Когда был создан пенициллин. Изобретение пенициллина

Антибиотики - не самые хорошие лекарственные препараты. Однако бывают случаи, когда без них любые терапевтические мероприятия будут неэффективными и бессмысленными. До открытия пенициллина Александром Флемингом погибало огромное количество людей из-за пневмонии, сифилиса и при других патологиях, вызванных инфекционными поражениями. Даже роды могли унести жизни матери и младенца, если в момент операции попадала инфекция. Флеминг не изобрел лекарства от всех болезней, но он создал то, благодаря чему медицина и фармакологическая промышленность начали развиваться. И развиваться стремительно, что, в свою очередь, позволило спасать большое количество людей от неминуемой смерти. Кто он, «отец» пенициллина и лизоцима?

Краткая биография Александра Флеминга

Человек, чье имя к 1945 году станет известно по всему миру, родился 6 августа 1881 года в Шотландии, области Эршир, на ферме Лохфильд (Дарвел). Мать Александра, Грэйс Стирлинг Мортон, была второй женой Хуга Флеминга - фермера, проживающего по соседству от ее отца. Александр был третьим из четверых детей Грэйс и Хуга. Также у Флеминга-старшего было еще четыре ребенка от первого брака. Хугу было 59 лет, когда он женился на матери Александра. А умер, когда мальчику было всего 7 лет.

Начальное образование

Если описывать этот период жизни кратко, Александр Флеминг до 12 лет учился в сельской школе Дарвела, затем в течение двух лет проходил обучение в академии Килмарнок, а в 14-летнем возрасте переехал к старшим братьям в столицу Великобритании, где подрабатывал клерком и занимался в Королевском политехническом институте. Почему он решил посвятить свою жизнь именно медицине? Примером стал один из его старших братьев, который к тому времени уже работал врачом-офтальмологом. Вот и Александр решил поступить в медицинскую школу. Как выяснится позже, не зря.

Медицинское образование

Хотя у Александра не было страсти к какой-то определенной области медицины, его способности в хирургии говорили о том, что парень может стать выдающимся врачом. Однако дальнейшую жизнь он посвятил лабораторной медицине. Большую роль в этом вопросе сыграл профессор патологии Алмрот Райт, который прибыл в госпиталь Св. Марии в 1902 году. Как раз в то время, когда здесь проходил практику студент Александр Флеминг. Райт на тот момент уже был автором вакцинации против брюшного тифа, но не останавливался на достигнутом. Он собрал группу студентов, в числе которой были Джон Фриман, Джон Уэлс и Бернар Спилсбери. С ними Алмрот начал новую «миссию» - найти то, что будет активировать антитела в организме человека, страдающего от бактериальной инфекции. Таким образом, профессор патологии хотел найти метод борьбы с инфекционными заболеваниями. И это было внутри человеческого организма. Когда группа не справлялась с поставленной задачей, к ней присоединили Флеминга. На тот момент (1906 год) Александр уже получил ученую степень.

Исследовательская лаборатория была прикреплена к госпиталю Св. Марии. Там Александр Флеминг проработал всю свою оставшуюся жизнь, а в 1946 году стал директором Института.

Деятельность в лабораторной медицине

Флеминг наиболее известен как «отец» пенициллина. Но на самом деле, Александр внес огромный вклад в развитие медицины, постоянно все исследуя и изучая. Вот таким он был человеком - вовлеченным в свою деятельность и стремившимся сделать мир здоровее. Собственно, как и его наставник Райт. Например, профессор патологии разработал множество способов микроизмерения, а Флеминг определил, что они будут наиболее полезными в диагностике сифилиса, разработанной Вассерманом. Новые диагностические методы позволяли вместо 5 мл крови пациента использовать всего 0,5 мл. Просто нужно было брать ее не из пальца, а из вены.

Первая мировая война заставила Райта отправиться во Францию. Ученый взял с собой и Флеминга. Там они открыли первую исследовательскую медицинскую лабораторию военного времени, в которой решали многие проблемы. Одной из наиболее важных была бактериальная инфекция, развивающаяся в глубоких ранах, так как она была способна как минимум оставить людей без конечностей, и как максимум лишить их жизней. Александр Флеминг подготовил первый доклад в 1915 году, в котором рассказал о многообразии бактерий, присутствующих в ранах, и о том, что многие из них еще неизвестны бактериологам. Также вместе с Райтом они определили, что антисептики того времени, которые были предназначены для обеззараживания ран, не только не справляются со своей задачей, но и вредят человеку, что наотрез отказались принимать хирурги. Однако немногим позже двое ученых все же смогли отстоять свое мнение. Флеминг и Райт доказали, что антисептики неэффективны по двум причинам. Во-первых, они попросту не достигали всех микробов. Во-вторых, их активность в разы снижалась после столкновения с различными белковыми и клеточными элементами. Проще говоря, антисептики уничтожали лейкоциты в организме пострадавшего, когда те были необходимы в качестве эффективного защитного механизма.

Открытие пенициллина Александром Флемингом

В этом вопросе главную роль сыграла неряшливость ученого. На то время он был уже достаточно известен в области медицины, блестящий исследователь, но беспорядок в его лаборатории заставлял ужаснуться. Однако если бы не этот факт, Флеминг, возможно, никогда бы и не сделал такого важного для бактериологии открытия. Кстати, его неряшливость сыграла главную роль и в открытии лизоцима. Но об этом позже.

После возвращения из дома в свою лабораторию в 1928 году Флеминга ждал приятный сюрприз. Он заметил, что в одной из чашек Петри с культурами стафилококков, которые он выставил в углу стола перед отъездом, появились плесневые грибы. И - о, чудо! - патогенные микроорганизмы были уничтожены. На других же пластинах, где не присутствовали плесневые грибы, стафилококки были «живы». Флеминг определил их как пенициллиновый род. В течение нескольких месяцев он пытался вывести «чистое» вещество. И ему удалось это сделать. Седьмого марта следующего года он назвал выделенное вещество пенициллином.

Стафилококки и другие грамм-положительные бактерии вызывают пневмонию, скарлатину, дифтерию и менингит, и пенициллин успешно мог бороться с таковыми. Между тем как против грамм-отрицательных патогенных микроорганизмов, вызывающих паратиф и брюшной тиф, он был бессилен. Однако и этот результат стараний ученого был, мягко говоря, полезен для дальнейшего развития медицины.

«Доработка» пенициллина

Итак, в 1929 году Александр Флеминг открывает пенициллин. Но он не мог получить качественное активное вещество, эффективно очистить его, так как не был химиком. Соответственно, использовать результат своих стараний в терапии пациентов он не мог. Хотя и так проделал большую работу. Например, он определил, что пенициллин не будет работать в малой дозировке и при короткой терапии. «Доработкой» пенициллина занимались уже другие ученые - Говард Флори и Борис Чейн. Массовое производство антибиотика стартовало уже во времена Второй мировой войны и позволило спасти немало людей.

Научное открытие лизоцима

Не исключено, что о пенициллине так и не узнали бы. Именно ранее открытие Флемингом лизоцима показало ученого с лучшей стороны, как блестящего исследователя. И, вероятно, именно поэтому Флори и Чейн взялись за доработку пенициллина. Даже предполагая, что славу и почет за это открытие все равно получит Флеминг.

Лизоцим был открыт так же случайно, и так же благодаря, грубо говоря, неряшливости гения. Проводя очередное исследование бактерий, Флеминг чихнул прямо над чашкой Петри. Он не предпринял никаких действий, то есть, эти пластины так и остались стоять на лабораторном столе. Как оказалось, правильно сделал. Через несколько дней Александр заметил, что в чашках, куда попали капли слюны, бактерий больше нет. Они погибли. Ученый определил, что этому способствовала именно человеческая биологическая жидкость. Так, Александр Флеминг, фото которого можно видеть в статье, открыл фермент, уничтожающий некоторые патогенные микроорганизмы и не повреждающий ткани. Он назвал его лизоцимом.

Награды и титулы великого ученого

Флеминг вместе с Чейном и Флори получили Нобелевскую премию в области физиологии и медицины за открытие пенициллина и его целебного воздействия при различных инфекционных заболеваниях. Это произошло в 1945 году. За 10 лет, предшествующих дню смерти гениального ученого, за свои открытия и достижения в области лабораторной медицины он получил:

  • 26 медалей;
  • 25 почетных степеней;
  • 13 наград;
  • 18 премий.

