Причины синдрома эдвардса. Какие бывают трисомии? Случаи нерасхождения половых хромосом

Синдром Эдвардса или трисомия 18 представляет собой тяжелое врожденное заболевание, вызванное хромосомными нарушениями. Оно является одной из наиболее распространенных патологий в данной категории (уступает по частоте лишь синдрому Дауна ). Заболевание характеризуется многочисленными нарушениями в развитии различных органов и систем. Прогноз для ребенка обычно неблагоприятный, но многое зависит от ухода, который ему способны обеспечить родители.

Распространенность синдрома Эдвардса по земному шару варьирует от 0,015 до 0,02%. Четкой зависимости от местности или расы не наблюдается. Статистически девочки болеют в 3 – 4 раза чаще мальчиков. Научного объяснения этой пропорции пока не выявлено. Тем не менее, отмечен ряд факторов, которые могут повысить риск возникновения этой патологии.

Как и другие хромосомные мутации, синдром Эдвардса является, в принципе, неизлечимым заболеванием. Самые современные методы лечения и ухода могут лишь поддерживать жизнь ребенка и способствовать определенному прогрессу в его развитии. Единых рекомендаций по уходу за такими детьми нет из-за огромного разнообразия возможных нарушений и осложнений.

Интересные факты

  • Описание основных симптомов данной болезни было сделано еще в начале XX века.
  • До середины 1900-х годов собрать достаточную информацию об этой патологи не представлялось возможным. Во-первых, для этого необходим был соответствующий уровень развития технологий, который позволил бы обнаружить лишнюю хромосому. Во-вторых, большинство детей умирало в первые дни или недели жизни из-за низкого уровня оказания медицинской помощи.
  • Первое полное описание болезни и ее основной причины (появление лишней 18-й хромосомы ) было сделано только в 1960 году врачом Джоном Эдвардом, в честь которого тогда и назвали новую патологию.
  • Реальная частота синдрома Эдвардса составляет 1 случай на 2,5 – 3 тысячи зачатий (0,03 – 0,04% ), однако официальные данные значительно ниже. Это объясняется тем, что почти половина эмбрионов с данной аномалией не выживают и беременность заканчивается спонтанным абортом или внутриутробной смертью плода. Подробная диагностика причины выкидыша при этом проводится редко.
  • Трисомия представляет собой вариант хромосомной мутации, при которой у человека в клетках содержится не 46, а 47 хромосом. Существует всего 3 синдрома в данной группе заболеваний. Помимо синдрома Эдвардса это синдромы Дауна (трисомия 21 хромосомы ) и Патау (трисомия 13 хромосомы ). При наличии других добавочных хромосом патология несовместима с жизнью. Лишь в этих трех случаях возможно рождение живого ребенка и его дальнейший (хоть и замедленный ) рост и развитие.

Причины генетической патологии

Синдром Эдвардса является генетическим заболеванием , которое характеризуется наличием дополнительной хромосомы в геноме человека. Чтобы разобраться в причинах, которые вызывают видимые проявления этой патологии, необходимо выяснить, что представляют собой собственно хромосомы и генетический материал в целом.

В каждой клетке человека имеется ядро, которое отвечает за хранение и обработку генетической информации. В ядре содержится 46 хромосом (23 пары ), которые представляют собой многократно упакованную молекулу ДНК (дезоксирибонуклеиновая кислота ). Эта молекула содержит в себе определенные участки, называемые генами. Каждый ген является прототипом определенного белка в организме человека. При необходимости клетка считывает информацию с этого прототипа и вырабатывает соответствующий белок. Дефекты генов ведут к производству аномальных белков, которые и ответственны за появление генетических заболеваний.

Хромосомная пара состоит из двух идентичных молекул ДНК (одна отцовская, другая – материнская ), которые сцеплены между собой небольшим мостиком (центромерой ). Место сцепления двух хромосом в паре предопределяет форму всего соединения и его вид под микроскопом.

Все хромосомы хранят различную генетическую информацию (о разных белках) и подразделяются на следующие группы:

  • группа А включает 1 – 3 пару хромосом, которые отличаются большими размерами и X-образной формой;
  • группа В включает 4 – 5 пару хромосом, которые также являются крупными, но центромера лежит дальше от центра, из-за чего форма напоминает букву Х со смещенным вниз или вверх центром;
  • группа С включает 6 – 12 пару хромосом, которые по форме напоминают хромосомы группы В, но уступают им по размерам;
  • группа D включает 13 – 15 пару хромосом, для которых характерны средние размеры и расположение центромеры у самого конца молекул, что придает сходство с буквой V;
  • группа Е включает 16 – 18 пару хромосом, которые характеризуются маленькими размерами и срединным расположением центромеры (форма буквы Х );
  • группа F включает 19 – 20 хромосомные пары, которые несколько мельче хромосом группы Е и схожи с ними по форме;
  • группа G включает 21 – 22 пару хромосом, которые характеризуются V-образной формой и очень маленькими размерами.
Вышеперечисленные 22 пары хромосом называются соматическими или аутосомами. Кроме того существуют половые хромосомы, которые и составляют 23 пару. Они не похожи по внешнему виду, поэтому каждая из них обозначается отдельно. Женская половая хромосома обозначается Х и сходна с группой С. Мужская половая хромосома обозначается Y и сходна по форме и размерам с группой G. Если у ребенка обе хромосомы женские (тип ХХ ), то рождается девочка. Если же одна из половых хромосом женская, а другая мужская, то рождается мальчик (тип ХY ). Хромосомная формула называется кариотипом и может быть обозначена следующим образом - 46,ХХ. Здесь число 46 обозначает общее количество хромосом (23 пары ), а ХХ – формулу половых хромосом, которая зависит от пола (в примере представлен кариотип нормальной женщины ).

