гуанилатциклазный путь. Ограничение аденилатциклазного пути уменьшает окислительное фосфорилирование, уменьшается количество макроэргических соединений, в итоге уменьшается сила сердечных сокращений.

Отрицательное батмотропное влияние — ацетилхолин взаимодействует и М-холинорецепторами всех образований сердца. В резултате увеличивается проницаемость клеточной мембраны миокардиоцитов для К+. Величина мембранного потенциала увеличивается (гиперполяризация). Разность между мембранным потенциалом и Е критическим увеличивается, а эта разность показатель порога раздражения. Порог раздражения увеличивается — возбудимость уменьшается.

Отрицательное дромоторопное влияние — т. к. возбудимость уменьшается, то малые круговые токи медленнее распространяются, поэтому уменьшается скорость проведения возбуждения.

Отрицательный тонотропный эффект — под действием n.vagus не происходит активации обменных процессов.
Влияние симпатических нервов.

Медиатор норадреналин взаимодействует с бетта 1-адренорецепротами синоатриального узла. в результате открываются Са 2+ -каналы — повышается проницаемость для К + и Са 2+ . В результате увеличивается скорость мелоенной спонтанной диастолической деполяризации. Продолжительность потенциала действия уменьшается, соответственно частота сердечных сокращений увеличивается — положительный хронотропный эффект.

Положительный инотропный эффект — норадренолин взаимодействует с бетта1- рецепторами кардиоцитов. Эффекты:

    активируется фермент аденилатциклаза, т. о. стимулируется окислительное фосфорилирование в клетке с образованием, увеличивается синтез АТФ — увеличивается сила сокращений.

    увеличивается проницаемость для Са 2+ , который участвует в мышечных сокращениях, обеспечивая образование актомиозиновых мостиков.

    под действием Са 2+ увеличивается активность белка кальмомодулина, который обладает сродством к тропонину, что увеличивает силу сокращений.

    активируются Са 2+ -зависимые протеинкиназы.

    под действием норадреналина АТФ-азная активность миозина (фермент АТФ-аза). Это самый важный для симпатической нервной системы фермент.

Положительный батмотропный эффект: норадреналин взаимодействует с бетта 1-адренорецепорами всех клеток, увеличивается проницаемость для Na + и Ca 2+ (эти ионы поступают внутрь клетки), т. о. возникает деполяризация клеточной мембраны. Мембранный потенциал приближается к Е критическому (критический уровень деполяризации). Это снижает порог раздражения, а возбуждаемость клетки увеличивается.

Положительное дромотропное влияние — вызвано повышением возбудимости.

Положительное тонотропное влияние — связано с адаптационно-трофической функцией симпатической нервой системы.
Для парасимпатической нервной системы наиболее важен отрицательный хронотропный эфект, а для симпатической нервной системы — положительное инотропное и тонотропное влияние.

Оглавление темы "Возбудимость сердечной мышцы. Сердечный цикл и его фазовая структура. Тоны сердца. Иннервация сердца.":
1. Возбудимость сердечной мышцы. Потенциал действия миокарда. Сокращение миокарда.
2. Возбуждение миокарда. Сокращение миокарда. Сопряжение возбуждения и сокращения миокарда.
3. Сердечный цикл и его фазовая структура. Систола. Диастола. Фаза асинхронного сокращения. Фаза изометрического сокращения.
4. Диастолический период желудочков сердца. Период расслабления. Период наполнения. Преднагрузка сердца. Закон Франка-Старлинга.
5. Деятельность сердца. Кардиограмма. Механокардиограмма. Электрокардиограмма (ЭКГ). Электроды экг.
6. Тоны сердца. Первый (систолический) тон сердца. Второй (диастолический) сердечный тон. Фонокардиограмма.
7. Сфигмография. Флебография. Анакрота. Катакрота. Флебограмма.
8. Сердечный выброс. Регуляция сердечного цикла. Миогенные механизмы регуляции деятельности сердца. Эффект Франка - Старлинга.
9. Иннервация сердца. Хронотропный эффект. Дромотропный эффект. Инотропный эффект. Батмотропный эффект.

Результатом стимуляции этих нервов является отрицательный хронотропный эффект сердца (рис. 9.17), на фоне которого проявляются также отрицательные и дромотропный инотропный эффекты . Существуют постоянные тонические влияния на сердце со стороны бульбарных ядер блуждающего нерва: при его двусторонней перерезке частота сердцебиений возрастает 1,5-2,5 раза. При длительном сильном раздражении влияние блуждающих нервов на сердце постепенно ослабевает или прекращается, что получило название «эффекта ускользания» сердца из-под влияния блуждающего нерва.

Различные отделы сердца по-разному реагируют на возбуждение парасимпатических нервов . Так, холинергические влияния на предсердия вызывают значительное угнетение автоматии клеток синусного узла и спонтанно возбудимой ткани предсердий. Сократимость рабочего миокарда предсердий в ответ на стимуляцию блуждающего нерва снижается. Рефрактерный период предсердий при этом также уменьшается в результате значительного укорочения длительности потенциала действия предсердных кардиомиоцитов. С другой стороны, рефрактерность кардиомиоцитов желудочков под влиянием блуждающего нерва, напротив, значительно возрастает, а отрицательный парасимпатический инотропный эффект на желудочки выражен в меньшей степени, чем на предсердия.

Рис. 9.17. Электрическое раздражение эфферентных нервов сердца . Вверху - уменьшение частоты сокращений при раздражении блуждающего нерва; внизу-увеличение частоты и силы сокращений при раздражении симпатического нерва. Стрелками отмечены начало и конец раздражения.

Электрическая стимуляция блуждающего нерва вызывает урежение или прекращение сердечной деятельности вследствие торможения автоматической функции водителей ритма синоатриального узла. Выраженность этого эффекта зависит от силы и частоты . По мере увеличения силы раздражения отмечается переход от небольшого замедления синусного ритма до полной остановки сердца.

Отрицательный хронотропный эффект раздражения блуждающего нерва связан с угнетением (замедлением) генерации импульсов в водителе ритма сердца синусного узла. Поскольку при раздражении блуждающего нерва в его окончаниях выделяется медиатор - ацетилхолин , при его взаимодействии с мускариночувствительными рецепторами сердца повышается проницаемость поверхностной мембраны клеток водителей ритма для ионов калия. Вследствие этого возникает гиперполяризация мембраны, которая замедляет (подавляет) развитие медленной спонтанной диастолической деполяризации, и поэтому мембранный потенциал позже достигает критического уровня. Это приводит к урежению ритма сокращений сердца.

При сильных раздражениях блуждающего нерва диастолическая деполяризация подавляется, возникают гиперполяризация водителя ритма и полная остановка сердца. Развитие гиперполяризации в клетках водителей ритма снижает их возбудимость, затрудняет возникновение очередного автоматического потенциала действия и тем самым приводит к замедлению или даже остановке сердца. Стимуляция блуждающего нерва , усиливая выход калия из клетки, увеличивает мембранный потенциал, ускоряет процесс реполяризации и при достаточной силе раздражающего тока укорачивает длительность потенциала действия клеток водителя ритма.

При вагусных воздействиях имеет место уменьшение амплитуды и длительности потенциала действия кардиомиоцитов предсердия. Отрицательный инотропный эффект связан с тем, что уменьшенный по амплитуде и укороченный потенциал действия не способен возбудить достаточное количество кардиомиоцитов. Кроме того, вызванное ацетилхолином повышение калиевой проводимости противодействует потенциалзависимому входящему току кальция и проникновению его ионов внутрь кардиомиоцита. Холинергический медиатор ацетилхолин может также угнетать АТФ-азную активность миозина и, таким образом, уменьшать величину сократимости кардиомиоцитов. Возбуждение блуждающего нерва приводит к повышению порога раздражения предсердий, подавлению автоматии и замедлению проводимости атриовентрикулярного узла. Указанное замедление проводимости при холинергических влияниях может вызвать частичную или полную атриовентрикулярную блокаду.

Учебное видео иннервации сердца (нервов сердца)

При проблемах с просмотром скачайте видео со страницы

Сердце - обильно иннервированный орган . Среди чувствительных образований сердца основное значение имеют две популяции механорецепторов, сосредоточенных, главным образом, в предсердиях и левом желудочке: А-рецепторы реагируют на изменение напряжения сердечной стенки, а В-рецепторы возбуждаются при ее пассивном растяжении. Афферентные волокна, связанные с этими рецепторами, идут в составе блуждающих нервов. Свободные чувствительные нервные окончания, расположенные непосредственно под эндокардом, представляют собой терминали афферентных волокон, проходящих в составе симпатических нервов.

Эфферентная иннервация сердца осуществляется при участии обоих отделов вегетативной нервной системы. Тела симпатических преганглионарных нейронов, участвующих в иннервации сердца, располагаются в сером веществе боковых рогов трех верхних грудных сегментов спинного мозга. Преганглионарные волокна направляются к нейронам верхнего грудного (звездчатого) симпатического ганглия. Постганглионар-ные волокна этих нейронов вместе с парасимпатическими волокнами блуждающего нерва образуют верхний, средний и нижний сердечные нервы, Симпатические волокна пронизывают весь орган и иннервируют не только миокард, но и элементы проводящей системы.