Также Флеминг был удостоен почетного членства во многих академиях и научных обществах. В 1944 году получил дворянское звание. Кстати, многих интересует, гражданин какой страны Александр Флеминг? Родился ученый на территории Шотландии и всю жизнь, за исключением командировок, прожил в этой стране. А дворянский титул там, как известно, очень важен.

Личная жизнь «неряшливого гения»

Флеминг был женат дважды. Его первую супругу звали Сара, у них был сын Роберт. Молодой человек решил быть как отец, пошел по его стопам и стал врачом. Сара умерла в 1949 году. Это негативно отразилось на состоянии здоровья ученого. Спустя 4 года, он женился на своей бывшей студентке и коллеге, гречанке Амалии Котсури-Вурекас. Она умерла в 1986 году.

Смерть А. Флеминга

Как уже говорилось, состояние здоровья ученого сильно ухудшилось после смерти первой супруги. Жизнь Александра Флеминга закончилась 11 марта 1955 года. Он скончался от инфаркта миокарда. Ученого похоронили рядом с самыми почитаемыми британцами, в соборе Святого Павла в Лондоне. Флеминг часто бывал в Греции, а потому в день его смерти в этой стране был объявлен национальный траур. А в Барселоне к мемориальной доске с его именем выкладывали огромные охапки цветов. Это, наверное, и есть настоящий почет. Настоящая слава Великого Ученого, которого уважал и ценил весь мир. А он просто безумно любил свою работу и всецело отдавался ей. Настолько любил, что даже чашку Петри с разросшимися плесневыми грибами сохранил до конца своих дней.

Открытие любого лекарственного препарата всегда провоцирует огромный резонанс в обществе. Ведь это означает, что еще одна болезнь поддалась лечению, а значит, появилась возможность сохранить еще больше жизней. Особенно было значимо появление новых медикаментозных препаратов в период массовой гибели людей - войн, чем ознаменовывается 20-й век.

Разумеется, ученый, открывший жизненно необходимый препарат, удостаивается лавров почета, а его имя остается памятным в истории человечества.

Пенициллин - важнейшее открытие 20-го века. О его открытии и других важнейших фактах пойдет речь далее.

Открытие антибиотика

Пенициллин относится к тем открытиям, которые происходят случайно. Однако значимость его для человечества огромна.

Это был первый открытый антибиотик, полученный из плесневого гриба пенициллума.

Первым, кто открыл пенициллин, был бактериолог из Англии Александр Флеминг. Его открытие случилось внезапно, во время исследований плесневых грибов. В ходе эксперимента он установил, что плесневые грибы вида пенициллум содержат антибактериальное вещество, которое в дальнейшем получило название пенициллин. В каком году открыт был этот антибиотик - известно доподлинно. 7 марта 1929 года — дата довольно значимая для науки и для человечества в целом.

Александр Флеминг: биография

Александр Флеминг — ученый, открывший пенициллин — родился 6 августа 1881 года в графстве Эйршир. Его родители были обычными людьми, не имевшими никакого отношения к науке.

Когда Александру исполнилось 14 лет, он переехал работать в столицу Соединенного Королевства вместе со своими братьями. Изначально он подрабатывал клерком, параллельно посещая Политехнический институт. С наступлением 1900 года будущий ученый поступил на службу в Лондонский полк.

Через год Флеминг получает наследство размером в 250 фунтов стерлингов, что на то время было солидной суммой. По совету своего старшего брата он проходит конкурс на поступление в медицинскую школу. Экзамены он сдает с блеском и становится стипендиатом медшколы при больнице святой Марии. Флеминг успешно изучает курс хирургии и в 1908 году становится магистром и бакалавром медицинских наук в Лондонском университете.

В 1915 году Флеминг женится на медсестре Саре Макэлрой, с которой у ученого родился сын. Его жена умерла в 1949 году, а в 1953 Флеминг женился во второй раз. Второй его избранницей стала его бывшая студентка, бактериолог Амалия Котсури-Вурекас. Через два года Александр Флеминг скончался. Блистательный ученый, тот, кто открыл пенициллин, умер от инфаркта. На тот момент ему было 73 года.

С чего все началось

Александра Флеминга всегда интересовала научная деятельность, несмотря на то что он окончил медицинскую школу. В своих экспериментальных порывах был весьма неаккуратен. Его товарищи отмечали, что в лаборатории, где работал Флеминг, всегда царил беспорядок, в котором реактивы, препараты, инструменты - все вперемешку валялось по всему помещению. За это он неоднократно получал выговоры. Поэтому с уверенностью можно сказать, что пенициллин открыт в полнейшем беспорядке и абсолютно случайно.

Еще задолго до открытия пенициллина, во время Первой мировой, Флеминг пошел на фронт в качестве военного врача. Параллельно с оказанием помощи пострадавшим солдатам молодой ученый занимался исследованием бактерий, которые проникали в раны и провоцировали тяжелые последствия для раненого.

В 1915 году Флеминг написал и представил доклад, в котором доказывал, что в открытые раны пострадавших попадает большинство видов бактерий, которые еще не были известны ученым тех лет. Кроме этого, он сумел доказать, вопреки мнению многих хирургов, что применяемые в течение короткого промежутка времени антисептические препараты не способны полностью уничтожить бактерии.

В вопросе получения нового препарата с антибактериальным воздействием Флеминг поддерживал идеи своего начальника, профессора Райта, считавшего, что все применяемые антисептики не только не способны погубить большинство бактерий в организме, но и ведут к ослаблению иммунной системы. Исходя из этого, требовался новый препарат, который бы активизировал иммунную деятельность организма, в результате чего организм бы стал способен самостоятельно бороться с вирусами.

Флеминг рьяно стал развивать свою гипотезу о том, что в организме человека должны содержаться вещества, способные подавлять распространение попавших в организм бактерий. Стоит учесть, что понятие антител стало известно не ранее 1939 года. Ученый стал проводить экспериментальные работы над всеми жидкостями организма, а именно поливал ими культуры бактерий, наблюдая за результатом.

Все решил случай

Александр Флеминг открыл пенициллин по воле случая. До 1929 года все его исследования не приносили особых результатов.

В 1928 году ученый, тот, кто открыл пенициллин в дальнейшем, стал изучать бактерии рода Кокки - стафилококки. Исследования не приносили ожидаемых результатов, поэтому Александр решил сделать перерыв и взял отпуск, покинув лабораторию в конце лета. Естественно, оставленное ученым место работы находилось в полном беспорядке.

Вернувшись в начале сентября, Флеминг обнаружил, что в одной из чашек Петри, где находились колонии бактерий, появилась плесень, которая спровоцировала гибель стафилококков.

Исследовав образовавшуюся плесневую массу, ученый пришел к заключению, что это гриб вида Penicillium notatum и что он содержит антибактериальное вещество, способное уничтожить бактерии. И только в марте 1929 года Флеминг сумел выделить из этих плесневых грибов антисептик, дав ему название "пенициллин". С того времени Флеминг признан тем ученым, кто первый открыл пенициллин. А время этого великого открытия послужило началом разработки антибиотиков.

Пенициллин. Строение

Пенициллин - первый антибиотик, разработанный в прошлом веке, но своей значимости он не теряет до сих пор.

Это антисептическое средство получается в процессе жизнедеятельности некоторых видов плесневого гриба. Самый активный называется бензилпенициллин. Препарат способен бороться со стрептококками, пневмококками, гонококками, менингококками, дифтерийной палочкой, спирахетами. Но он не способен подавлять активность при заболеваниях, вызванных микробами кишечной палочки грибов.

В современной науке существует два способа получения этого препарата:

1. Биосинтетический.

2. Синтетический.

По химическому строению пенициллин представляет собой кислоту, из которой есть возможность получать различные соли. Главная молекула данного антибиотика - 6-аминопенициллановая кислота.

Как действует антибиотик

Принцип действия пенициллина основан на том, что он подавляет реакции химического характера, за счет которых осуществляется жизнедеятельность бактерий. Помимо этого, антибиотик устраняет молекулы, которые служат строительным компонентом для новых клеток бактерий. Важным является то, что, оказывая губительное действие на бактерии, пенициллин абсолютно не вредит организму человека и животных, так как клеточная оболочка клетки человека и животных значительно прочнее таковой у бактерий.