Синдром Эдвардса относится к так называемым хромосомным заболеваниям, когда проблема состоит не в дефекте гена, а в дефекте целой молекулы ДНК. Если быть более точным, то классическая форма этого заболевания подразумевает наличие лишней 18-й хромосомы. Кариотип в таких случаях обозначается как 47,ХХ, 18+ (для девочки ) и 47,ХY, 18+ (для мальчика ). Последняя цифра обозначает номер добавочной хромосомы. Излишек генетической информации в клетках приводит к появлению соответствующих проявлений болезни, которые и объединены под названием «синдром Эдвардса». Наличие дополнительной (третьей ) хромосомы под номером 18 дало другое (более научное ) название болезни – трисомия 18.

В зависимости от формы хромосомного дефекта различают три вида данного заболевания:

  • Полная трисомия 18 . Полная или классическая форма синдрома Эдвардса предполагает, что все клетки в организме имеют дополнительную хромосому. Данный вариант заболевания встречается более чем в 90% случаев и является наиболее тяжелым.
  • Частичная трисомия 18 . Частичная трисомия 18 является весьма редким феноменом (не более 3% от всех случаев синдрома Эдвардса ). При ней в клетках организма содержится не целая дополнительная хромосома, а лишь ее фрагмент. Такой дефект может быть результатом неправильного деления генетического материала, но встречается он очень редко. Иногда часть восемнадцатой хромосомы присоединяется к другой молекуле ДНК (внедряется в ее структуру, удлиняя молекулу, или просто «цепляется» с помощью мостика ). Последующее деление клеток приводит к тому, что в организме имеется 2 нормальные хромосомы номер 18 и еще часть генов с этих хромосом (сохранившийся фрагмент молекулы ДНК ). В этом случае количество врожденных дефектов будет намного ниже. Наблюдается избыток не всей генетической информации, закодированной в 18-й хромосоме, а лишь ее части. Для пациентов с частичной трисомией 18 прогноз лучше, чем для детей с полной формой, но все равно остается неблагоприятным.
  • Мозаичная форма . Мозаичная форма синдрома Эдвардса встречается в 5 – 7% случаев данного заболевания. Механизм ее появления отличается от других видов. Дело в том, что здесь дефект образовался уже после слияния сперматозоида и яйцеклетки. Обе гаметы (половые клетки ) изначально имели нормальный кариотип и несли по одной хромосоме каждого вида. После слияния сформировалась клетка с нормальной формулой 46,ХХ или 46,XY. В процессе деления этой клетки произошел сбой. При удвоении генетического материала один из фрагментов получил дополнительную 18-ю хромосому. Таким образом, на определенном этапе сформировался зародыш, часть клеток которого имеют нормальный кариотип (например, 46,ХХ ), а часть – кариотип синдрома Эдвардса (47,ХХ, 18+ ). Доля патологических клеток никогда не превышает 50%. Их число зависит от того, на каком этапе деления начальной клетки произошел сбой. Чем позже это происходит, тем меньше будет доля дефектных клеток. Форма получила название из-за того, что все клетки организма представляют собой своеобразную мозаику. Часть из них здорова, а часть – с тяжелой генетической патологией. Закономерности в распределении клеток в организме при этом не наблюдается, то есть все дефектные клетки не могут локализоваться только в одном месте, чтобы их можно было удалить. Общее состояние пациента при этом легче, чем при классической форме трисомии 18.
Наличие дополнительной хромосомы в геноме человека представляет множество проблем. Дело в том, что клетки человека запрограммированы считывать генетическую информацию и дублировать лишь заданное природой количество молекул ДНК. Нарушения даже в структуре одного гена могут привести к серьезным заболеваниям. При наличии же целой молекулы ДНК развиваются множественные нарушения еще на этапе внутриутробного развития до рождения ребенка.

Согласно последним исследованиям хромосома номер 18 содержит 557 генов, которые кодируют не менее 289 различных белков. В процентном отношении это примерно 2,5% всего генетического материала. Нарушения, которые вызывает столь большой дисбаланс, очень серьезны. Неправильное количество белков предопределяет множество аномалий в развитии различных органов и тканей. В случае синдрома Эдвардса чаще других страдают кости черепа, некоторые отделы нервной системы, сердечно-сосудистая и мочеполовая система. По всей видимости, это связано с тем, что гены, расположенные на этой хромосоме, имеют отношение к развитию именно этих органов и систем.