Тела парасимпатических преганглионарных нейронов, участвующих в иннервации сердца . располагаются в продолговатом мозге. Их аксоны идут в составе блуждающих нервов. После вхождения блуждающего нерва в грудную полость от него отходят веточки, которые включаются в состав сердечных нервов.

Отростки блуждающего нерва, проходящие в составе сердечных нервов, представляют собой парасимпатические преганглионарные волокна . С них возбуждение передается на интрамуральные нейроны и далее - преимущественно на элементы проводящей системы. Влияния, опосредованные правым блуждающим нервом, адресованы, в основном, клеткам синоатриального, а левым - клеткам атриовентрикулярного узла. Прямого влияния на желудочки сердца блуждающие нервы не оказывают.

Иннервируя ткань водителей ритма . вегетативные нервы способны менять их возбудимость, тем самым вызывая изменения частоты генерации потенциалов действия и сокращений сердца (хронотропный эффект ). Нервные влияния изменяют скорость электротонической передачи возбуждения и, следовательно, длительности фаз сердечного цикла. Такие эффекты называют дромотропными.

Поскольку действие медиаторов вегетативной нервной системы заключается в изменении уровня циклических нуклеотидов и энергетического обмена, вегетативные нервы в целом способны влиять и на силу сердечных сокращений (инотропный эффект ). В лабораторных условиях получен эффект изменения величины порога возбуждения кардиомиоцитов под действием нейромедиаторов, его обозначают как батмотропный.

Перечисленные пути воздействия нервной системы на сократительную активность миокарда и насосную функцию сердца представляют собой хотя и исключительно важные, но вторичные по отношению к миогенным механизмам модулирующие влияния.

Иннервация сердца и сосудов

Деятельность сердца регулируется двумя парами нервов: блуждающими и симпатическими (рис. 32). Блуждающие нервы берут начало в продолговатом мозге, а симпатические нервы отходят от шейного симпатического узла. Блуждающие нервы тормозят сердечную деятельность. Если начать раздражать блуждающий нерв электрическим током, то происходит замедление и даже остановка сердечных сокращений (рис. 33). После прекращения раздражения блуждающего нерва работа сердца восстанавливается.

Рис. 32. Схема иннервации сердца

Рис. 33. Влияние раздражения блуждающего нерва на сердце лягушки

Рис. 34. Влияние раздражения симпатического нерва на сердце лягушки

Под влиянием импульсов, поступающих к сердцу по симпатическим нервам, учащается ритм сердечной деятельности и усиливается каждое сердечное сокращение (рис. 34). При этом возрастает систолический, или ударный, объем крови.

Если собака находится в спокойном состоянии, ее сердце сокращается от 50 до 90 раз в 1 мин. Если перерезать все нервные волокна, направляющиеся к сердцу, сердце сокращается теперь 120- 140 раз в 1 мин. Если перерезать только блуждающие нервы сердца, ритм сердца возрастет до 200-250 ударов в 1 мин. Это связано с влиянием сохранившихся симпатических нервов. Сердце человека и многих животных находится под постоянным сдерживающим влиянием блуждающих нервов.

Блуждающий и симпатический нервы сердца обычно действуют согласованно: если повышается возбудимость центра блуждающего нерва, то соответственно понижается возбудимость центра симпатического нерва.

Во время сна, в состоянии физического покоя организма сердце замедляет свой ритм за счет усиления влияния блуждающего нерва и некоторого снижения: влияния симпатического нерва. Во время физической работы ритм сердца учащается. При этом происходит усиление влияния симпатического нерва и снижение влияния блуждающего нерва на сердце. Таким путем обеспечивается экономный режим работы сердечной мышцы.

Изменение просвета кровеносных сосудов происходит под влиянием импульсов, передающихся на стенки сосудов по сосудосуживающим нервам. Импульсы, поступающие по этим нервам, возникают в продолговатом мозге в сосудодвигательном центре . Открытие и описание деятельности этого центра принадлежит Ф. В. Овсянникову.

Овсянников Филипп Васильевич (1827-1906) — выдающийся русский физиолог и гистолог, действительный член Российской Академии наук, учитель И. П. Павлова. Ф. В. Овсянников занимался изучением вопросов регуляции кровообращения. В 1871 г. он открыл сосудодвигательный центр в продолговатом мозге. Овсянников изучал механизмы регуляции дыхания, свойства нервных клеток, способствовал разработке рефлекторной теории в отечественной медицине.

Рефлекторные влияния на деятельность сердца и сосудов

Ритм и сила сердечных сокращений меняются в зависимости от эмоционального состояния человека, выполняемой им работы. Состояние человека влияет и на кровеносные сосуды, меняя их просвет. Вы часто видите, как при страхе, гневе, физических напряжениях человек либо бледнеет, либо, напротив, краснеет.

Работа сердца и просвет кровеносных сосудов связаны с потребностями организма, его органов и тканей в обеспечении их кислородом и питательными веществами. Приспособление деятельности сердечно-сосудистой системы к тем условиям, в которых находится организм, осуществляется нервным и гуморальным регуляторными механизмами, которые обычно функционируют взаимосвязанно. Нервные влияния, регулирующие деятельность сердца и кровеносных сосудов, передаются к ним из центральной нервной системы по центробежным нервам. Раздражением любых чувствительных окончаний можно рефлекторно вызвать урежение или учащение сокращений сердца. Тепло, холод, укол и другие раздражения вызывают в окончаниях центростремительных нервов возбуждение, которое передается в центральную нервную систему и оттуда по блуждающему или симпатическому нерву достигает сердца.

Опыт 15

Обездвижьте лягушку так, чтобы у нее сохранился продолговатый мозг. Спинной мозг не разрушайте! Приколите лягушку к дощечке брюшком вверх. Обнажите сердце. Подсчитайте количество сокращений сердца в 1 мин. Затем пинцетом или ножницами ударьте лягушку по брюшку. Подсчитайте число сокращений сердца за 1 мин. Деятельность сердца после удара по брюшку замедляется или даже временно останавливается. Происходит это рефлекторно. Удар по брюшку вызывает возникновение возбуждения в центростремительных нервах, которое через спинной мозг достигает центра блуждающих нервов. Отсюда возбуждение по центробежным волокнам блуждающего нерва достигает сердца и тормозит или останавливает его сокращения.

Объясните, почему в этом опыте у лягушки нельзя разрушать спинной мозг.

Можно ли вызвать остановку сердца лягушки при ударе ее по брюшку, если удалить продолговатый мозг?

Центробежные нервы сердца получают импульсы не только из продолговатого и спинного мозга, но и из вышележащих отделов центральной нервной системы, в том числе и из коры больших полушарий головного мозга. Известно, что боль вызывает учащение сердечных сокращений. Если ребенку при лечении делали уколы, то у него только вид белого халата условнорефлекторно будет вызывать учащение сердцебиения. Об этом же свидетельствует изменение сердечной деятельности у спортсменов перед стартом, у учащихся и студентов — перед экзаменами.

Рис. 35. Строение надпочечников: 1 — наружный, или корковый, слой, в котором вырабатываются гидрокортизон, кортикостерон, альдостерон и другие гормоны; 2 — внутренний слой, или мозговое вещество, в котором образуются адреналин и норадреналин

Импульсы из центральной нервной системы передаются одновременно по нервам к сердцу и из сосудодвигательного центра по другим нервам к кровеносным сосудам. Поэтому обычно на раздражение, поступившее из внешней или внутренней среды организма, рефлекторно отвечают и сердце и сосуды.

Гуморальная регуляция кровообращения

На деятельность сердца и сосудов оказывают влияние химические вещества, находящиеся в крови. Так, в железах внутренней секреции — надпочечниках — вырабатывается гормон адреналин (рис. 35). Он учащает и усиливает деятельность сердца и суживает просвет кровеносных сосудов.

В нервных окончаниях парасимпатических нервов образуется, ацетилхолин . который расширяет просвет кровеносных сосудов и замедляет и ослабляет сердечную деятельность. На работу сердца оказывают влияние и некоторые соли. Увеличение концентрации ионов калия тормозит работу сердца, а увеличение концентрации ионов кальция вызывает учащение и усиление деятельности сердца.

Гуморальные влияния тесно связаны с нервной регуляцией деятельности системы кровообращения. Выделение химических веществ в кровь и поддержание их определенной концентраций в крови регулируется нервной системой.

Деятельность всей системы кровообращения направлена на обеспечение организма в разных условиях необходимым количеством кислорода и питательных веществ, выведение из клеток и органов продуктов обмена, сохранение на постоянном уровне кровяного давления. Это создает условия для сохранения постоянства внутренней среды организма.