Открытие пенициллина в России

Зинаида Виссарионовна Ермольева - тот советский ученый-микробиолог, кто открыл пенициллин в России, а точнее в СССР.

В период Великой Отечественной войны госпитали были переполнены ранеными солдатами. Смертность от инфекций, занесенных в раны, была колоссальной. И на помощь в этом вопросе пришел пенициллин, который являлся отличным антибиотиком.

На западе это антисептическое средство активно использовалось, принося положительные результаты. Власти Советского Союза вели переговоры с зарубежными представителями по вопросу приобретения антибиотика. Однако дело значительно затягивалось. В связи с этим появилась необходимость в создании собственного пенициллина.

Решение данной проблемы было поручено советскому ученому-микробиологу Ермольевой. И уже в 1943 году она получила «свой» антибиотик, который был признан самым лучшим в мире.

Так какой ученый открыл пенициллин? Первооткрывателем остается Александр Флеминг.

Кто еще причастен к открытию пенициллина

В 40-х годах прошлого века свой вклад в улучшение первого антибиотика внесли еще несколько ученых.

Британские ученые-бактериологи Хоуард У. Флори, Эрнст Чейн и Норман У. Хитли сумели разработать и получить чистую форму пенициллина. Эта разработка поспособствовала спасению миллионов человеческих жизней в период Второй мировой войны.

Это спасительное открытие принесло своим владельцам Нобелевскую награду по физиологии и медицине «За открытие пенициллина и его целебного воздействия при различных инфекционных болезнях».

Заключение

С момента совершения важнейшего открытия - пенициллина - прошло более 80 лет. Однако своих достоинств этот антибиотик не утратил. Скорее наоборот, претерпел некоторые изменения: со временем из него получили более усовершенствованные виды атибиотиков - полусинтетические.

Конечно же, сейчас получено огромное множество антибиотиков, но подавляющее число этих медикаментов основаны именно на открытии лечебных свойств пенициллина.

Значимость первого в истории антибиотика неоценима, а следовательно, не стоит забывать, кто открыл пенициллин. Александр Флеминг - ученый, положивший начало новому этапу развития медицины.

Известно, что еще в XV-XVI вв. в народной медицине для лечения гноящихся ран использовалась зеленая плесень. Ею, например, умела лечить Алена Арзамасская, сподвижница Степана Разина, русская Жанна д"Арк. Попытки накладывать плесень непосредственно на раневую поверхность давали, как это ни странно, хорошие результаты.

Не следует считать пенициллин единственной заслугой А. Флеминга; еще в 1922 г. он совершил свое первое важное открытие - выделил из человеческих тканей вещество, обладающее способностью довольно активно растворять некоторые виды микробов. Открытие это было сделано почти случайно при попытке выделить бактерии - возбудители обычной простуды. Профессор А. Райт, под чьим руководством А. Флеминг продолжал свою исследовательскую работу, назвал новое вещество лизоцимом (лизис - разрушение микроорганизмов). Правда, оказалось, что лизоцим малоэффективен в борьбе с наиболее опасными болезнетворными микробами, хотя успешно уничтожает относительно менее опасные микроорганизмы.

Таким образом, применение лизоцима в медицинской практике имело не очень широкие перспективы. Это подтолкнуло А. Флемин­га к дальнейшему поиску эффективных и при этом по возможности безвредных для человека антибактериальных препаратов. Надо сказать, что еще в 1908 г. он проводил эксперименты с препаратом под названием «сальварсан», который лаборатория профессора А. Райта получила для всесторонних исследований в числе первых в Европе. Препарат этот был создан талантливым немецким ученым П. Эрлихом (Нобелевская премия совместно с И. И. Мечниковым, 1908 г.). Тот искал препарат, убийственный для болезнетворных микроорганизмов, но безопасный для пациента, так называемую магическую пулю. Сальварсан был довольно эффективным противо-сифилитическим средством, но оказывал на организм побочное действие токсического характера. Это были лишь первые маленькие шаги в сторону создания современных противомикробных и химиотерапевтических препаратов.

Базируясь на учении об антибиозе (подавлении одних микроорганизмов другими), основы которого были заложены Л. Пастером и нашим великим соотечественником И. И. Мечниковым, А. Флеминг в 1929 г. установил, что лечебное действие зеленой плесени обусловлено особым веществом, выделяемым ею в окружающую среду.

Все гениальное открывается случайно?

Первое упоминание об антибактериальной терапии?

Интересно, что в Библии мы встречаем невероятно точное указание на свойства полукустарниковом растения - иссоп. Вот фрагмент Псалма 50, который, кстати, вспомнил и А. Флеминг: «Окропи меня иссопом, и буду чист; омой меня, и буду белее снега».

Попытаемся воссоздать цепь почти невероятных случайностей и совпадений, предшествовавших великому открытию. Первопричиной стала, как ни странно, неряшливость А. Флеминга. Рассеянность свойственна многим ученым, но далеко не всегда она приводит к таким позитивным результатам. Итак, А. Флеминг не очищал чашки из-под исследуемых культур по нескольку недель, в итоге его рабочее место оказывалось заваленным полусотней чашек. Правда, в процессе уборки он скрупулезно исследовал каждую чашку из опасения пропустить что-либо важное. И не пропустил.

В один прекрасный день он обнаружил в одной из чашек пушистую плесень, которая подавляла рост посеянной в этой чашке культуры стафилококков. Выглядело это так: цепочки стафилококков вокруг плесени исчезли, и на месте желтой мутной массы виднелись капли, напоминавшие росу. Убрав плесень, А. Флеминг увидел, что «бульон, на котором разрослась плесень, приобрел отчетливо выраженную способность подавлять рост микроорганизмов, а также бактерицидные и бактериологиче­ские свойства по отношению ко многим распространенным патогенным бактериям».

По всей видимости, споры плесени были занесены через окно из лабора­тории, где культивировались образцы плесени, взятые из домов пациентов, страдающих бронхиальной астмой, для получения десенсибилизирующих экстрактов. Ученый оставил чашку на столе и уехал на отдых. Лондонская погода сыграла свою роль: похолодание благоприятствовало росту плесени, а последовавшее потепление - росту бактерий. Если бы из цепочки случайных совпадений выпало хотя бы одно событие, кто знает, когда бы человечество узнало про пенициллин. Плесень, которой была заражена культура стафилококков, относилась к довольно редкому виду рода Penicillium - P. Notatum , который был впервые найден на сгнившем иссопе (полукустарниковом растении, содержащем эфирное масло и использующемся в качестве пряности);

Достоинства нового изобретения

В ходе дальнейших исследований выяснилось, что, к счастью, даже в больших дозах пенициллин нетоксичен для подопытных животных и способен убивать весьма устойчивые болезнетворные микроорганизмы. В больнице Св. Марии не было биохимиков, в результате чего не удалось выделить пенициллин в пригодном для инъекций виде. Эту работу провели в Оксфорде X. У. флори и Э. Б. Чейн лишь в 1938 г. Пенициллин канул бы в небытие, если бы ранее не произошло открытие А. Флемингом лизоцима (вот тут-то он действительно пригодился!). Именно это открытие подвигло оксфордских ученых заняться изучением лечебных свойств пенициллина, в результате чего препарат был выделен в чистом виде в форме бензилпенициллина и испытан клинически. Уже самые первые исследования А. Флеминга дали целый ряд бесценных сведений о пенициллине. Он писал, что это «эффективная антибактериальная субстанция, оказывающая выраженное действие на пиогенные (т. е. вызывающие образование гноя) кокки и палочки дифтерийной группы. Пенициллин даже в огромных дозах не токсичен для животных. Мож­но предположить, что он окажется эффективным антисептиком при наружной обработке участков, пораженных чувствительными к пенициллину микробами, или при его введении внутрь».

Лекарство получено, но как его применять?