Таким образом, основной и единственной причиной синдрома Эдвардса является наличие дополнительной молекулы ДНК. Наиболее часто (при классической форме болезни ) она наследуется от одного из родителей. В норме каждая гамета (сперматозоид и яйцеклетка ) содержат по 22 непарные соматические хромосомы, плюс одна половая. Женщина всегда передает ребенку стандартный набор 22+Х, а мужчина может передать 22+Х либо 22+Y. Это предопределяет пол ребенка. Половые клетки родителей образуются в результате разделения обычных клеток на два набора. В норме материнская клетка делится на две равные части, но иногда не все хромосомы делятся пополам. Если 18-я пара не разошлась по полюсам клетки, то одна из яйцеклеток (или одни из сперматозоидов ) будет заранее дефектным. В нем будет не 23, а 24 хромосомы. В случае если именно эта клетка будет участвовать в оплодотворении, ребенок получит дополнительную 18-ю хромосому.

На неправильное деление клеток могут повлиять следующие факторы:

  • Возраст родителей . Доказано, что вероятность хромосомных аномалий увеличивается прямо пропорционально с возрастом матери. При синдроме Эдвардса эта связь менее выражена, чем при других похожих патологиях (например, синдром Дауна ). Но для женщин старше 40 лет риск родить ребенка с данной патологией в среднем в 6 – 7 раз выше. Подобная зависимость от возраста отца наблюдается в значительно меньшей степени.
  • Курение и алкоголь . Такие вредные привычки как курение и злоупотребление алкоголем могут действовать на половую систему человека, влияя на деление половых клеток. Таким образом, регулярное употребление этих веществ (а также других наркотических препаратов ) повышает риск неправильного распределения генетического материала.
  • Прием лекарственных средств . Некоторые лекарственные препараты при неправильном приеме в первом триместре могут повлиять на деление зародышевых клеток и спровоцировать мозаичную форму синдрома Эдвардса.
  • Заболевания половой сферы. Перенесенные инфекции с поражением репродуктивных органов могут отразиться на правильном делении клеток. Они повышают риск хромосомных и генетических заболеваний в целом, хотя специально для синдрома Эдвардса подобные исследования не проводились.
  • Радиационное излучение. Облучение половых органов рентгеновским излучением или другими ионизирующими излучениями может повлечь генетические мутации. Особенно опасно такое внешнее воздействие в подростковом возрасте, когда деление клеток происходит наиболее активно. Частицы, формирующие излучение, легко проникают сквозь ткани и подвергают молекулу ДНК своеобразной «бомбардировке». Если это происходит в момент деления клетки, риск хромосомной мутации особенно высок.
В целом же нельзя сказать, что причины развития синдрома Эдвардса окончательно известны и хорошо изучены. Вышеперечисленные факторы лишь повышают риск развития данной мутации. Не исключается и врожденная предрасположенность некоторых людей к неправильному распределению генетического материала в половых клетках. Например, считается, что у супружеской пары, которая уже родила ребенка с синдромом Эдвардса, вероятность появления второго ребенка с аналогичной патологией составляет аж 2 – 3% (примерно в 200 раз выше, чем средняя распространенность этой болезни ).

Как выглядят новорожденные с синдромом Эдвардса?

Как известно, диагностировать синдром Эдвардса можно до рождения, но в большинстве случаев данное заболевание обнаруживают непосредственно после рождения ребенка. У новорожденных с данной патологией имеется ряд ярко выраженных аномалий развития, которые иногда позволяют сразу заподозрить правильный диагноз. Подтверждение проводится позже при помощи специального генетического анализа.

Новорожденные с синдромом Эдвардса имеют следующие характерные аномалии развития:

  • изменение формы черепа;
  • изменение формы ушных раковин;
  • аномалии развития неба;
  • стопа-качалка;
  • аномальная длина пальцев;
  • изменение формы нижней челюсти;
  • сращение пальцев;
  • аномалии развития половых органов;
  • флексорное положение кистей;
  • дерматоглифические признаки.

Изменение формы черепа

Типичным симптомом при синдроме Эдвардса является долихоцефалия. Так называется характерное изменение формы головы новорожденного ребенка, которое встречается и при некоторых других генетических заболеваниях. У долихоцефалов (детей с данным симптомом ) более длинный и узкий череп. Точно подтверждается наличие этой аномалии с помощью специальных измерений. Определяют соотношение ширины черепа на уровне теменных костей к длине черепа (от выступа над переносицей до затылочного бугра ). Если полученное соотношение меньше 75%, то данный ребенок относится к долихоцефалам. Сам по себе данный симптом не является серьезным нарушением. Это просто один из видов формы черепа, встречающийся и у абсолютно нормальных людей. Дети с синдромом Эдвардса в 80 – 85% случаев являются выраженными долихоцефалами, у которых диспропорцию длины и ширины черепа можно заметить и без специальных измерений.