Иннервация сердца

Симпатическая иннервация сердца осуществляется от центров, расположенных в боковых рогах трех верхних грудных сегментов спинного мозга. Исходящие от этих центров преганглионарные нервные волокна идут в шейные симпатические ганглии и передают там возбуждение на нейроны, постганглионарные волокна от которых иннервируют все отделы сердца. Эти волокна передают свое влияние на структуры сердца с помощью медиатора норадреналина и посредством p-адренорецепторов. На мембранах сократительного миокарда и проводящей системы преобладают Pi-рецепторы. Их приблизительно в 4 раза больше, чем Р2-рецепторов.

Симпатические центры, регулирующие работу сердца, в отличие от парасимпатических не обладают выраженным тонусом. Увеличение импульсации от симпатических нервных Центров к сердцу происходит периодически. Например, при активации этих центров, вызываемой рефлекторно, или нисходящими влияниями от центров ствола, гипоталамуса, лимбической системы и коры мозга.

Рефлекторные влияния на работу сердца осуществляются со многих рефлексогенных зон, в том числе с рецепторов самого сердца. В частности, адекватным раздражителем для так называемых А-рецепторов предсердий является увеличение напряжения миокарда и возрастание давления в предсердиях. В предсердиях и желудочках имеются В-рецепторы, активирующиеся при растяжении миокарда. Имеются также болевые рецепторы, инициирующие сильные боли при недостаточной доставке кислорода к миокарду (боли при инфаркте). Импульсы от перечисленных рецепторов передаются в нервную систему по волокнам, проходящим в блуждающем и веточках симпатических нервов.

Б. Лаун и Р. Л. Верье

РЕФЕРАТ. Увеличение тонуса парасимпатической нервной системы, вызванное либо стимуляцией вагуса, либо прямым воздействием на мускариновые рецепторы, значительно уменьшает склонность миокарда нормальных и ишемизированных желудочков к развитию фибрилляций. Этот защитный эффект является результатом антагонистического взаимодействия реакций миокарда на повышение нервной и гуморальной активности, влияющих на порог возникновения фибрилляций желудочков: Эти механизмы функционируют как у бодрствующего, так и у анестезированного животного. Полученные результаты, несомненно, имеют большое значение для клинической практики.

ВВЕДЕНИЕ

Вопрос о влиянии парасимпатической нервной системы на возбудимость клеток миокарда желудочков постоянно подвергается переоценке. В настоящее время общепринято, что вагусная иннервация не распространяется на миокард желудочков. С точки зрения клинициста, очевидно, что хотя холинергическое воздействие может оказать влияние на тахикардию, тем не менее место приложения ацетилхолина расположено вне желудочков. С другой стороны, проведенные в последнее время исследования позволяют утверждать, что воздействие со стороны парасимпатической нервной системы может изменять электрические свойства миокарда желудочков . Как было показано несколькими группами исследователей, стимуляция вагуса существенно влияет на возбудимость клеток желудочка и их склонность к фибрилляции . Эти эффекты могут быть опосредованы наличием богатой холинергической иннервации специализированной проводящей системы сердца, которая была обнаружена как в сердце собаки, так и в сердце человека .

Нами было показано, что влияние вагуса на вероятность возникновения фибрилляций желудочков (ФЖ) зависит от фонового уровня тонуса симпатических нервов сердца . Это положение вытекает из ряда экспериментальных наблюдений. Например, влияние вагуса возрастает у торакотомированных животных, у которых проявляется повышенный симпатический тонус, а также во время стимуляции симпатических нервов и инъекции катехоламинов. Такое действие вагуса на склонность желудочков к фибрилляции устраняется при блокаде |3-ре^ цепторов.

До сих пор точно не установлено, способна ли парасимпатическая нервная система изменять склонность желудочков к фибрилляции, развивающейся во время острой ишемии миокарда. Kent и Epstein с.соавт показали, что стимуляция вагуса значительно увеличивает порог ФЖ и уменьшает склонность ишемизированного сердца собаки к фибрилляции. Согг в. Gillis с соавт. обнаружили, что наличие интактных вагусных нервов предупреждает развитие ФЖ во время перевязки левой передней нисходящей артерии сердца наркотизированной хлоралозой кошки, но не дает никаких преимуществ при перевязке правой коронарной артерии. Yoon с соавт. и James с соавт. не смогли выявить какое-либо влияние стимуляции вагуса на порог ФЖ во время окклюзии левой передней нисходящей коронарной артерии собаки. Согг с соавт. даже обнаружили, что стимуляция парасимпатической нервной системы скорее усиливает, чем ослабляет, аритмии, которые возникают при снятии лигатуры с артерии, сопровождаемой реперфузией ишемизироваиного миокарда.

К этому также относится нерешенная проблема, модулирует ли тоническая активность парасимпатической нервной системы электрическую устойчивость клеток желудо"чка животного, находящегося в ненаркотизированном состоянии. Данные, полученные на наркотизированных животных при стимуляции нервов или введения лекарств, представляют собой ценную информацию, однако такие подходы в какой-то мере артефактны, и результаты требуют подтверждения на ненаркотизированном интактном организме. До последнего времени исследования животных в бодрствующем состоянии с такой целью не проводились в связи с отсутствием подходящих биологических моделий для оценки склонности миокарда к ФЖ. Однако эта трудность была преодолена, когда в "качестве надежного показателя склонности сердца к ФЖ использовали порог повторных экстравозбуждений, что позволило в результате отказаться от необходимости вызывать ФЖ и проводить сопутствующие реанимационные процедуры .

Задачи настоящего исследования заключались в следующем: 1) изучить влияние стимуляции вагуса и прямой активации метахолииом мускариновых рецепторов на склонность сердца к ФЖ во время острой ишемии миокарда и при репер-фузии, 2) определить, изменяет ли тоническая активность парасимпатической нервной системы склонность желудочков к фибрилляции при ненаркотизированном состоянии животного, и 3) оценить, имеют ли полученные на животных данные-какое-либо отношение к клиническим задачам.

МАТЕРИАЛ И МЕТОДЫ

Исследования на наркотизированных животных

Общие процедуры

Исследования были выполнены на 54 здоровых беспородных собаках массой от 9 до 25 кг. Не менее чем за 5 дней до-исследования под общим пентобарбитуратным наркозом проводили вскрытие грудной клетки с левой стороны в четвертом" межреберном пространстве. После обнажения сердца вокруг левой передней нисходящей артерии на уровне ушка левого" предсердия помещали баллончик, связанный с катетером и предназначенный для окклюзии. Катетер выводили под кожей наружу на затылке.

В день исследования собак наркотизировали с помощью а-хлорало"зы 100 мг/кг внутривенно. Искусственное дыхание поддерживали через эндотрахеальную трубку, соединенную с насосом Harvard, подающим смесь комнатного воздуха со 100% кислородом.Подачу кислорода в смеси осуществляли таким образом, чтобы артериальное рО2, находилось между 125 и 225 мм рт. ст. рН артериальной крови поддерживали в диапазоне от 7,30 до 7,55. Артериальное давление в брюшной аорте изменяли с помощью катетера, введенного через бедренную артерию и присоединенного к датчику давления Statham P23Db. Электрограмму (ЭГ) правого желудочка регистрировали с помощью монополярного внутриполостного отведения.

Исследование сердца

В течение всего эксперимента при помощи стимуляции правого желудочка поддерживали постоянный ритм сердца. Для поддержания искусственного ритма и нанесения тестирующих стимулов использовали биполярный катетер (Medtronic №5819), введенный через правую яремную вену и помещенный под флюороскопическим контролем в районе верхушки правого желудочка. Поддержание искусственного ритма достигалось "стимулами, амплитуда которых на 50-100% была выше порога, межстимуляциотаный интервал составлял от 333 до 300 мс, что соответствует частотам возбуждения желудочка от 180 до 200 в минуту.

Порог фибрилляции желудочков определяли с помощью одиночного стимула длительностью 10 мс. Это определение состояло в следующем: электрическую диастолу исследовали с помощью импульса 4 мА с интервалом 10 мс, начиная от конца эффективного рефрактерного периода до завершения Г-волны. Затем величину тока увеличивали с шагом 2 мА и при такой величине стимула продолжали исследование диастолы в течение 3 с. Наименьшую интенсивность стимула, вызывающую ФЖ, принимали в качестве порога ФЖ.

Использовали следующий протокол эксперимента: полная окклюзия левой передней нисходящей коронарной артерии достигалась надуванием заранее имплантированного катетера с баллоном и продолжалась в течение 10 мин. Во время окклюзии порог ФЖ оценивали с минутным интервалом. Через 10 мин после начала окклюзии резко уменьшали давление в баллоне и снова определяли порог ФЖ. Осуществляли две окклюзии с экспериментальным исследованием и без него, разделенных интервалом по крайней мере 20 мин .

Дефибрилляцию производили обычно за 3 с с помощью импульса постоянного тока, получаемого при разряде конденштора с энергоемкостью 50-100 Вт"С от дефибриллятора.11 лупа. Эта реанимационная процедура существенно не влияет на стабильность порога ФЖ.