Аналогично Пастеровскому институту в Париже, отделение вакцинации в больнице Св. Марии» где ра­ботал А. Флеминг, существовало и получало финансирование на исследования благодаря продаже вакцин. Ученый обнаружил, что в процессе приготовления вакцин пенициллин защищает культуры от стафилококка. Это было небольшое, но серьезное достижение, и А. Флеминг широко пользовался им, еженедельно отдавая указание изготовить большие партии бульона на основе пеницилла. Он делился образцами культуры Penicillium с коллегами в других лабораториях, но, как ни странно, А. Флеминг не сделал столь очевидного шага, который 12 лет спустя был предпринят X. У. Флори и состоял в том, чтобы установить, будут ли спасены подопытные мыши от смертельной инфекции, если лечить их инъекциями пенициллинового бульона. Забегая вперед, скажем, что этим мышам исключительно повезло. А. Флеминг лишь назначил бульон нескольким пациентам для наружного применения. Однако результаты были весьма и весьма противоречивыми. Раствор не только с трудом поддавался очистке в значительном объеме, но и оказывался нестабильным. Кроме того, А. Флеминг ни разу не упомянул о пенициллине ни в одной из 27 статей или лекций, опубликованных им в 1930-1940 гг., даже когда речь в них шла о веществах, вызывающих гибель бактерий. Впрочем, это не помешало ученому получить все причитающиеся ему почести и Нобелевскую премию по физиологии и медицине в 1945 г. Понадобилось длительное время, прежде чем ученые сделали заключение о безопасности пенициллина, как для человека, так и для животного.

Кто же все-таки первым изобрел пенициллин?

А что в это время происходило в лабораториях нашей страны? Неужели отечественные ученые сидели, сложа руки? Конечно, это не так. Многие читали трилогию В. А. Каверина «Открытая книга», однако далеко не все знают, что у главной героини, доктора Татьяны Власенковой, был прототип - Зинаида Виссарионовна Ермольева (1898-1974), выдающийся ученый-микробиолог, создатель целого ряда отечественных антибиотиков. Кроме того, 3. В. Ермольева первой из отечественных ученых начала изучать интерферон как противовирусное средство. Действительный член АМН, она внесла огромный вклад в российскую науку. На выбор профессии 3. В. Ермольевой повлияла история смерти ее любимого композитора. Известно, что П. И. Чайковский скончался, заразившись холерой. По окончании университета 3. В. Ермольева была оставлена ассистентом на кафедре микробиологии; одновременно она заведовала бактериологическим отделением Северо-Кавказского бактериологического института. Когда в 1922 г. В Ростове-на-Дону вспыхнула эпидемия холеры, она, игнорируя смертельную опасность, изучала это заболевание, что называется, на месте. Позже она провела опаснейший эксперимент с самозаражением, результатом которого стало значительное научное открытие.

В годы Великой Отечественной войны, наблюдая за ранеными, 3. В. Ермольева видела, что многие из них умирают не непосредственно от ран, а от заражения крови. К тому времени исследования ее лаборатории абсолютно независимо от англичан показали, что некоторые плесени задерживают рост бактерий. 3. В. Ермольева, разумеется, знала, что в 1929 г. А. Флеминг получил из плесени пенициллин, но выделить его в чистом виде так и не смог, т. к. препарат оказался весьма нестойким. Знала она и о том, что уже давно наши соотечественники еще на уровне народной ме­дицины, знахарства заметили лечебные свойства плесени. Но при этом в отличие от А. Флеминга 3. В. Ермольеву судьба не баловала счастливыми случайностями. В 1943 г. У. X. Флори и Э. Чейн смогли наладить выпуск пенициллина в промышленных масштабах, однако для этого им пришлось организовывать производство в США. 3. В. Ермольева, на тот момент стоявшая во главе Всесоюзного института экспериментальной медицины, поставила перед собой цель получить пенициллин исключительно из отечественного сырья. Надо отдать должное ее упорству - в 1942 г. первые порции советского пенициллина были получены. Величайшей и неоспоримой заслугой 3. В. Ермольевой явилось то, что она не только получила пенициллин, но и сумела наладить массовое производство первого отечественного антибиотика. При этом следует учесть, что шла Великая Отечественная война, остро ощущалась нехватка самых простых и нужных вещей. В то же время потребность в пенициллине росла. И 3. В. Ермольева сделала невозможное: она сумела обеспечить не только количество, но и качество, вернее, силу препарата.

Сколько раненых обязаны ей жизнью, не поддается даже примерному подсчету. Создание советского пенициллина стало своеобразным толчком для создания целого ряда других антибиотиков: первых отечественных образцов стрептомицина, тетрациклина, левомицетина и экмолина - первого антибиотика животного происхождения, выделенного из молок осетровых рыб. Относительно недавно появилось сообщение, за достоверность которого пока сложно ручаться. Вот оно: пенициллин был обнаружен еще до А. Флеминга неким студентом-медиком Эрнестом Августином Дюшенсне, который в своей диссертационной работе подробно описал открытый им удивительно эффективный препарат для борьбы с различными бактериями, пагубно влияющими на человеческий организм. Свое научное открытие Э. Дюшенсне закончить не получилось из-за скоротечной болезни, повлекшей за собой смерть. Однако А. Флеминг и понятия не имел об открытии молодого исследователя. И только совсем недавно в Леоне (Франция) была случайно найдена диссерта ция Э. Дюшенсне.

Кстати, патент на изобретение пенициллина не выдан никому. А. Флеминг, Э. Чейн и У. X. Флори, получившие за его открытие одну Нобелевскую премию на троих, наотрез отказались получать патенты. Они сочли, что вещество, обладающее всеми шансами спасти все человечество, не должно быть источником наживы, золотой жилой. Этот научный прорыв единственный таких масштабов, на который никто и никогда не предъявлял авторских прав.

Стоит упомянуть, что, победив мно­гие распространенные и опасные инфекционные болезни, пенициллин продлил человеческую жизнь в среднем на 30-35 лет!

Начало эры антибиотиков

Итак, в медицине началась новая эра - эра антибиотиков. «Подобное лечится подобным» - этот принцип известен врачам с древнейших времен. Так почему бы не бороться с одними микроорганизмами при помощи других? Эффект превзошел самые смелые ожидания; кроме того, открытие пенициллина положило начало поиску новых антибиотиков и источников их получения. Пенициллинам на момент открытия были свойственны высокая химиотерапевтическая активность и широкий спектр действия, что приближало их к идеальным препаратам. Действие пенициллинов направлено на определенные «мишени» в клетках микроорганизмов, отсутствующие у животных клеток.

Справка. Пенициллины относятся к обширному классу гамма-лактамных антибиотиков. Сюда же относятся цефалоспорины, карбапенемы и монобактамы. Общим в структуре этих антибиотиков является наличие ß -лактамного кольца, ß - лактамные антибиотики составляют основу современной химиотерапии бактериальных инфекций.

Антибиотики нападают - бактерии защищаются, бактерии нападают антибиотики защищаются

Пенициллины обладают бактерицидным свойством, т. е. губительно воздействуют на бактерии. Главный объект воздействия - это пенициллино-связывающие белки бактерий, которые являются ферментами заключительного этапа синтеза клеточной стенки бактерий. Блокирование антибиотиком синтеза пептидогликана приводит к нарушению синтеза клеточной стенки и в конечном счете к гибели бактерии. В процессе эволюции микробы научились защищаться. Они выделяют специальное вещество, разрушающее антибиотик. Это тоже фермент, носящий устрашающее название ß -лактамазы, которая разрушает ß -лактамное кольцо антибиотика. Но наука не стоит на месте, появились новые антибиотики, содержащие так называемые ингибиторы (ß -лактамаз - клавулановая кислота, клавуланат, сульбактам и тазобактам). Такие антибиотики называют пенициллиназо-защищенным и.

Общие особенности антибактериальных препаратов

Антибиотики - это вещества, избирательно подавляющие жизнедеятельность микроорганизмов. Под «избирательным влиянием» подразумевается активность исключительно во взаимоотношении микроорганизмов при сохранении жизнеспособности клеток хозяина и воздействие не на все, а лишь на определенные роды и виды микроорганизмов. Например, фузидиевая кислота имеет высокую активность в отношении стафилококков, включая метициллино-резистентные, но не действует на пневмококки БГСА. С избирательностью близко связано представление об обширности спектра активности антибактериальных препаратов. Тем не менее, с позиций сегодняшнего дня разделение антибиотиков на препараты широкого и узкого спектра действия представляется условным и подвергается серьезной критике по большей части из-за отсутствия критериев для такого деления. Неправильным является суждение о том, что лекарственные средства широкого круга действия являются более надежными, эффективными.