Другим вариантом аномалии развития черепа является так называемая микроцефалия, при которой размеры головы в целом слишком малы по сравнению с остальным туловищем. Прежде всего, это касается не лицевого черепа (челюсти, скулы, глазницы ), а именно черепной коробки, в которой располагается мозг. Микроцефалия менее характерна для синдрома Эдвардса, чем долихоцефалия, но она тоже встречается с более высокой частотой, чем среди здоровых людей.

Изменение формы ушной раковины

Если долихоцефалия может быть вариантом нормы, то патологии развития ушной раковины у детей с синдромом Эдвардса куда тяжелее. В определенной степени этот симптом наблюдается более чем у 95% детей с полной формой данного заболевания. При мозаичной форме его частота несколько меньше. Ушная раковина обычно располагается ниже, чем у нормальных людей (иногда ниже уровня глаз ). Характерные выпуклости хряща, который формирует ушную раковину, плохо выражены или отсутствуют. Также могут отсутствовать мочка или козелок (небольшой выступающий участок хряща спереди от слухового отверстия ). Сам слуховой проход обычно сужен, а примерно в 20 – 25% - вовсе отсутствует.

Аномалии развития неба

Небные отростки верхней челюсти в процессе развития эмбриона срастаются, формируя твердое небо. У детей с синдромом Эдвардса этот процесс нередко остается незавершенным. В том месте, где у нормальных людей располагается срединный шов (его можно прощупать посередине твердого неба языком ) у них идет продольная щель.

Существует несколько вариантов данного дефекта:

  • незаращение мягкого неба (задняя, глубокая часть неба, которая нависает над глоткой );
  • частичное незаращение твердого неба (щель не тянется на протяжении всей верхней челюсти );
  • полное незаращение твердого и мягкого неба;
  • полное незаращение неба и губы.
В ряде случаев расщепление неба является двусторонним. Два выступающих вверх уголка верхней губы являются началом патологических щелей. Ребенок не может полностью закрыть рот из-за этого дефекта. В тяжелых случаях явно видно сообщение ротовой и носовой полости (даже при закрытом рте ). Передние зубы в будущем могут отсутствовать или расти в сторону.

Данные дефекты развития известны также под названием волчья пасть, расщепление неба, заячья губа. Все они могут встречаться и не в рамках синдрома Эдвардса, однако у детей с этой патологией их частота особенно высока (почти 20% новорожденных ). Значительно чаще (до 65% новорожденных ) обладают другой особенностью, известной как высокое или готическое небо. Оно может быть отнесено к вариантам нормы, так как встречается и у здоровых людей.

Наличие расщепленного верхнего неба или верхней губы еще не подтверждает синдром Эдвардса. Этот порок развития может встречаться с довольно высокой частотой и самостоятельно без сопутствующих нарушений со стороны других органов и систем. Для исправления данной аномалии существует ряд стандартных хирургических вмешательств.

Стопа-качалка

Так называется характерное изменение стопы, которое встречается, в основном, в рамках синдрома Эдвардса. Частота его при данном заболевании достигает 75%. Дефект заключается в неправильном взаимоположении таранной, пяточной и ладьевидной костей. Его относят к категории плоско-вальгусных деформаций стопы у детей.

Внешне стопа у новорожденного ребенка выглядит следующим образом. Пяточный бугор, на который опирается задняя часть стопы, выдается назад. Свод при этом может полностью отсутствовать. Это легко заметить, посмотрев на стопу с внутренней стороны. В норме там вырисовывается вогнутая линия, направляющаяся от пятки к основанию большого пальца. При стопе-качалке этой линии нет. Стопа плоская или даже выпуклая. Это и придает ей сходство с ножками кресла-качалки.

Аномальная длина пальцев

У детей с синдромом Эдвардса на фоне изменений в строении стопы может наблюдаться ненормальная пропорция в длине пальцев ног. В частности, речь идет о большом пальце, который в норме является самым длинным. У новорожденных с данным синдромом он уступает по длине второму пальцу. Данный дефект можно заметить лишь при распрямлении пальцев и тщательном их рассмотрении. С возрастом, по мере роста ребенка, он становится более заметным. Поскольку укорочение большого пальца стопы встречается в основном при стопе-качалке, распространенность этих симптомов у новорожденных примерно одинакова.

У взрослых укорочение большого пальца на ноге не имеет такой диагностической ценности. Подобный дефект может быть индивидуальной особенностью у здорового человека или следствием воздействия других факторов (деформация суставов, заболевания костей, ношение обуви, не соответствующей по размеру ). В связи с этим данный признак нужно рассматривать как возможный симптом только у новорожденных детей при наличии других аномалий развития.

Изменение формы нижней челюсти

Изменения формы нижней челюсти у новорожденных встречаются почти в 70% случаев. В норме подбородок у детей не выступает вперед так, как у взрослых, но у больных с синдромом Эдвардса он слишком уж сильно втянут. Это происходит из-за недоразвития нижней челюсти, которое носит название микрогнатия (микрогения ). Данный симптом встречается и при других врожденных заболеваниях. Не так уж редко можно встретить и взрослых людей с похожими чертами лица. При отсутствии сопутствующих патологий это считается вариантом нормы, хоть и ведет к некоторым трудностям.