Стимуляция вагуса

Шейный вагосимпатический ствол перерезали с двух сторон на 2 см ниже места бифуркации сонной артерии. К дисталь-иым концам перерезанного нерва прикрепляли изолированные биполярные электроды. Раздражение нерва производили с помощью прямоугольных импульсов длительностью 5 мс и напряжением 3-15 В при частоте стимуляции 20 Гц. Амплитуду раздражающих импульсов подбирали таким образом, чтобы при независимом раздражении либо правого, либо левого ство-дов вагуса достигалась остановка сердца. Порог фибрилляции желудочков определяли до, во время и после двусторонней стимуляции вагуса. Частоту сердечного ритма во время определения порога ФЖ постоянно искусственно поддерживали на уровне 200 ударов в минуту.

Введение метахолина

Внутривенное введение мускаринового агониста - хлорида ацетил-(Б,Ь)-бета-метилхолина (J. Т. Baker Company) в физиологическом растворе осуществляли со скоростью 5 мкг/ (кг-мин), используя инфузионный насос «Harvard». Максимальный эффект на порог ФЖ достигался через 30 мин после начала введения; в этот момент начинали проведение всей последовательности тестирований с окклюзией коронарной артерии и реперфузией. Введение вещества продолжалось в течение всего исследования.

ИССЛЕДОВАНИЯ НА БОДРСТВУЮЩИХ ЖИВОТНЫХ

Исследования проводили на 18 взрослых беспородных собаках массой от 10 до 15 кг.

Для проведения обратимой холодовой блокады парасимпатической активности нервов сердца был разработан специальный метод. Для этого выделяли часть вагосимпатического ствола длиной 3-4 см и помещали его на шее в кожную трубку. Таким образом, по обе стороны шеи были созданы «вагусные петли», которые отделяли изолированные сегменты нервов от других шейных структур. Это позволяло поместить вокруг вагусных петель охлаждающие наконечники для того, чтобы произвести обратимую блокаду нервной активности.

Относительный вклад активности вагусных афферентов и эфферентов в эффект, производимый охлаждением, определяли путем сравнения результатов, полученных при охлаждении вагуса с селективной блокадой вагусных эфферентов при внут-ривенно-м введении атропина.

Исследование сердца:

Для изучения склонности сердца к ФЖ использовали метод определения порога повторных экстравозбуждений (ПЭ) как описано ранее . Вкратце, порог склонности к ФЖ оценивался следующим образом: при поддержании постоянной частоты сердечного ритма 220 ударов в минуту сканирование повторным стимулом для определения порога ПЭ осуществляли при интенсивности стимула, равной двойному значению порога в середине диастолы, начиная с 30 мс после окончания рефрактерного периода. Тестирующий стимул подавали с каждым разом все раньше с шагом 5 мс, пока не подходили к концу рефрактерного периода. Если при этом не возникали ПЭ, амплитуду стимула увеличивали на 2 мА и повторяли процесс сканирования. Порог ПЭ считали равным минимальному значению тока, при котором ПЭ возникали в двух из каждых трех попыток. Порог ПЭ принимали в качестве порога уязвимости OK ФЖ.

Психологические условия

Для изучения влияния симпатических - парасимпатических взаимодействий в состоянии бодрствования собак помещали в стрессогенные условия, которые увеличивают поступление в сердце адренергических агониетов .

Стрессогенные условия заключались в закреплении собаки в станке Павлова, что вызывало ограничение двигательных возможностей. К сердечным катетерам подключали кабели для непрерывного наблюдения за ЭГ, подачи стимулов от искусственного водителя ритма и тестирующих стимулов. Отдельный удар электрическим током длительностью 5 мс осуществляли от дефибриллятора через медные пластины (80 см2), прикрепленные к грудной клетке. Собак оставляли в ремнях на 10 мин до нанесения электрического удара и еще на 10 мин после подачи тока. Процедуру повторяли 3 дня подряд. На 4-й день нанесения электрического удара исследовали влияние стрессогенных условий содержания на пороговый период уязвимости сердца к ФЖ до и во время блокады вагусных эфферентов атропином (0,05 мг/кг).

РЕЗУЛЬТАТЫ

15л и ниие стимуляции холинергических нервов на склонность сердца к ФЖ во время ишемии 1миокарда и при реперфузии

Изучение влияния стимуляции вагуса на порог ФЖ до и и<> время 10-минутного периода окклюзии передней левой нисходящей коронарной артерии с последующим внезапным иоостановлением кровотока было проведено на 24 собаках, наркотизированных хлоралозой. В отсутствие стимуляции вагуса окклюзия коронарной артерии и реперфузия приводили к значительному снижению порога фибрилляции (рис. 1), Снижение порога происходило в первые 2 мин после окклюзии и продолжалось от 5 до 7 мин. Затем порог быстро возвращался к значению, наблюдаемому в контроле до окклюзии. После восстановления проводимости коронарной артерии падение порога происходило почти мгновенно - за 20-30 с, но продолжалось недолго - менее 1 мин. Стимуляция вагуса значительно повышала порог ФЖ до окклюзии коронарной артерии (от 17±2 мА до З3.±4 мА, р<0,05) и уменьшала снижение порога, связанное с ишемией миокарда (18±4 мА по сравнению с 6±1 мА без стимуляции, р<С0,05). Во время реперфузии никакого защитного действия стимуляции вагуса не обнаружено (3±1 мА по сравнению с 5±1 мА без стимуляции).

Влияние селективной "Стимуляции мускариновых рецепторов с помощью метахолина на уязвимость сердца к ФЖ исследовали на 10 собаках. Введение метахолина приводило к результатам, качественно аналогичным тем, которые были получены при стимуляции вагуса. Так, метахолин повышал порог ФЖ до и во время окклюзии коронарной артерии, но был неэффективен при падении порога, связанном с реперфузи-ivii (рис. 2).

Влияние активности вагуса на склонность сердца

и спонтанным ФЖ при ишемии миокарда и реперфузии

Исследование влияния стимуляции вагуса на появление спонтанной ФЖ при окклюзии левой передней нисходящей коронарной артерии и артерии межжелудочковой перегородки было проведено дополнительно на 16 собаках. С помощью искусственной стимуляции желудочка поддерживали постоянную частоту сердечного ритма, равную 180 уд/мин. В отсутствие стимуляции вагуса окклюзия коронарной артерии вы-нвала ФЖ у 7 из 10 собак (70%), в то время как при одновременной стимуляции вагуса спонтанная ФЖ при окклюзии

Этот вопрос был изучен на 10 бодрствующих собаках, у которых оба вагуса были хронически выделены на шее в кожные трубки. Импульсацию в вагосимпатическом стволе обратимо блокировали при помощи охлаждающих наконечников, помещенных вокруг кожных вагусных петель. Холодовая блокада левой и правой вагусных петель увеличивала частоту сердечного ритма с 95+5 ударов в минуту до 115±7 и 172+ + 16 ударов в минуту соответственно. Когда обе вагусные петли были охлаждены одновременно, частота сердечного ритма увеличилась до 208+20 ударов в минуту. Все изменения частоты сердечного ритма были статистически достоверны с р< 0,01 (рис. 4).

Исследование влияния селективной блокады вагусных эф-! ферентов с помощью атропина на порог ПЭ было проведено на 8 бодрствующих собаках, содержавшихся в стрессогенных условиях, создаваемых с помощью иммобилизации в станке Павлова с нанесением чрезкожного удара электрическим током средней тяжести. До выключения воздействия на сердце вагусной импульсации порог ПЭ составлял 15+1 мА. При введении атропина (0,05 мг/кг) порог значительно снизился и составил 8±1 мА (снижение на 47%, р<0,0001) (рис. 5).

Этот эффект развивался независимо от изменений сердечного ритма, так как частота сердечного ритма поддерживалась постоянной на уровне 200 ударов в минуту в течение всего времени проведения электрического тестирования. Блокада вагуса с помощью атропина несущественно влияла на порог ПЭ у собак, содержавшихся в клетках с нестреосогенными условиями (22+2 мА и 19+3 мА до и при действии вещества соответственно).

ОБСУЖДЕНИЕ

В настоящее время накоплено значительное количество данных, указывающих на наличие прямого влияния парасимпатической нервной системы на хронотропные и изотропные свойства и возбудимость миокарда желудочков. Значительно меньше доказано, является ли величина этого влияния достаточной, чтобы объяснить некоторое защитное действие от возникновения ФЖ активности холинергических нервов в ише-мизированном сердце. Кроме того, мало известно о значении активности парасимпатических нервов в склонности сердца к ФЖ в двух различных условиях, которые, возможно, играют важную роль в возникновении внезапной смерти у человека а именно при внезапной окклюзии коронарной артерии и восстановлении ее проходимости с реперфузией ишемизиро-ванной области. До сих пор не определено значение тонической активности вагуса для уменьшения склонности к ФЖ. Еще один нерешенный вопрос состоит в том, может ли такая тоническая активность парасимпатической нервной системы влиять на склонность желудочков к фибрилляции при слабых психофизиологических стрессах. Настоящее исследование проливает некоторый свет на эти вопросы.