Путь, ведущий в никуда

Господа, последнее слово будет за микробами!
Луи Пастер

Всем микроскопическим врагам человеческого рода объявлена война не на жизнь, а на смерть. Ведется она пока с переменным успехом, однако некоторые болезни уже отступили, похоже, навсегда, например натуральная оспа. Но при этом остается оспа верблюдов, коров, а также оспа обезьян. Однако и с оспой не все так просто. С середины 1980-х гг. случаи заболевания натуральной оспой не регистрируются. В связи с этим уже довольно давно дети не прививаются от оспы. Таким образом, в человеческой популяции с каждым годом уменьшается число людей, устойчивых к вирусу натуральной оспы. А вирус этот никуда не делся. Он может сохраняться на костях погибших от оспы людей (далеко не все трупы были сожжены, некоторые и жечь-то было некому) сколь угодно долго. И когда-нибудь обязательно произойдет встреча непривитого человека, например археолога, с вирусом. Л. Пастер был прав. На второй план отошли многие ранее смертельные заболевания - дизентерия, холера, гнойные инфекции, воспаление легких и др. Однако сап, которого не наблюдалось почти 100 лет, похоже, вернулся. В ряде стран наблюдаются вспышки полиомиелита спустя десятилетия, прошедшие без этого грозного заболевания. Добавились новые угрозы, в частности птичий грипп. От вируса птичьего гриппа уже погибают хищные млекопитающие. Открытые границы сделали невозможной борьбу с микробами в отдельно взятом государстве. Если ранее существовали заболевания, более свойственные какому-либо региону, то в настоящий момент размываются даже границы климатических зон, более характерных для конкретного вида патологии. Разумеется, специфические инфекции тро­пической зоны пока не грозят жителям Крайнего Севера, но, например, половые инфекции, СПИД, гепатиты В, С в результате процесса всеобщей глобализации превратились в действительно глобальную угрозу. Малярия распространилась от жарких стран вплоть до полярного круга.
Причиной возникновения классических инфекционных болезней являются патогенные микроорганизмы, представленные бактериями (такими, как бациллы, кокки, спирохеты» риккетсии), вирусами ряда семейств (герпесвирусами, аденовирусами, паповавирусами, парвовирусами, ортомиксовирусами, парамиксовирусами, ретровирусами, буньявирусами, тогавирусами, коронавирусами, пикорнавирусами, ареновирусами и рабдовирусами), грибами (оомицетами, аскомицетами, актиномицетами, базидиомицетами, дейтеромицетами) и простейшими (жгутиковыми, саркодовыми, споровиками, ресничными). Кроме патогенных микроорганизмов, существует большая группа условно-патогенных микробов, способных провоцировать развитие так называемых оппортунистических инфекций - патологического процесса у людей с различными иммунодефицитами. Поскольку была наглядно доказана возможность получения антибиотических препаратов из микроорганизмов, открытие новых препаратов стало вопросом времени. Обычно получается так, что время работает не на врачей и микробиологов, а, напротив, на представителей болезнетворной микрофлоры. Однако поначалу появился даже повод для оптимизма.

Хронология появления антибиотиков

В 1939 г. был выделен грамицидин» затем в хронологическом порядке - стрептомицин (в 1942 г.), хлортстрациклин (в 1945 г.), левомицетин (в 1947 г.), а к 1950 г. было описано уже более 100 антибиотиков. Необходимо отметить, что в 1950-1960 гг. это вызвало преждевременную эйфорию в медицинских кругах. В 1969 г. Конгрессу США был представлен весьма оптимистичный доклад, содержавший такие смелые утверждения, как «книга инфекционных заболеваний будет закрыта ».

Одной из наиболее масштабных ошибок человечества является попытка обогнать естественный эволюционный процесс» ведь человек лишь часть этого процесса. Поиск новых антибиотиков - процесс весьма долгий, кропотливый, требующий серьезного финансирования. Многие антибиотики были выделены из микроорганизмов, средой обитания которых является почва. Выяснилось, что в почве живут смертельные враги ряда патогенных для человека микроорганиз­мов - возбудителей тифа, холеры, дизентерии, туберкулеза и др. Стрептомицин, использующийся для лечения туберкулеза до настоящего времени, тоже был выделен из почвенных микроорганизмов. Для того чтобы отобрать нужный штамм, 3. Ваксман (первооткры­ватель стрептомицина) изучил в течение 3 лет свыше 500 культур, прежде чем обнаружил подходящую - ту, которая выделяет в среду обитания больше стрептомицина, чем другие культуры. В ходе научных изысканий тщательно изучаются и отбраковываются многие тысячи культур микроорганизмов. И лишь единичные экземпляры используются для последующего изучения. Однако это не означает, что все они потом станут источником для получения новых лекарственных препаратов. Чрезвычайно низкая продуктивность культур, техническая сложность выделения и последующей очистки лекарственных веществ ставят дополнительные зачастую непреодолимые барьеры на пути новых препаратов. А новые антибиотики необходимы, как воздух. Кто мог предполагать, что жизнеспособность микробов станет такой серьезной проблемой? К тому же выявлялись все новые возбудители инфекционных болезней» и спектр активности уже имеющихся препаратов становился недостаточным для эффективной борьбы с ними. Микроорганизмы очень быстро адаптировались и становились невосприимчивыми к действию, казалось бы, уже проверенных препаратов. Предвидеть возникновение лекарственной устойчивости микробов было вполне реально, и совершенно необязательно быть для этого талантливым фантастом. Скорее, роль гениальных провидцев должны были сыграть скептики из научных кругов. Но если кто-то и предрекал что-то подобное, то его голос не был услышан, его мнение не было принято к сведению. А ведь похожая ситуация уже наблюдалась при внедрении инсектицида ДДТ в 1940-е гг. Сначала мухи, против которых и была предпринята столь массированная атака, практически полностью исчезли, но затем расплодились в огромном количестве, причем новое поколение мух было к ДДТ устойчиво, что говорит о генетическом закреплении этого признака. Что же касается микроорганизмов, то еще А. Флеминг обнаружил, что последующие поколения стафилококков образовывали клеточные стенки со структурой, устойчивой к воздействию пенициллина. О положении дел, которое может сложиться при таком векторе развития событий, предупреждал более 30 лет назад академик С. Шварц. Он говорил: «Что бы ни случилось на верхних этажах природы, какие бы катаклизмы ни потрясли биосферу... высшая эффективность использования энергии на уровне клеток и тканей гарантирует жизнь организмам, которые и восстановят жизнь на всех ее этажах в той форме, которая соответствует новым условиям среды». Некоторые бактерии могут отторгать антибиотики по мере их вторжения внутрь или нейтрализовывать их. По этой причине параллельно с поиском новых видов природных антибиотиков велись углубленные работы по анализу структуры уже известных веществ, чтобы затем, базируясь на этих данных, модифицировать их, создавая новые, значительно более эф­фективные и безопасные препараты. Новым этапом эволюции антибиотиков, несомненно, стало изобретение и внедрение в медицинскую практику полусинтетических препаратов, сходных по строению или по типу воздействия с природными антибиотиками. В 1957 г. впервые удалось выделить феноксиметилпенициллин, устойчивый к действию соляной кислоты желудочного сока, который можно принимать в таблетированной форме. Пенициллины природного происхождения были совершенно неэффективны при приеме внутрь, так как в кислой среде желудка теряли свою активность. Позже был придуман метод производства полусинтетических пенициллинов. С этой целью молекулу пенициллина «разрезали» посредством воздействия фермента пенициллиназы и, применяя одну из частей, синтезировали новые соединения. С помощью этой методики удалось создать препараты значительно более широкого спектра антимикробного действия (амоксициллин, ампициллин, карбенициллин), чем исходный пенициллин. Не менее известный антибиотик, цефалоспорин, впервые выделенный в 1945 г. из сточных вод на острове Сардиния, стал родоначальником новой группы полусинтетических антибиотиков - цефалоспоринов, оказывающих мощное антибактериальное действие и почти безвредных для человека. Различных цефалоспоринов уже больше 100. Некоторые из них могут уничтожать как грамположительные, так и грамотрицательные микроорганизмы, другие действуют на устойчивые штаммы бактерий. Понятно, что любой антибиотик оказывает свое определенное избирательное действие на строго определенные виды микроорганизмов. По причине такого избирательного действия значительная часть антибиотиков способна сводить на нет многие виды патогенных микроорганизмов, действуя в безвредных или почти безвредных для организма концентрациях. Именно такой тип антибиотических препаратов чрезвычайно часто и широко применяют для лечения разнообразных инфекционных заболеваний. Главными источниками, которые используют для получения антибиотиков, являются микроорганизмы со средой обитания в почве и воде, где они непрерывно взаимодействуют, вступая между собой в разнообразные взаимоотношения, которые могут являться нейтральными, антагонистичными или взаимовыгодными. Ярким примером могут служить гнилостные бактерии, которые создают хорошие условия для нормальной жизнедеятельности нитрифицирующих бактерий. Однако зачастую взаимоотношения микроорганизмов бывают антагонистическими, т. е. направленными друг против друга. Это вполне понятно, поскольку лишь подобным путем в природе могло изначально поддерживаться экологическое равновесие огромного количества биологических форм. Российский ученый И. И. Мечников, намного опережая свое время, первым предложил применять на практике антагонизм между бактериями. Он советовал подавлять жизнедеятельность гнилостных бактерий, которые постоянно обитают в кишечнике человека, за счет полезных молочнокислых бактерий; выделяемые гнилостными микробами продукты жизнедеятельности, по мнению ученого, сокращают жизнь человека. Существуют разнообразные виды антагонизма (противодействия) микробов.