У новорожденных с микрогнатией обычно быстро появляются следующие проблемы:
  • невозможность долго держать рот закрытым (подтекание слюны );
  • затруднения при кормлении;
  • позднее развитие зубов и неправильное их расположение.
Зазор между нижней и верхней челюстью может составлять более 1 см, что очень много, учитывая размеры головы малыша.

Сращение пальцев

Сращение пальцев, или по-научному синдактилия, наблюдается приблизительно у 45% новорожденных. Чаще всего эта аномалия затрагивает пальцы ног, но встречается и синдактилия на руках. В легких случаях сращение образовано кожной складкой наподобие короткой перепонки. В более тяжелых случаях наблюдается сращение мостиками костной ткани.

Синдактилия встречается не только при синдроме Эдвардса, но и при многих других хромосомных заболеваниях. Известны и случаи, когда этот порок развития являлся единственным, и в остальном больной ничем не отличался от нормальных детей. В связи с этим сращение пальцев является лишь одним из возможных признаков синдрома Эдвардса, который помогает заподозрить диагноз, но не подтверждает его.

Аномалии развития половых органов

Непосредственно после родов у новорожденных с синдромом Эдвардса иногда можно наблюдать аномалии развития внешних половых органов. Как правило, они сочетаются с дефектами развития всего мочеполового аппарата, однако без специальных диагностических мероприятий это установить невозможно. Наиболее же частыми аномалиями, заметными внешне, являются недоразвитие полового члена у мальчиков и гипертрофия (увеличение в размерах ) клитора у девочек. Они встречаются примерно в 15 – 20% случаев. Несколько реже может наблюдаться аномальное расположение мочеиспускательного канала (гипоспадия ) или отсутствие яичек в мошонке у мальчиков (крипторхизм ).

Флексорное положение кистей

Флексорное положение кистей – это особое расположение пальцев, вызванное не столько структурными нарушениями в области кисти, сколько повышенным тонусом мышц. Сгибатели пальцев и кисти постоянно напряжены, из-за чего большой палец и мизинец как бы прикрывают остальные пальцы, которые при этом прижаты к ладони. Данный симптом наблюдается при многих врожденных патологиях и не является характерным именно для синдрома Эдвардса. Тем не менее, при обнаружении кисти подобной формы необходимо предполагать эту патологию. При ней флексорное положение пальцев наблюдается почти у 90% новорожденных.

Дерматоглифические признаки

При многих хромосомных аномалиях у новорожденных имеются характерные дерматоглифические изменения (аномальные узоры и складки на коже ладоней ). При синдроме Эдвардса некоторые признаки можно обнаружить почти в 60% случаев. Они имеют значение в основном для предварительной диагностики при мозаичной или частичной форме болезни. При полной трисомии 18 к дерматоглифике не прибегают, так как для подозрения синдрома Эдвардса хватает других, более заметных аномалий развития.


Основными дерматоглифическими признаками синдрома Эдвардса являются:
  • дуги на подушечках пальцев располагаются с большей частотой, нежели у здоровых людей;
  • кожная складка между последней (ногтевой ) и предпоследней (срединной ) фалангами пальцев отсутствует;
  • у 30% новорожденных на ладони имеется так называемая поперечная борозда (обезьянья линия, линия Симиан ).
Специальные исследования могут выявить и другие отклонения от нормы, однако непосредственно после рождения, без привлечения узких специалистов, врачам достаточно этих изменений.

Помимо вышеперечисленных признаков существует еще целый ряд возможных аномалий развития, которые могут помочь в предварительной диагностике синдрома Эдвардса. По некоторым данными при подробном внешнем осмотре можно обнаружить до 50 внешних признаков. Сочетание наиболее частых симптомов, представленных выше, с высокой вероятностью говорит о наличии у ребенка этой тяжелой патологии. При мозаичном варианте синдрома Эдвардса множественных аномалий может и не быть, однако наличие даже одного из них является показанием к проведению специального генетического теста.

Как выглядят дети с синдромом Эдвардса?

У детей с синдромом Эдвардса по мере взросления обычно обнаруживаются самые разные сопутствующие патологии. Их симптомы начинают проявляться уже через несколько недель после рождения. Эти симптомы могут оказаться первым проявлением синдрома, так как при мозаичном варианте в редких случаях болезнь может остаться незамеченной непосредственно после рождения. Тогда диагностика заболевания усложняется.

Большинство внешних проявлений синдрома, замеченных при рождении, остаются и становятся более заметными. Речь идет о форме черепа, стопе-качалке, деформации ушной раковины и т. п. Постепенно к ним начинают прибавляться и другие внешние проявления, которые невозможно было заметить сразу после рождения. В данном случае речь идет о признаках, которые могут появиться у детей в первый год жизни.