Эффект стимуляции вагуса во время ишемии миокарда и при реперфузии

Мы установили, что интенсивная парасимпатическая активность, возникающая при электрическом раздражении децентрализованного вагуса, или прямая стимуляция мускарино-вых рецепторов с помощью метахолина уменьшает склонность сердца собаки к ФЖ во время острой ишемии миокарда. Это также подтверждается наблюдениями, показывающими, что увеличение холинертичеокой активности значительно уменьшает падение порога ФЖ и склонность к спонтанным ФЖ во время окклюзии коронарной артерии. Эти эффекты не связаны с изменением сердечного ритма, так как его частоту поддерживали на постоянном уровне с помощью искусственного водителя ритма. Ни стимуляция вагуса, ни активация мускари-новых рецепторов не оказывали никакого положительного действия во время реперфузии.

Что же обусловливает различное влияние парасимпатической нервной системы на порог ФЖ во время ишемии миокарда и во время реперфузии? Предполагают, что склонность сердца к ФЖ при окклюзии "коронарной артерии и при реперфузии обусловлена различными механизмами . Вероятно, основную роль в увеличении склонности сердца к ФЖ во время острой окклюзии коронарной артерии играет рефлекторная активация симпатической нервной системы в сердце . Эту гипотезу подтверждает то, что изменение в поступлении адренергических веществ в сердце хорошо коррелирует с развитием во времени снижения порога ФЖ и появлением спонтанных ФЖ при окклюзии коронарной артерии . Если воздействие симпатических аминов на миокард уменьшено хирургическими или фармакологически-iin методами , то при этом достигается значительный защитный эффект против вызванных ишемией ФЖ. Таким образом, активность парасимпатической нервной системы уменьшает склонность сердца к ФЖ во время окклюзии коронарной артерии "благодаря противодействию профибриллятор-ному влиянию увеличенной адренергилеской активности. Такой положительный эффект увеличения холинергической активности может быть следствием ингибирования освобождения норадреналипа из симпатических нервных окончаний либо следствием уменьшения реакции рецепторов на воздействие катехоламинов .

Однако увеличение склонности миокарда к фибрилляции во время реперфузии, по-видимому, обусловлено неадренер-гическими факторами. Имеющиеся в настоящее время данные указывают на то, что это явление может быть связано продуктами метаболизма, вымываемыми в кровь при клеточной ишемии и некрозе . Было показано, что если кровоток в ишемическом миокарде восстанавливается постепенно или если перфузия производится раствором, лишенным кислорода, частота случаев появления желудочковых аритмий при восстановлении кровотока существенно снижается . Наблюдения, показывающие, что ФЖ возникает в течение нескольких секунд после внезапного восстановления коронарного артериального кровотока, также указывают на участие в этом процессе вымываемых из поврежденной зоны продуктов метаболизма . Предотвращение воздействия симпатических веществ на сердце с помощью хирургического или фармакологического вмешательства оказывается неэффективным для предупреждения ФЖ при восстановлении кровотока. А так как холинергические агонисты проявляют свое защитное влияние лишь через антиадренергическое действие, это может частично объяснить их неспособность уменьшить склонность миокарда к ФЖ во время реперфузии.

Сильное влияние активности парасимпатической нервной системы на частоту сердечного ритма может существенно изменить действие стимуляции вагуса на склонность желудочка к аритмиям. Например, Kerzner с соавт. показали, что стимуляция вагуса не полностью подавляет аритмии, возникающие при инфаркте миокарда. Напротив, эти исследователи обнаружили, что увеличение активности парасимпатической нервной системы или введение ацетилхолина неизменно вызывает желудочковую тахикардию во время спокойной без аритмий фазы инфаркта миокарда у собак. Такое аритмоген-ное действие полностью зависит от частоты сердечного ритма и может быть предупреждено с помощью искусственного водителя ритма.

Влияние тонической активности парасимпатической нервной системы на склонность желудочков к фибрилляции у животных, находящихся в бодрствующем состоянии

Результаты настоящего исследования указывают на то, ч:то в покое в состоянии бодрствования собаки ее сердце испытывает значительное тоническое влияние парасимпатической нервной системы. Холодовая блокада либо правого, либо левого вагуса приводит к существенным изменениям частоты сердечного ритма; однако эффект более выражен при блокаде правого вагуса (см. рис. 4). Это соответствует тому, что правый вагус оказывает преобладающее воздействие на синоат-риальный узел с некоторым наложением влияния от левого «агуса . Таким образом, максимальное увеличение частоты сердечного ритма возникает при одновременном охлаждении правого и левого вагусных нервов.

Установив, что тоническая активность парасимпатической нервной системы оказывает значительное влияние на пей-смекерную ткань, имеет смысл исследовать, можно ли выявить какое-либо влияние активности вагуса на электрические свойства желудочка. В этих экспериментах для селективной блокады активности вагусных эфферентов использовали атропин. Собак помещали в станок Павлова для иммобилизации с целью повышения симпатического влияния на сердце . Такая планировка эксперимента позволяла изучать влияние взаимодействия симпатических и парасимпатических реакций на склонность миокарда к ФЖ у бодрствующих животных. Нами установлено, что введение относительно низких доз атропина (0,05 мг/кг) приводит почти к 50% снижению порога фибрилляции желудочков. Это позволяет сделать вывод, что значительная тоническая активность вагуса у бодрствующего животного, содержащегося в стрессогенных условиях, ча-стично ослабляет профибрилляторное влияние эверсивных психофизиологических стимулов.

Кроме того, при использовании такой экспериментальной схемы защитное действие вагуса скорее всего обусловлено антагонистическим к адренергическому механизму действием. Это предположение подтверждается двумя типами наблюдений. Во-первых, наши предыдущие исследования показали, что склонность миокарда к фибрилляции в такой модели стрессогенных услоиий тесно коррелирует с уровнем циркулирующих в крови катехоламинов и что предупреждение симпатического влияния на сердце либо с помощью бета-блокады, либо при симпатэктомии существенно снижает вызванное стрессогенными условиями увеличение склонности к фибрилляции . Во-вторых, наблюдения De Silva с соавт. показывают, что увеличение тонического воздействия парасимпатической нервной системы при введении морфина собакам, находящимся в стрессогенных условиях иммобилизации, по-... вышает порог ФЖ до величины, наблюдаемой при отсутствии стрессорных воздействий. Когда активность вагусных эфферентов блокируется атропином, основная часть защитного действия морфина исчезает. Введение морфина в нестрессо-генных условиях не способно изменить порог ФЖ, видимо, потому, что в этих условиях адренергичеокое влияние на сердце слабое.

Эти данные указывают, что активация блуждающих нервов независимо от того, возникает ли она спонтанно или вызвана фармакологическим агентом, имеет защитное действие на миокард, снижая его склонность к ФЖ при стрессе. Это благотворное влияние скорее всего обусловлено антагонистическим влиянием повышенной активности парасимпатической нервной системы на эффект увеличения адренергической активности в сердце.

КЛИНИЧЕСКОЕ ПРИМЕНЕНИЕ

Более 40 лет назад было показано, что введение холинергического вещества - хлорида ацетил-бета-метилхолина, предупреждает желудочковые аритмии, вызванные у человека введением адреналина . В последнее время в ряде исследований сообщалось, что воздействия, аналогичные активации парасимпатической нервной системы, как, например, стимуляция каротидного синуса или введение ваготониче-ских агентов , снижают частоту желудочковых экстрасистол и предупреждают желудочковую тахикардию. Так как сердечные гликозиды увеличивают тоническое влияние блуждающего нерва на сердце, мы использовали это действие дигиталиса для подавления желудочковых аритмий . Однако в этой клинической области требуются дальнейшие исследования.

Это исследование было проведено Научно-исследовательской лабораторией сердечно-сосудистых заболеваний Гарвардской школы здравоохранения, Бостон, штат Массачусетс. Оно было также поддержано субсидией МН-21384 Национального института психического здоровья и субсидией HL-07776 Национального института сердца, легких и крови Национальных институтов здоровья, Бетезда, штат Мэриленд.

СПИСОК ЛИТЕРАТУРЫ

1. Kent К . М ., Smith Е . R., Redwood D. R. et al. Electrical stability of acu-

tely ischemic myocardium: influences of heart rate and vagal stimulation.-Circulation, 1973, 47: 291-298.

2. Kent K. M., Epstein S. E., Cooper T. et al. Cholinergic innervation of the

canine and human ventricula conducting system: anatomic and elec-trophysiologic correlation.-Circulation, 1974, 50: 948-955.

3. Kolman B. S-, Verrier R. L., Lown B. The effect of vagus nerve stimula-

tion upon vulnerability of the canine ventricular. Role of cympathetic-parasympathetic interactions.-Circulation, 1975, 52: 578-585.