Все они связаны с конкуренцией за кислород и питательные вещества и зачастую сопровождаются изменением кислотно-щелочного баланса среды в сторону, оптимально подходящую для жизнедеятельности одного вида микроорганизмов, но неблагоприятную для его конкурента. При этом одним из наиболее универсальных и эффективных механизмов проявления микробного антагонизма является продуцирование ими разнообразных химических веществ-антибиотиков. Эти вещества способны или подавлять рост и размножение иных микроорганизмов (бактериостатическое действие), или уничтожать их (бактерицидное действие). К бактериостатическим средствам относятся такие антибиотики, как эритромицин, тетрациклины, аминогликозиды. Бактерицидные препараты вызывают гибель микроорганизмов, организму остается только справиться с выведением продуктов их жизнедеятельности. Это антибиотики пенициллинового ряда, цефалоспорины, карбапенемы и др. Некоторые антибиотики, действующие бактериостатически, уничтожают микроорганизмы, если применяются в большой концентрации (аминогликозиды, левомицетин). Но не следует увлекаться увеличением дозы, так как с повышением концентрации резко возрастает вероятность токсического влияния на клетки человека.

История открытия бактериофагов.

Бактериофаги (фаги) (от греч. phages - «пожирать») - вирусы, избирательно поражающие бакте­риальные клетки. Чаще всего они начинают размножаться внутри бактерий, вызывая таким образом их разрушение. Одной из областей применения бактериофагов является антибактериальная терапия, альтернативная приему антибиотиков. Например, применяются бактериофаги: стрептококковый, стафилококковый, клебсиеллезный, дизентерийный поливалентный, пиобактериофаг, коли, протейный и колипротейный и др. Бактериофаги используются также в генной инженерии в качестве векторов, переносящих участки ДНК, возможна также естественная передача генов между бактериями посредством некоторых фагов (трансдукция).

Бактериофаги были открыты независимо Ф. Твортом совместно с А. Лондом и Ф. д"Эрелем как фильтрующиеся передающиеся агенты разрушения бактериальных клеток. Первоначально полагалось, что они являются ключом к контролю над бактериальными инфекциями, однако ранние исследования оказались в основном несостоятельными. Были выделены бактериофаги, способные инфицировать большинство прокариотических групп организмов; и они легко выделяются из почвы, воды, канализационных стоков и, как и можно того ожидать, из большинства сред, колонизированных бактериями. В 1940-1950 гг. исследовательские работы по изучению структуры и физиологии взаимодействий хозяин - фаг, проведенные Г. Делбрюком, С. Луриа, А. Дерманомм, Р. Херши, И. Лвоффом и другими, заложили основание для развития молекулярной биологии, которая, в свою очередь, стала фундаментом для целого ряда новых ветвей индустрии, основанных на биотехнологии. Бактериофаги, как и другие вирусы, несут свою генетическую информацию в форме ДНК либо РНК. Большинство бактериофагов имеют хвостики, кончики которых прикреплены к конкретным рецепторам, таким как молекулы углеводов, белков и липополисахаридов на поверхности бактерии-хозяина. Бактериофаг впрыскивает свою нуклеиновую кислоту в хозяина, где он использует генетический механизм хозяина, чтобы реплицировать свой генетический материал, и считывает его, чтобы сформировать новый фагокапсульный материал для создания частичек нового фага. Число фагов, произведенных в течение единичного цикла инфекции (размер выхода), варьирует между 50 и 200 новыми фаговыми частицами. Сопротивляемость бактериофагу может развиться за счет потери или изменений в молекулах рецептора на поверхности клетки-хозяина. Бактерии также имеют особые механизмы, защищающие их от вторжения инородной ДНК. ДНК-хозяин модифицируется путем метилирования на определенных точках последовательности ДНК; это создает защиту от разложения хозяин-специфичными рестрикционными эндонуклеазами. Бактериофаги разделяются на 2 группы: вирулентные и умеренные. Вирулентные фаги вызывают литическую инфекцию, приводящую к разрушению клеток-хозяев и производящую чистые пятна (бляшки) на колониях восприимчивых бактерий. Умеренные фаги интегрируют свою ДНК посредством бактерии-хозяина, вырабатывая лизогеническую инфекцию, и ге­ном фага передается всем дочерним клеткам при кле­точном делении».

Развитие бактериофаговой терапии.

Бактериофаговая терапия (применение бактериальных вирусов для лечения бактериальных инфекций) была проблемой» весьма интересующей ученых 60 лет назад в их борьбе с бактериальными инфекциями. Открытие пенициллина и других антибиотиков в 1940-х гг. обеспечило более результативный и многосторонний подход к подавлению вирусных заболеваний и спровоцировало к закрытию работ в данной области. В Восточной Европе тем не менее исследования продолжали осуществляться и формировались некоторые способы борьбы против вирусов с использованием бактериофагов. Энтеральные и гнойно-септические заболевания, инициированные условно-патогенными возбудителями, в том числе хирургические инфекции, инфекционные заболевания детей первого года жизни, заболевания уха, горла, носа, легких и плевры; хронические клебсиеллезы верхних дыхательных путей - озена и склерома; урогенитальная патология, гастроэнтероколиты, все труднее поддаются традиционной антибактериальной терапии. Летальный исход при перечисленных инфекциях достигает 30-60%. Фактором неэффективности терапии является высокая частота устойчивости возбудителей к антибиотикам и химиотерапевтическим препаратам, достигающая 39,9-96,9%, а также подавление иммунитета как воздействие этих препаратов на организм больного, реакции токсического свойства и аллергического характера с побочными действиями, проявляющиеся в расстройствах кишечника на фоне дисбактериоза, и аналогичное расстройство верхних дыхательных путей при терапии склеромы и озены. В особенности актуальна проблема дисбактериоза кишечника у детей раннего возраста. Отдаленные результаты такого лечения у детей - иммунодепрессия, хронические септические состояния, нарушения питания, недостатки развития.

Это надо знать!

Бактериофаги - вирусы, избирательно поражающие бактериальные клетки. Чаще всего они начинают размножаться внутри бактерий, вызывая, таким образом их разрушение. Одной из областей применения бактериофагов является антибактериальная терапия, альтернатива приему антибиотиков.