Дети с синдромом Эдвардса имеют следующие внешние особенности:

  • отставание в физическом развитии;
  • косолапость;
  • аномальный тонус мышц;
  • ненормальные эмоциональные реакции.

Отставание в физическом развитии

Отставание в физическом развитии объясняется низкой массой тела ребенка при рождении (всего 2000 – 2200 г при нормальном сроке беременности ). Значительную роль играет и генетический дефект, который не позволяет всем системам организма нормально и гармонично развиваться. Основные показатели, по которым оценивают рост и развитие ребенка, сильно снижены.

Заметить отставание ребенка можно по следующим антропометрическим показателям:

  • рост ребенка;
  • вес ребенка;
  • окружность грудной клетки;
  • окружность головы (данный показатель может быть в норме или даже увеличен, но на него нельзя полагаться из-за врожденной деформации черепа ).

Косолапость

Косолапость является следствием деформации костей и суставов стоп, а также отсутствия нормального контроля со стороны нервной системы. Дети с трудом начинают ходить (большинство не доживает до этого этапа из-за врожденных пороков развития ). Внешне о наличии косолапости можно судить по деформации стоп, ненормальному положению ног в состоянии покоя.

Аномальный тонус мышц

Аномальный тонус, который при рождении вызывает флексорное положение кисти, по мере роста начинает проявляться и на других группах мышц. Чаще всего у детей с синдромом Эдвардса сила мышц снижена, они вялые и лишены нормального тонуса. В зависимости от характера повреждений центральной нервной системы некоторые группы могут иметь повышенный тонус, что проявляется спастическими сокращениями этих мышц (например, сгибатели рук или разгибатели ног ). Внешне это проявляется отсутствием минимальной координации движений. Иногда спастические сокращения ведут к ненормальным перегибам конечностей или даже к вывихам.

Ненормальные эмоциональные реакции

Отсутствие или ненормальное проявление каких-либо эмоций является следствием аномалий в развитии некоторых отделов мозга (чаще всего мозжечка и мозолистого тела ). Эти изменения приводят к серьезному отставанию в умственном развитии, которое наблюдается у всех без исключения детей с синдромом Эдвардса. Внешне низкий уровень развития проявляется характерным «отсутствующим» выражением лица, отсутствием эмоционального ответа на внешние раздражители. Ребенок плохо поддерживает визуальный контакт (не следит за движущимся перед глазами пальцем и т. п. ). Отсутствие реакции на резкие звуки может быть следствием поражения как нервной системы, так и слухового аппарата. Все эти признаки обнаруживаются по мере роста ребенка в первые месяцы жизни.

Как выглядят взрослые с синдромом Эдвардса?

В подавляющем большинстве случаев дети, рожденные с синдромом Эдвардса, не доживают до взрослого возраста. При полной форме этого заболевания, когда лишняя хромосома присутствует в каждой клетке тела, 90% детей умирает в возрасте до 1 года из-за серьезных аномалий развития внутренних органов. Даже при условии хирургического исправления возможных дефектов и качественном уходе их организм более подвержен инфекционным заболеваниям. Этому способствуют и нарушения питания, которые встречаются у большинства детей. Все это объясняет высочайшую смертность при синдроме Эдвардса.

При более легкой мозаичной форме, когда лишь часть клеток в организме содержит аномальный набор хромосом, выживаемость несколько больше. Однако даже в этих случаях до взрослого возраста доживают единичные пациенты. Их внешний вид определяется врожденными аномалиями, которые присутствовали при рождении (заячья губа, деформированная ушная раковина, и др. ). Основным же симптомом, присутствующим у всех без исключения детей, является серьезнейшее отставание в умственном развитии. Дожив до взрослого возраста, ребенок с синдромом Эдвардса является глубоким олигофреном (IQ менее 20, что соответствует самой тяжелой степени умственной отсталости ). В целом же в медицинской литературе описываются единичные случаи, когда дети с синдромом Эдвардса доживали до совершеннолетнего возраста. Из-за этого накоплено слишком мало объективных данных, чтобы говорить о внешних признаках этого заболевания у взрослых.

Диагностика генетической патологии

В настоящее время существуют три основных этапа диагностики синдрома Эдвардса, каждый из которых включает несколько возможных методов. Поскольку данное заболевание является неизлечимым, родителям следует обратить внимание на возможности этих методов и воспользоваться ими. Большинство анализов проводится в специальных центрах пренатальной диагностики, где имеется вся необходимая техника для поиска генетических заболеваний. Однако даже консультация у врача-генетика или неонатолога может оказаться полезной.

Диагностика синдрома Эдвардса возможна на следующих этапах:

  • диагностика до момента зачатия;
  • диагностика во время внутриутробного развития;
  • диагностика после рождения.