4. Weiss Т ., Lattin G. M., Engelman K. Vagally mediated supression of pre-

mature ventricular contractions in man.-Am. Heart J., 1977, 89: 700- 707.

5. Waxman M. В ., Wald R. W. Termination of ventricular tacycardia by an

increase in cardiac vagal drive.-Criculation, 1977, 56: 385-391.

6. Kolman B. S., Verrier R. L., Lown B. Effect of vagus nerve stimulation

upon excitability of the canine ventricle: role of sympathetic-parasympa-thetic interactions.-Am. J. Cardiol., 1976, 37: 1041-1045.

7. loon M. S., Han J., Tse W. W. et al Effects of vagal stimulation, atropine,

and propranolol on fibrillation threshold of normal and ischemic ventricles.-Am. Heart J., 1977, 93: 60-65.

8. Lown В ., Verrier R. L. Neural activity and ventricular fibrillation.-New

Engl. J. Med., 1976, 294: 1165-1170.

9. Coor P. В ., Gillis R. A. Role of the vagus in the cardiovascular chenges

induced by coronary occlusion.- Circulation 1974, 49: 86-87.

10. Coor P. В ., Pearle D. L., Gillis R. A. Coronary occlusion site as a determi

nant of the cardiac rhythm effects of atropine and vagotomy.-Am. He

art J., 1976, 92: 741-749.

11. James R. G. G., Arnold J. M. O., Allen 1. D. et al. The effects of heart

rate, myocardial ischemia and vagal stimulation on the threshold for ventricular fibrillation.-Circulation, 1977, 55: 311-317.

12. Corr P. В ., Penkoske P. A., Sobel В . Е . Adrenergic influences on arrhyrh-

mias due to coronary occlusion and reperfusion.-Br. Heart J., 1978, 40 (suppl.), 62-70.

13. Matta R. J., Verrier R. L., Lown B. The repetitive extrasystole as an in

dex of vulberability to ventricular fibrillation.-Am. J. Physiol., 1976,

230: 1469-1473.

14. Lown В ., Verrier R. L., Corbalan R. Psychologic stress and threshold

for repetitive ventricular response.-Science, 1973, 182: 834-836.

15. Axelrod P. J., Verrier R. L., Lown B. Vulnerability to ventricular fibril-

lation during acute coronary arterial occlusion and release.-Am. J. Car-diol, 1976, 36: 776-782.

16. Corbalan R., Verrier R. L., Lown B. Differing mechanisms for ventricular

vulnerability during coronary artery occlusion and release.-Am. Heart

Т ., 1976, 92: 223-230.

17. DeSilva R. A., Verrier R. L., Lown B. Effect of psycholofic stress and

sedation with morphine sulfate on ventricular vulnerability.-Am. Heart J., 1978, 95: 197-203.

18. Liang В ., Verrier R. L, Lown B. et al. Correlation between circulation

catecholamme levels and ventricular vulnerability during psychologic stress in conscius dogs.-Proc. Soc. Exp. Biol. Med., 1979, 161:266- 269.

19. Malliani A., Schwartz P. L, Zanchetti A. A sympathetic reflex elicited by

experimental coronary occlusion.-Am. J. Physiol., 1969, 217: 703-709.

20. Kelliher G. ]., Widmer C, Roberts J. Influence of the adrenal medulla

on cardiac rhythm disturbances following acute coronary artery occlu

sion.-Recent. Adv. Stud. Cardiac. Struct. Metab.; 1975, 10: 387-400.

21. Harris A. S., Otero H., Bocage A. The induction of arrhythmias by sym

pathetic activity before and after occlusion of a coronary artery in the

canine heart.-J. Electrocardiol., 1971, 4: 34 -43.

22. Khan M. L, Hamilton J. Т ., Manning G. W. Protective effects of beta-

adrenoceptor blockade in experimental occlusion in conscious dogs.- Am. J. Cardiol., 1972, 30: 832-837.

23. Levy M. N., Blattberg B. Effect of vagal stimulation on the overflow of

norepinephrine into the coronary sinus during cardiac sympathetic ner

ve stimulation in the dog.-Circ. Res.. 1976, 38: 81-85.

24. Watanabe A. M., Besch H. R. Interaction between cyclic adenosine mo-

nophosphate and cyclic guanosine monophosphate in guinea pig ventri

cular myocardium.-Circ. Res., 1975, 37: 309-317.

25. Surawicz B. Ventricular fibrillation.-Am. J. Cardiol., 1971

26. Petropoulos P. C, Jaijne N. G. Cardiac function during perfusion of the

circumflex coronary artery with venous blood, low molecular weignt

dextran in Tyrode solution.-Am. Heart J., 1964, 68: 370-382.

27. Sewell W. M., Koth D. R., Huggins С . Е . Ventricular fibrillation in dogs

after sudden return of flow to the coronary artery.-Surgery, 1955, 38

1050-1053.

28. Bagdonas A. A., Stuckey J. H., Piera J. Effects of ischemia and hypoxia

on the specialized conducting system of the canine heart.-Am. Heart

J., 1961, 61: 206-218.

29. Danese С Pathogenesis of ventricular fibrillation in coronary occlusion.-

JAMA, 1962, 179: 52-53.

30. Kerzner J., Wolf U., Kosowsky B. D. et al. Ventricular ectopic rhythms

following vagal stimulation in dogs with acute myocardial infarction.-

Circulation, 1973, 47:44-50.

31. Haggins С . В ., Vainer S. F., Braunwald E. Parasympathetic control of

the heart.-Pharmacol. Rev., 1973, 25: 119-155.

32. Verrier R. L., Lown B. Effect of left stellectomy on enhanced cardiac

vulnerability induced by psychologic stress (abstr.).-Circulation, 1977,

56:111-80.

33. Nathanson M. H. Action of acetyl beta methyolcholin on ventricular

hrythm induced by adrenalin.-Proc. Soc. Exp. Biol. Med., 1935, 32: 1297-1299.

34. Cope R. L. Suppressive effect of carotid sinus on premature ventricular

beats in certain instances.-Am. J. Cardiol., 1959, 4: 314-320.

35. Lown В ., Levine S. A. The carotid sinus: clinical value of its stimulati

on.-Circulation, 1961, 23: 776-789.

36. Lorentzen D. Pacemaker-induced ventricular tacycardia: reversion to

normal sinus rhythm by carotid sinus massage.-JAMA, 1976, 235: 282-283.

37. Waxman M. В ., Downar E., Berman D. et al. Phenylephrine (Neosyne-

phrine R) terminated ventricular tachycardia.-Circulation, 1974, 50:

38. Weiss Т ., Lattin G. M., Engelman K. Vagally mediated suppression of

premature ventricular contractions in man.-Am. Heart J., 1975, 89: 700-707.

39. Lown В ., Graboys Т . В ., Podrid P. J. et al. Effect of a digitalis drug on

ventricular premature beats (VPBs).-N. Engl. J. Med., 1977, 296: 301-306.

Вегетативная нервная система (systema nervosum autonomicum; синоним: автономная нервная система, непроизвольная нервная система, висцеральная нервная система) — часть нервной системы, обеспечивающая деятельность внутренних органов, регуляцию сосудистого тонуса, иннервацию желез, трофическую иннервацию скелетной мускулатуры, рецепторов и самой нервной системы. Взаимодействуя с соматической (анимальной) нервной системой и эндокринной системой, она обеспечивает поддержание постоянства гомеостаза и адаптацию в меняющихся условиях внешней среды. Вегетативная нервная система имеет центральный и периферический отделы. В центральном отделе различают надсегментарные (высшие) и сегментарные (низшие) вегетативные центры.

Надсегментарные вегетативные центры сосредоточены в головном мозге — в коре головного мозга (преимущественно в лобных и теменных долях), гипоталамусе, обонятельном мозге, подкорковых структурах (полосатое тело), в стволе головного мозга (ретикулярная формация), мозжечке и др. Сегментарные вегетативные центры расположены и в головном, и в спинном мозге. Вегетативные центры головного мозга условно подразделяют на среднемозговые и бульбарные (вегетативные ядра глазодвигательного, лицевого, языко-глоточного и блуждающего нервов), а спинного мозга — на пояснично-грудинные и крестцовые (ядра боковых рогов сегментов CVIII—LIII и SII—SIV соответственно). Моторные центры иннервации неисчерченных (гладких) мышц внутренних органов и сосудов расположены в предцентральной и лобной областях. Здесь же находятся центры рецепции из внутренних органов и сосудов, центры потоотделения, нервной трофики, обмена веществ.

В полосатом теле сосредоточены центры терморегуляции, слюно- и слезоотделения. Установлено участие мозжечка в регуляции таких вегетативных функций, как зрачковый рефлекс, трофика кожи. Ядра ретикулярной формации составляют надсегментарные центры жизненно важных функций — дыхательной, сосудодвигательной, сердечной деятельности, глотания и др. Периферический отдел В. н. с. представлен нервами и узлами, расположенными вблизи внутренних органов (экстрамурально) либо в их толще (интрамурально). Вегетативные узлы соединяются между собой нервами, образуя сплетения, например легочное, сердечное, брюшное аортальное сплетение. На основе функциональных различий в В. н. с. выделяют два отдела — симпатический и парасимпатический.