Клинические исследования показали, что использование бактериофагов для обработки поверхностей помещений и отдельных объектов, например туалетов, предупреждает передачу инфекций, вызываемых Escherichia coli, у детей и взрослых. В ветеринарии доказано, что эшерихиоз у телят можно предупредить, если сбрызгивать помет в телячьих загонах водными суспензиями бактериофагов. В то время как на фазе ранних исследований был показан довольно существенный успех, фаготерапии не получилось стать общеустановленной практикой. Это было объяснено неспособностью селектировать высоковирулентные фаги, а также выбором фагов с чрезмерно узкой штамм-специфичностью. Прочие моменты содержали в себе появление фагорезистентных штаммов, нейтрализацию или вывод фагов защитными функциями иммунной системы и отслое­ние эндотоксинов вследствие обширного массивного бактериального разрушения клеток. Потенциальная возможность фагоопосредованной горизонтальной трансляции токсинных генов также является причиной, которая может ограничивать их использование для лечения отдельных конкретных инфекций. По предоставленным данным М. Слопеса (1983 и 1984 гг.), использование препаратов бактериофагов при инфекционных болезнях пищеварительной системы, воспалительно- гнойных изменениях кожных покровов, кровеносной системы, дыхательной системы, опорно-двигательного аппарата, мочеполовой системы (более 180 нозологических единиц заболеваний, вызванных бактериями Klebsiella, Escherichiae, Proteus, Pseudomonas, Staphylococcus, Streptococcus, Serratia, Enterobacter) показало, что препараты бакте риофагов оказывают должный эффект в 78,3-93,6% случаев и часто являются единственным эффективным лечебным средством.

В течение 2 последних десятилетий проходили некоторые экспериментальные изучения для того, чтобы подвергнуть переоценке использование терапевтических методик, основанных на использовании бактериофагов, для лечения инфекционных болезней людей и животных. Недавно результаты этих исследований были пересмотрены. Д.Смит и соратники опубликовали результаты серии опытов по лечению системных инфекций Е. Coli у грызунов и расстройства кишечника в виде диареи у телят. Доказано, что как профилактика, так и лечение, возможны, если использовать фаговые титры намного более низкие, чем число целевых организмов, что является индикацией размножения бактериофагов in vivo. Они показали, что введение внутримышечно 106 единиц E. Coli приводило к смерти 10 опытных мышей, тогда как одновременная инъекция в другую лапку 104 фагов, выбранных против К1 капсул-антигена, давала полную защиту.
Бактериофаговая терапия по соотнесению с антибиотикотерапией обладает рядом преимуществ. Например, она эффективна против лекарственно-устойчивых организмов и может использоваться в качестве альтернативной терапии пациентов, имеющих аллергии к антибиотикам. Она может использоваться профилактически с целью борьбы с распространением инфекционного заболевания там, где источник идентифицирован на ранней стадии, или там, где вспышки случаются внутри сравнительно закрытых организаций, таких как школы или дома престарелых. Бактериофаги обладают высокой специфичностью по отношению к целе­вым организмам и никак не влияют на организмы, не являющиеся объектами атаки. Они являются самокопирующимися и самолимитирующимися; когда организм-мишень наличествует, они самовоспроизводятся до тех пор, пока все бактерии-цели не будут заражены и уничтожены. Бактериофаги мутируют естественным образом, чтобы бороться с резистент­ными мутациями хозяина; кроме того, их можно подвергнуть преднамеренной мутации в лаборато­рии. В России и странах СНГ препараты бактерио­фагов применяются для лечения гнойно-септиче­ских и энтеральных заболеваний разнообразной локализации, возбужденных условно-патогенными бактериями родов Escherichia, Proteus^ Pseudomonas, Enterobacter, Staphylococcus, Streptococcus, служат заменителями антибиотиков. Они не уступают и даже превосходят последние по эффективности, не вызывая побочных токсических и аллергических л реакций и не имея противопоказаний к применению. Препараты бактериофагов эффективны при лечении болезней, вызванных антибиотикоустойчивымн штаммами микроорганизмов, в частности при лечении паратонзиллярных гнойников, воспалений пазух носа, а также гнойно-септических инфекций, реанимационных больных, хирургических заболеваний, циститов, пиелонефритов, холецисти­тов, гастроэнтероколитов, парапроктитов, дисбактериоза кишечника, воспалительных заболеваний и сепсиса новорожденных. При обширно распространенном формировании стабильности к антибио­тикам у патогенных бактерий, необходимость в новых антибиотиках и альтернативных технологиях контроля за микробными инфекциями завоевывает все большую значимость. Бактериофагам, вероятно, еще предстоит исполнить свою роль в лечении инфекционных заболеваний как при их независимом применении, так и в сочетании с антибиотико-терапией.

Написал о том, как в СССР норовили едва ли не все великие изобретения человечества, включая паровоз, лампу накаливания, воздушный шар, велосипед и др., приписать российским изобретателям. Но справедливости ради надо сказать, что в некоторых случаях подобные утверждения преследовали сугубо практические цели, примером чего может послужить история с пенициллином.

13 сентября 1929 года на заседании медицинского исследовательского клуба при Лондонском университете скромный микробиолог больницы св. Марии Александр Флеминг сообщил о терапевтический свойствах плесени. Этот день принято считать днем рождения пенициллина, однако на доклад Флеминга в ту пору мало кто обратил внимание. И на это были веские причины. Упоминания о лечении гнойных заболеваний плесенью встречались еще в трудах Авиценны (XI век) и Филиппа фон Гогенгейма, известного под именем Парацельс (XVI век), но проблема была в том, как выделить из плесени то вещество, благодаря которому проявляются ее чудодейственные свойства.

Трижды по просьбе Флеминга биохимики приступали к очистке вещества от посторонних примесей, но неудачно: хрупкая молекула разрушалась, утрачивая свои свойства. Решить эту задачу удалось лишь в 1938 году группе ученых Оксфордского университета, получивших на проведение исследований грант в размере $5 тысяч от фонда Рокфеллера. Возглавлял эту группу профессор Говард Флори, но считается, что ее мозговым центром был талантливый биохимик, внук могилевского портного Эрнст Чейн. Впрочем, некоторые эксперты полагают, что успех был достигнут в основном благодаря третьему члену группы, замечательному конструктору Норману Хитли, который с успехом использовал новейшие для того времени технологии лиофилизации (выпаривание посредством низких температур). Убедившись в том, что оксфордской группе удалось очистить пенициллин, Александр Флеминг воскликнул: «Да, вы сумели обработать мое вещество! Вот с такими учеными-химиками я мечтал работать в 1929 году».

Но на этом история пенициллина не закончилась. Наладить массовое производство лекарства в Англии, ежедневно подвергавшейся бомбардировкам, не было никакой возможности. Осенью 1941 года Флори и Хитли отправились в Америку, где предложили технологию производства пенициллина председателю научно-исследовательского медицинского совета США Альфреду Ричардсу. Тот немедленно связался с президентом Рузвельтом, который согласился финансировать программу. Американцы подошли к делу со свойственным им размахом — пенициллиновая программа в миниатюре напоминала «Манхэттенский проект» по созданию атомной бомбы. Все работы были строго засекречены, к делу привлечены ведущие ученые, конструкторы и промышленники. В результате американцам удалось разработать эффективную технологию глубинного брожения. Первый завод стоимостью $200 млн. был построен ударными темпами менее чем за год. Вслед за этим в США и Канаде были построены новые заводы. Производство пенициллина росло как на дрожжах: июнь 1943 года — 0,4 млрд. единиц, сентябрь — 1,8 млрд., декабрь — 9,2 млрд., март 1944 года — 40 млрд. единиц. Уже в марте 1945 года пенициллин появился в американских аптеках.

Лишь когда из США начали поступать сенсационные известия об исцелениях, а вслед за ними появился сам препарат, в Англии спохватились, обнаружив, что используемая технология поверхностного брожения плесени мало того что не дает достаточного количества пенициллина, да вдобавок он получается значительно дороже американского. За технологию и оборудование, которые англичане попросили передать им, американцы заломили огромные деньги. Пришлось ставить зарвавшихся заокеанских друзей на место. С помощью нескольких публикаций в прессе англичане доказали всему миру свой приоритет в изобретении пенициллина. Для убедительности шустрые репортеры даже кое-что присочинили. До сих пор ходит байка о том, что микробиолог Флеминг был таким неряхой, что у него в лабораторной посуде заводилась
плесень.

В СССР тоже попытались было позаимствовать у американцев эту технологию, но неудачно. Заместитель наркома здравоохранения СССР А.Г.Натрадзе рассказывал: «Мы направили за границу делегацию для закупки лицензии на производство пенициллина глубинным способом. Они заломили очень большую цену — $10 млн. Мы посоветовались с министром внешней торговли А.И.Микояном и дали согласие на закупку. Тогда они нам сообщили, что ошиблись в расчетах и что цена будет $20 млн. Мы снова обсудили вопрос с правительством и решили заплатить и эту цену. Потом они сообщили, что не продадут нам лицензию и за $30 млн».