К симпатической нервной системе относятся сегментарные вегетативные центры, нейроны которых расположены в боковых рогах 16 сегментов спинного мозга (от CVIII до LIII), их аксоны (белые, преганглионарные, соединительные ветви) выходят с передними корешками соответствующих 16 спинномозговых нервов из позвоночного канала и подходят к узлам (ганглиям) симпатического ствола; симпатический ствол — цепь из 17—22 пар соединенных между собой вегетативных узлов по обеим сторонам позвоночника на всем его протяжении. Узлы симпатического ствола связаны серыми (постганглионарными) соединительными ветвями со всеми спинномозговыми нервами, висцеральными (органными) ветвями с предпозвоночными (превертебральными) и (или) органными вегетативными нервными сплетениями (или узлами). Предпозвоночные сплетения расположены вокруг аорты и ее крупных ветвей (грудное аортальное, чревное сплетение и др.), органные сплетения — на поверхности внутренних органов (сердце, желудочно-кишечный тракт), а также в их толще (рис.).

К парасимпатической нервной системе относят вегетативные центры, заложенные в стволе головного мозга и представленные парасимпатическими ядрами III, VII, IX, Х пар черепных нервов, а также вегетативные центры в боковых рогах SII—IV сегментов спинного мозга. Преганглионарные волокна из этих центров идут в составе III, VII (большой каменистый, барабанная струна), IX (малый каменистый) и Х пары черепных нервов к парасимпатическим узлам в области головы — ресничному, крыло-небному, ушному, поднижнечелюстному и парасимпатическим узлам блуждающего нерва, лежащим в стенках органов (например, узлы подслизистого сплетения стенки кишки). От этих узлов отходят постганглионарные парасимпатические волокна к иннервируемым органам. От парасимпатических центров в крестцовом отделе спинного мозга идут тазовые внутренностные нервы, к органным вегетативным сплетениям органов малого таза и конечных отделов толстой кишки (нисходящая и сигмовидная ободочные, прямая), в которых имеются как симпатические, так и парасимпатические нейроны.

Физиология. Морфологической основой вегетативных рефлексов являются рефлекторные дуги, простейшая из которых состоит из трех нейронов. Первый нейрон — афферентный (чувствительный) — расположен в спинномозговых узлах и в узлах черепных нервов, второй нейрон — вставочный — в сегментарных вегетативных центрах, а третий — эфферентный — в вегетативных узлах. Кроме чувствительных нейронов спинномозговых узлов и узлов черепных нервов. В. н. с. имеет собственные чувствительные нейроны, находящиеся в вегетативных узлах. С их участием замыкаются двухнейронные рефлекторные дуги, имеющие большое значение в автономной (без участия ц.н.с.) регуляции функций внутренних органов.

Главная функция В. н. с. заключается в поддержании постоянства внутренней среды, или гомеостаза, при различных воздействиях на организм. Эта функция осуществляется за счет процесса возникновения, проведения, восприятия и переработки информации в результате возбуждения рецепторов внутренних органов (интероцепция). В то же время В. н. с. регулирует деятельность органов и систем, не участвующих непосредственно в поддержании гомеостаза (например, половых органов, внутриглазных мышц и др.), а также способствует обеспечению субъективных ощущений, различных психических функций. Многие внутренние органы получают как симпатическую, так и парасимпатическую иннервацию. Влияние этих двух отделов часто носит антагонистический характер, однако имеется много примеров, когда оба отдела В. н. с. действуют синергично (так называемая функциональная синергия). Во многих органах, имеющих и симпатическую, и парасимпатическую иннервацию, в физиологических условиях преобладают регуляторные влияния парасимпатических нервов. К таким органам относятся мочевой пузырь и некоторые экзокринные железы (слезные, пищеварительные и др.). Существуют также органы, снабжаемые только симпатическими или только парасимпатическими нервами; к ним принадлежат почти все кровеносные сосуды, селезенка, гладкие мышцы глаз, некоторые экзокринные железы (потовые) и гладкие мышцы волосяных луковиц.

При повышении тонуса симпатической нервной системы усиливаются сердечные сокращения и учащается их ритм, возрастает скорость проведения возбуждения по мышце сердца, повышается АД, увеличивается содержание глюкозы в крови, расширяются бронхи. зрачки, усиливается секреторная деятельность мозгового вещества надпочечников, снижается тонус желудочно-кишечного тракта. Повышение тонуса парасимпатической нервной системы сопровождается снижением силы и частоты сокращений сердца, замедлением скорости проведения возбуждения по миокарду. Снижением АД, увеличением секреции инсулина и снижением концентрации глюкозы в крови, усилением секреторной и моторной деятельности желудочно-кишечного тракта. Под действием нервного импульса в окончаниях всех преганглионарных волокон и большинства постганглионарных парасимпатических нейронов высвобождается ацетилхолин, а в окончаниях симпатических постганглионарных нейронов — адреналин и норадреналин, принадлежащие к катехоламинам, в связи с чем эти нейроны называются адренергическими.

Реакции различных органов на норадреналин и адреналин опосредованы взаимодействием катехоламинов с особыми образованиями клеточных мембран — адренорецепторами. Норадреналин и ацетилхолин, по-видимому, не являются единственными медиаторами периферического отдела В. н. с. К веществам, которым приписывают функцию медиаторов пре- и постганглионарных симпатических нейронов, либо которые модулируют влияние на синаптическую передачу в В. н. с., относят также гистамин, вещество П и другие полипептиды, простагландин Е и серотонин. Большинство внутренних органов наряду с существованием экстраганглионарных (симпатических и парасимпатических), спинальных и высших мозговых механизмов регуляции имеют собственный местный нервный механизм регуляции функций. Наличие общих черт в структурной и функциональной организации, а также данные онто- и филогенеза позволяют многим исследователям выделять в составе В. н. с. (в периферическом отделе) кроме симпатической и парасимпатической систем еще и третью — метасимпатическую. В метасимпатическую систему объединяют комплекс микроганглионарных образований, расположенных в стенках внутренних органов, обладающих моторной активностью (сердце, мочеточники, желудочно-кишечный тракт и др.). Терминали аксонов нейронов, расположенных в ганглиях метасимпатической системы, содержат в качестве медиаторов АТФ.

Многие пре- и постганглионарные вегетативные нейроны, иннервирующие, в частности, кровеносные сосуды и сердце, обладают спонтанной активностью или тонусом покоя. Этот тонус имеет важнейшее значение для регуляции функций внутренних органов. Различают висцеро-висцеральные, висцеро-соматические и висцеросенсорные рефлексы. При висцеро-висцеральном рефлексе возбуждение возникает и заканчивается во внутренних органах, причем эффектор способен отвечать усилением либо торможением функции. например, раздражение каротидной или аортальной зоны влечет за собой те или иные изменения интенсивности дыхания, уровня кровяного давления, частоты сердечных сокращений.

При висцеро-соматическом рефлексе возбуждение в дополнение к висцеральному вызывает также соматические ответы в виде, например, защитного напряжения мышц брюшной стенки при некоторых патологических процессах в органах брюшной полости. При висцеросенсорном рефлексе в ответ на раздражение вегетативных афферентных волокон возникают реакции во внутренних органах, соматической мышечной системе, а также изменения соматической чувствительности. Висцеросоматические и висцеросенсорные рефлексы имеют диагностическое значение при некоторых заболеваниях внутренних органов, при которых повышается тактильная и болевая чуствительность и появляются боли в определенных ограниченных участках кожи (см. Захарьина — Геда зоны). Существуют также соматовисцеральные рефлексы, возникающие при активации экстерорецепторов и соматических афферентных волокон. К ним относятся, например, кожно-гальванический рефлекс, сужение или расширение сосудов при термических воздействиях на рецепторы кожи, клиностатический рефлекс Даниелополу, глазосердечный рефлекс Ашнера — Даньини, ортостатический рефлекс Превеля.

При раздражении волокон В. н. с. можно наблюдать и так называемый аксон-рефлекс, или псевдорефлекс. например, антидромное возбуждение тонких волокон от кожных болевых рецепторов в результате раздражения периферического отрезка перерезанного дорсального корешка приводит к расширению сосудов и покраснению области кожи, иннервируемой данными волокнами. Как и соматические, вегетативные нервы проецируются на несколько областей коры головного мозга, располагаются рядом с проекциями соматических и наслаиваются на них. Последнее необходимо для обеспечения сложных сердечно-сосудистых, дыхательных и других рефлексов. Влияние В. н. с. на вегетативные функции организма реализуется тремя основными путями: через ретонарные изменения сосудистого тонуса, адаптационно-трофическое действие и управление функциями сердца, желудочно-кишечного тракта, надпочечников и др. Центры В. н. с., обеспечивающие тонус кровеносных сосудов, расположены в ретикулярной формации продолговатого мозга и варолиева моста. Сосудосуживающие и ускоряющие ритм сердца центры, влияя на симпатическую нервную систему, поддерживают основной тонус сосудов, в меньшей мере — тонус сердца.

Сосудорасширяющие и тормозящие ритм сердца центры действуют косвенно как через сосудосуживающий центр, который угнетают, так и путем стимулирования заднего двигательного ядра блуждающего нерва (в случае тормозного эффекта на сердце). На тонус сосудодвигательных (вазомоторных) центров влияют баро- и хеморецепторные стимулы, исходящие как из специфических рефлексогенных зон (каротидного синуса, эндокардоаортальной зоны и др.), так и из других образований. Этот тонус находится под контролем вышележащих центров в ретикулярной формации, в гипоталамусе, обонятельном мозге и коре головного мозга. Широко известна вазоконстрикция при раздражении симпатического ствола. Вазодилататорным действием обладают некоторые парасимпатические волокна (барабанная струна, половой нерв), волокна из состава задних корешков спинного мозга и симпатические нервы сосудов сердца и скелетных мышц (их действие блокируется атропином).

Влияние симпатической нервной системы на ц.н.с. проявляется изменением ее биоэлектрической активности, а также ее условно- и безусловнорефлекторной деятельности. В соответствии с теорией адаптационно-трофического влияния симпатической нервной системы Л.А. Орбели выделяют две взаимосвязанные стороны: первую — адаптационную, определяющую функциональные параметры рабочего органа, и вторую, обеспечивающую поддержание этих параметров посредством физико-химических изменений уровня метаболизма тканей. В основе путей передачи адаптационно-трофических влияний лежат прямой и непрямой типы симпатической иннервации. Имеются ткани, наделенные прямой симпатической иннервацией (сердечная мышца, матка и другие гладкомышечные образования), но основная масса тканей (скелетная мускулатура, железы) обладает непрямой адренергической иннервацией. В этом случае передача адаптационно-трофического влияния происходит гуморально: медиатор переносится к эффекторным клеткам током крови или достигает их путем диффузии.

В осуществлении адаптационно-трофических функций симпатической нервной системы особое значение принадлежит катехоламинам. Они способны быстро и интенсивно влиять на метаболические процессы, изменяя уровень глюкозы в крови и стимулируя распад гликогена, жиров, увеличивать работоспособность сердца, обеспечивать перераспределение крови в разных областях, усиливать возбуждение нервной системы, способствовать возникновению эмоциональных реакций. Методы исследования включают определение вегетативных рефлексов (см. Рефлексы), изучение дермографизма, потоотделения, зон Захарьина — Геда, проведение капилляроскопии, плетизмографии, реографии и др., а также исследование функции дыхания и сердечной деятельности (см. Сердечно-сосудистая система, Сердце). Данные этих исследований позволяют установить локализацию и характер поражения вегетативной нервной системы.

Патология. Проявления поражения В. н. с. разнообразны и во многом определяются тем, какой из ее отделов преимущественно вовлечен в патологический процесс. Поражения вегетативных сплетений, например чревного, или солнечного, сплетения (см. Солярит), ганглиев (см. Ганглионит), характеризуются болевыми ощущениями различной локализации и интенсивности, расстройством функций связанных с ними внутренних органов, которые могут имитировать острое заболевание сердца, органов брюшной полости, малого таза. Распознавание заболевания В. н. с. возможно в этих случаях лишь методом исключения в ходе детального обследования больного. Поражение центральных отделов В. н. с., как правило, проявляется генерализованными нарушениями регулирующей деятельности В. н. с., расстройством адаптации организма к изменяющимся условиям окружающей среды (например, колебаниям атмосферного давления, влажности и температуры воздуха и др.), снижением работоспособности, выносливости к физическим и психическим нагрузкам.

Вегетативные расстройства входят в комплекс функциональных (например, истерия, неврастения) или органических поражений нервной системы в целом, а не только ее вегетативного отдела (например, при черепно-мозговой травме и др.). Поражение гипоталамуса характеризуется возникновением гипоталамических синдромов. Дисфункция высших вегетативных центров (гипоталамуса и лимбической системы) может сопровождаться относительно избирательными нарушениями, связанными с расстройствами функции вегетативной иннервации сосудов, прежде всего артерий — так называемыми ангиотрофоневрозами. К дисфункциям высших вегетативных центров относятся нарушения сна в виде постоянной или приступообразной сонливости, последняя нередко сопровождается эмоциональными расстройствами (злобность, агрессивность), а также патологическим повышением аппетита, различные эндокринопатии, ожирение и др. В детском возрасте проявлением такой вегетативной дисфункции может быть ночное недержание мочи.

Лечение поражений В. н. с. определяется причинами, их вызвавшими, а также локализацией поражения, характером основных клинических проявлений. В связи с тем, что развитию вегетативных нарушений способствуют злоупотребление алкоголем и курение, нарушения режима труда и отдыха, перенесенные инфекционные болезни, важнейшими средствами профилактики заболеваний В. н. с. являются правильная организация труда и отдыха, закаливание, занятия спортом. Опухоли вегетативной нервной системы встречаются сравнительно редко и возникают из элементов как периферического отдела В. н. с., так и ее центрального отдела. Опухоли В. н. с. бывают доброкачественными и злокачественными. Новообразованиями из элементов периферического отдела В. н. с. являются опухоли симпатических ганглиев, или нейрональные опухоли. Доброкачественной опухолью В. н. с. являются ганглионеврома (ганглиоглиома, ганглионарная неврома, ганглионарная нейрофиброма, симпатико-цитома). Она чаще локализуется в заднем средостении, забрюшинном пространстве, в полости таза, в надпочечниках, в области шеи.

Значительно реже опухоль располагается в стенке желудка, кишки, мочевого пузыря. Макроскопически ганглионеврома чаще представлена узлом или дольчатым конгломератом узлов различной степени плотности из белесоватой волокнистой ткани на разрезе с участками миксоматоза. Более половины больных с ганглионевромой моложе 20 лет. Медленный рост этих опухолей определяет постепенное появление и в зависимости от локализации особенности клинических симптомов. Опухоли обычно достигают больших размеров и массы, имеют экспансивный рост, в процессе которого сдавливают соответствующие органы, что в значительной мере влияет на клинические проявления. При ганглионевроме иногда обнаруживают такие пороки развития, как расщепление верхней губы и твердого неба, что подтверждает их общее дизонтогенетическое происхождение. Лечение только хирургическое.

Среди злокачественных опухолей симпатических ганглиев выделяют нейробластому (симпатобластома, симпатогониома), которая возникает преимущественно у детей. Опухоль, как правило, связана с клетками мозгового вещества надпочечника или элементами паравертебральной симпатической цепочки. Характеризуется быстрым ростом с ранним метастазированием в печень, кости черепа, лимфатические узлы, легкие. Лечение комбинированное. Прогноз неблагоприятный. Ганглионейробластомы относятся к опухолям, обладающим различной степенью злокачественности. Часто встречаются в детском возрасте. В большинстве случаев отмечается повышенная продукция катехоламинов, поэтому в клинической картине болезни могут наблюдаться связанные с этим расстройства (например, поносы). Параганглионарные образования (гломусные опухоли) хеморецепторного аппарата сосудистого русла (аортальные, каротидные, яремные и другие гломусы) могут служить источником опухолевого роста и давать начало так называемым хемодектомам. или гломусным опухолям. Эти опухоли в абсолютном большинстве являются доброкачественными. Макроскопически они хорошо отграничены и обычно тесно связаны со стенкой соответствующего крупного сосуда. Рост медленный.

Клинически кроме наличия опухоли (например, на шее) отмечаются головные боли, головокружение. При надавливании на опухоль иногда возникают местная болезненность, кратковременные обморочные состояния. В ряде случаев течение бессимптомное. Ведущим диагностическим методом при этих опухолях, в частности зоны сонных артерий, является ангиография. Лечение гломусных опухолей хирургическое. См. также Нервная систем.

Библиогр.: Вейн А.М., Соловьева А.Д. и Колосова О.А. Вегетососудистая дистония, М., 1981; Гусев Е.И., Гречко В.Е. и Бурд Г.С. Нервные болезни, с. 199, 547, М., 1988; Лобко П.И. и др. Вегетативная нервная система. Атлас, Минск, 1988; Ноздрачев А.Д. Физиология вегетативной нервной системы, Л., 1983, библиогр.; Патолого-анатомическая диагностика опухолей человека, под ред. Н.А. Краевского и др., с. 86, М., 1982; Пачес А.И. Опухоли головы и шеи, с. 90, М., 1983; Физиология человека, под ред. Р. Шмидта и Г. Тевса, пер. с англ., т. 1, с. 167, М., 1985; Хауликэ И. Вегетативная нервная система (Анатомия и физиология), пер. с румын., Бухарест, 1978, библиогр.