Что оставалось делать в этих условиях? Последовать примеру англичан и доказать свой приоритет в открытии пенициллина. Первым делом подняли архивы и выяснили, что еще в 1871 году на лечебные свойства плесени указали российские врачи Вячеслав Манассеин и Алексей Полотебнов. Кроме того, советские газеты запестрели сообщениями о выдающихся успехах молодого микробиолога Зинаиды Ермольевой, которой удалось произвести отечественный аналог пенициллина под названием крустозин, причем он, как и следовало ожидать, получился намного лучше американского. Из этих сообщений нетрудно было понять, что вражеские шпионы вероломно умыкнули секрет производства крустозина, потому что у себя в капиталистических джунглях американские ученые, которые страдают от нечеловеческой эксплуатации, ни за что бы до этого не додумались. Позже Вениамин Каверин (его брат, ученый-вирусолог Лев Зильбер, был мужем Ермольевой) опубликовал роман «Открытая книга», рассказывающий о том, как главная героиня, прототипом которой была Ермольева, вопреки сопротивлению врагов и бюрократов, подарила народу чудодейственное лекарство.

Это не соответствовало действительности. Пользуясь поддержкой Розалии Землячки (фурия красного террора, как назвал ее Солженицын, некоторое время училась на медицинском факультете Лионского университета, а потому считала себя непревзойденным знатоком медицины), Зинаида Ермольева на основе грибка Penicillium crustosum действительно наладила производство крустозина, однако по качеству отечественный пенициллин значительно уступал американскому. Кроме того, пенициллин Ермольевой производился методом поверхностного брожения в стеклянных «матрацах». И хотя они устанавливались везде, где только можно, объем производства пенициллина в СССР в начале 1944 года был примерно в 1000 раз меньше, чем в США.

Кончилось дело тем, чтотехнология глубинного брожения в обход американцев была, насколько известно, в частном порядке куплена у Эрнста Чейна, после чего НИИ эпидемиологии и гигиены Красной Армии, директором которого был Н.Копылов, освоил эту технологию и запустил ее в производство. В 1945 году после испытаний отечественного пенициллина большой коллектив во главе с Копыловым был удостоен Сталинской премии. После этого все разговоры о российско-советском приоритете в открытии пенициллина стихли - Вячеслава Манассеина и Алексея Полотебнова в очередной раз предали забвению, Зинаида Ермольева была снята с должности директора Института пенициллина, а ее волшебный крустозин, благодаря которому строители коммунизма могли жить вечно, был выброшен на свалку.

Сотни человеческих жизней спасены за время применения в медицинской практике антибиотиков. Открытие пенициллина позволило легко избавлять людей от тех болезней, которые вплоть до начала XX века считались неизлечимыми.

Медицина до изобретения пенициллина

Многие столетия медицина была не в силах сохранить жизнь всех заболевших. Первым шагом к прорыву стало открытие факта о природе происхождения многих недугов. Речь идет о том, что большинство заболеваний возникает вследствие губительного воздействия микроорганизмов. Достаточно быстро ученые поняли, что можно уничтожить с помощью других микроорганизмов, проявляющих «враждебное отношение» к возбудителям недугов.

В процессе своей медицинской практики сразу несколько ученых еще в XIX пришли к такому выводу. Среди них был и Луи Пастер, который открыл, что действие некоторых видов микроорганизмов приводит к гибели бацилл Но этих сведений оказалось недостаточно. Нужно было найти конкретные действенные способы решения проблемы. Все попытки медиков создать универсальное лекарство заканчивались неудачно. И лишь чистая случайность и блестящая догадка помогли Александру Флемингу, тому ученому, кто изобрел пенициллин.

Полезные свойства плесени

Сложно поверить в то, что самая обычная плесень обладает бактерицидными свойствами. Но это действительно так. Ведь это не просто зеленовато-серая субстанция, а микроскопический грибок. Он возникает из зародышей еще меньшего размера, которые витают в воздухе. В условиях плохой циркуляции воздуха и других факторов из них образуется плесень. Пенициллин еще не был открыт, но в трудах Авиценны XI века есть упоминания о лечении гнойных заболеваний с помощью плесени.

Спор двух ученых

В 60-х годах XIX века российские медики Алексей Полотебнов и Вячеслав Манассеин всерьез поспорили. Предметом спора была плесень. Полотебнов считал, что она является родоначальников всех микробов. Манассеин настаивал на противоположной точке зрения, и чтобы доказать свою правоту, провел серию исследований.

Он наблюдал за ростом спор плесени, которые посеял в питательную среду. В результате В. Манассеин увидел, что развитие бактерий не происходило именно на местах роста плесневого грибка. Его мнение теперь было подтверждено опытным путем: плесень действительно блокирует рост других микроорганизмов. Его оппонент признал ошибочность своего утверждения. Мало того, Полотебнов сам начал пристально изучать антибактериальные свойства плесени. Имеются сведения, что он даже успешно применял их в лечении плохо заживающих кожных язв. Полотебнов посвятил несколько глав своего научного труда описанию свойств плесени. Там же ученый рекомендовал использовать эти особенности в медицине, в частности, для лечения кожных заболеваний. Но эта идея не вдохновила других медиков и была несправедливо забыта.

Кто изобрел пенициллин

Эта заслуга принадлежит ученому-медику Он был профессором в лаборатории больницы св. Марии города Лондона. Основная тема его научной деятельности - это рост и свойства стафилококков. Открытие пенициллина он совершил случайно. Особой аккуратностью Флеминг не славился, скорее, наоборот. Однажды, оставив на рабочем столе немытые чашки с бактериальными культурами, спустя несколько дней он заметил образовавшуюся плесень. Его заинтересовало то, что в пространстве вокруг плесени бактерии были уничтожены.

Флеминг дал название субстанции, выделяемой плесенью. Он назвал ее пенициллином. После проведения большого количества опытов Ученый убедился в том, что это вещество может убивать разные виды болезнетворных бактерий.

В каком году изобрели пенициллин? В 1928 наблюдательность Александра Флеминга подарила миру это чудодейственное по тем временам вещество.

Производство и применение

Флеминг не смог научиться получать пенициллин, поэтому сначала практическая медицина не очень заинтересовалась его открытием. Теми, кто изобрел пенициллин как медицинский препарат, были Говад Флори и Чейн Эрнст. Они вместе со своими соратниками выделили чистый пенициллин и создали на его основе первый в мире антибиотик.

В 1944 году, во время Второй мировой войны, ученые Соединенных Штатов смогли промышленным способом получать пенициллин. Апробация препарата заняла немного времени. Практически сразу пенициллин стали использовать вооруженные силы союзников для лечения раненых. Когда война закончилась, гражданское население США тоже смогло приобрести чудо-лекарство.

Все, кто изобрел пенициллин (Флеминг, Флори, Чейн), стали обладателями Нобелевской премии в области медицины.

Пенициллин: история открытия в России

Когда Великая Отечественная война еще продолжалась, И. В. Сталин предпринимал многочисленные попытки покупки лицензии на производство пенициллина в России. Но Соединенные Штаты вели себя неоднозначно. Сначала была названа одна сумма, надо сказать, астрономическая. Но позже ее еще два раза увеличивали, объясняя эти повышения неправильными первоначальными расчетами. В результате переговоры не увенчались успехом.

На вопрос о том, кто изобрел пенициллин в России, нет однозначного ответа. Поиск способов производства аналогов был поручен микробиологу Зинаиде Ермольевой. Она смогла получить вещество, названное впоследствии крустозином. Но по своим свойствам этот препарат сильно уступал пенициллину, да и сама технология производства была трудоемкой и дорогостоящей.

Было принято решение все же купить лицензию. Продавцом выступил Эрнст Чейн. После этого началось освоение технологии и запуск ее в производство. Этим процессом руководил Николай Копылов. пенициллина было налажено достаточно быстро. За это Николай Копылов был удостоен

Антибиотики в общем и пенициллин в частности, безусловно, обладают поистине уникальными свойствами. Но сегодня все чаще ученые проявляют беспокойство тем, что многие бактерии и микробы вырабатывают устойчивость к такому лечебному действию.

Эта проблема сейчас требует тщательного изучения и поиска возможных решений, ведь действительно, может наступить время, когда некоторые бактерии уже не будут реагировать на действие антибиотиков.