Диагностика до момента зачатия

Диагностика до момента зачатия ребенка является идеальным вариантом, но, к сожалению, на современном этапе развития медицины ее возможности очень ограничены. Врачи могут с помощью нескольких методов предположить повышенную вероятность рождения ребенка с хромосомным заболеванием, но не более того. Дело в том, что при синдроме Эдвардса, в принципе, нарушения у родителей обнаружить нельзя. Дефектная половая клетка с 24 хромосомами является лишь одной из многих тысяч. Поэтому сказать наверняка до момента зачатия, родится ли ребенок с данным заболеванием, нельзя.

Основными методами диагностики до момента зачатия являются:

  • Семейный анамнез . Семейный анамнез представляет собой подробный опрос обоих родителей об их родословной. Врача интересуют любые случаи наследственных (и особенно хромосомных ) заболеваний в семье. Если хотя бы один из родителей припоминает случай трисомии (синдром Эдвардса, Дауна, Патау ), это сильно повышает вероятность рождения больного ребенка. Однако риск все равно составляет не более 1%. При повторных случаях этих заболеваний у предков риск многократно возрастает. По сути, анализ сводится к консультации у неонатолога или генетика. Предварительно родители могут постараться собрать более подробную информацию о своих предках (желательно на 3 – 4 колена ). Это повысит точность данного метода.
  • Обнаружение факторов риска . Основным фактором риска, который объективно повышает риск хромосомных аномалий, является возраст матери. Как уже говорилось выше, у матерей после 40 лет вероятность рождения ребенка с синдромом Эдвардса многократно возрастает. По некоторым данным, после 45 лет (возраст матери ) почти каждая пятая беременность сопровождается хромосомной патологией. Большинство из них заканчивается выкидышем. Другими факторами являются перенесенные инфекционные заболевания, хронические болезни, вредные привычки. Однако их роль в диагностике значительно более низкая. Точного ответа на вопрос, будет ли зачат ребенок с синдромом Эдвардса, этот метод тоже не дает.
  • Генетический анализ родителей . Если предыдущие методы сводились к опросу родителей, то генетический анализ представляет собой полноценное исследование, которое требует наличия специальной аппаратуры, реактивов и квалифицированных специалистов. У родителей берется кровь, из которой в лаборатории выделяют лейкоциты . После обработки специальными веществами в этих клетках становятся хорошо видны хромосомы на стадии деления. Таким образом составляется кариотип родителей. В подавляющем большинстве случаев он нормальный (при хромосомных нарушениях, которые могут быть здесь обнаружены, вероятность продолжения рода ничтожно мала ). Кроме того с помощью специальных маркеров (фрагменты молекулярных цепочек ) можно обнаружить участки ДНК с дефектными генами. Однако здесь будут обнаружены не хромосомные нарушения, а генетические мутации, которые не влияют напрямую на вероятность синдрома Эдвардса. Таким образом, генетический анализ родителей до момента зачатия, несмотря на сложность и высокую стоимость, также не дает однозначного ответа относительно прогнозов на данную патологию.

Диагностика во время внутриутробного развития

В период внутриутробного развития существует несколько способов, которые могут прямо или косвенно подтвердить наличие у зародыша хромосомной патологии. Точность этих методов значительно выше, так как врачи имеют дело не с родителями, а с самим организмом плода. Для изучения доступен как сам зародыш, так и его клетки с собственным ДНК. Данный этап называется также пренатальной диагностикой и является наиболее важным. В это время можно подтвердить диагноз, предупредить родителей о наличии патологии и при необходимости прервать беременность. Если же женщина решит рожать и новорожденный будет жив, то врачи получат возможность заранее подготовиться к оказанию ему необходимой помощи.

Основными методами исследования в рамках пренатальной диагностики являются:

  • Ультразвуковое исследование (УЗИ ) . Данный метод является неинвазивным, то есть не предполагает повреждения тканей матери или плода. Он полностью безопасен и рекомендован для всех беременных женщин в рамках пренатальной диагностики (независимо от их возраста или повышенного риска для хромосомных заболеваний ). Стандартная программа предполагает, что УЗИ надо делать трижды (на 10 – 14, 20 – 24 и 32 – 34 неделе беременности ). Если лечащий врач предполагает возможность врожденных аномалий развития, могут быть проведены и незапланированные УЗИ. О синдроме Эдвардса может говорить отставание плода в размерах и массе, большое количество околоплодных вод, видимые аномалии развития (микроцефалия, деформация костей ). Эти нарушения с высокой вероятностью говорят о тяжелых генетических заболеваниях, но синдром Эдвардса окончательно подтвердить все же невозможно.
  • Амниоцентез . Амниоцентез представляет собой цитологический (клеточный ) анализ околоплодных вод. Врач аккуратно вводит специальную иглу под контролем аппарата УЗИ. Прокол делается в месте, где нет петель пупочного канатика. С помощью шприца берется необходимое для исследования количество амниотической жидкости. Процедуру можно проводить во всех триместрах беременности, но оптимальным сроком для диагностики хромосомных нарушений является период после 15 недели беременности. Частота осложнений (вплоть до спонтанного прерывания беременности ) составляет до 1%, поэтому процедуру не стоит проводить при отсутствии каких-либо показаний. После забора околоплодных вод проводится обработка полученного материала. В них жидкости имеются клетки с поверхности кожи малыша, которые содержат образцы его ДНК. Именно их и проверяют на наличие генетических заболеваний.
  • Кордоцентез . Кордоцентез представляет собой наиболее информативный метод пренатальной диагностики. После обезболивания и под контролем аппарата УЗИ врач прокалывает с помощью специальной иглы сосуд, проходящий в пуповине. Таким образом, получают образец крови (до 5 мл ) развивающегося ребенка. Техника выполнения анализа аналогична таковой для взрослых. Данный материал можно с высокой точностью исследовать на предмет различных генетических аномалий. В том числе можно сделать кариотипирование плода. При наличии дополнительной 18-й хромосомы можно говорить о подтвержденном синдроме Эдвардса. Данный анализ рекомендуется проводить после 18-й недели беременности (оптимально 22 – 25 недели ). Частота возможных осложнений после кордоцентеза составляет 1,5 – 2%.
  • Биопсия хориона. Хорион представляет собой одну из зародышевых оболочек, содержащую клетки с генетической информацией плода. Данное исследование предполагает пункцию матки под наркозом через переднюю брюшную стенку. С помощью специальных биопсийных щипцов берут образец ткани для анализа. Затем проводится стандартное генетическое исследование полученного материала. Для диагностики синдрома Эдвардса делается кариотипирование. Оптимальным сроком для проведения биопсии хориона считают 9 – 12 неделю беременности. Частота осложнений составляет 2 – 3%. Основным преимуществом, отличающим его от других методов, является скорость получения результата (уже через 2 – 4 дня ).

Диагностика после рождения

Диагностика синдрома Эдвардса после рождения является наиболее легкой, быстрой и точной. К сожалению, на этот момент уже произошло появление на свет ребенка с тяжелой генетической патологией, эффективного лечения которой в наше время пока не существует. Если на этапе пренатальной диагностики заболевание не было выявлено (либо соответствующие исследования не проводились ), то подозрение на синдром Эдвардса появляется сразу после рождения. Ребенок обычно доношен или даже переношен, но его масса все равно ниже среднего показателя. Кроме того, обращают на себя внимание некоторые врожденные дефекты, о которых говорилось выше. Если их замечают, проводят генетический анализ для подтверждения диагноза. У ребенка берется кровь для анализа. Однако на данном этапе подтвердить наличие синдрома Эдвардса – неглавная проблема.

Основной задачей при рождении ребенка с этой патологией является обнаружение аномалий в развитии внутренних органов, которые обычно приводят к смерти в первые месяцы жизни. Именно на их поиск направлено большинство диагностических процедур непосредственно после рождения.

Для обнаружения пороков в развитии внутренних органов применяют следующие методы исследования:

  • ультразвуковое исследование брюшной полости;
  • амниоцентез, кордоцентез и др. ) представляют определенную опасность осложнений и не проводятся без специальных показаний. Основными показаниями считается наличие в роду случаев хромосомных заболеваний и возраст матери старше 35 лет. Программа диагностики и ведения пациентки на всех этапах беременности может быть изменена лечащим врачом по необходимости.

    Прогноз для детей с синдромом Эдвардса

    Учитывая множественные нарушения развития, которые присущи синдрому Эдвардса, прогноз для новорожденных с этим диагнозом почти всегда неблагоприятный. Статистические данные (из различных независимых исследований ) говорят, что больше половины детей (50 – 55% ) не доживают до трехмесячного возраста. Первый день рождения удается отпраздновать меньше чем десяти процентам малышей. Те дети, которые доживают до старшего возраста, имеют серьезнейшие проблемы со здоровьем и нуждаются в постоянном уходе. Для продления жизни нередко необходимы сложные хирургические операции на сердце , почках или других внутренних органах. Исправление врожденных дефектов и постоянный квалифицированный уход, по сути, являются единственным лечением. У детей с классической формой синдрома Эдвардса (полной трисомией 18 ) шансов на нормальное детство или сколько-нибудь длительную жизнь практически нет.

    При частичной трисомии или мозаичной форме синдрома прогноз несколько лучше. Средняя продолжительность жизни при этом увеличивается до нескольких лет. Это объясняется тем, то аномалии развития при более легких формах не ведут так быстро к смерти ребенка. Тем не менее, основная проблема, а именно серьезное отставание в умственном развитии, присуща всем без исключения больным. При достижении подросткового возраста нет шансов ни на продолжение потомства (половая зрелость обычно не наступает ), ни на возможность работы (даже механической, не требующей особых навыков ). Существуют специальные центры для ухода за детьми с врожденными заболеваниями, где больным с синдромом Эдвардса обеспечивают уход и по возможности способствуют их интеллектуальному развитию. При достаточных усилиях со стороны врачей и родителей ребенок, проживший больше года, может научиться улыбаться, реагировать на движение, самостоятельно поддерживать положение тела или питаться (при отсутствии пороков системы пищеварения ). Таким образом, признаки развития все же наблюдаются.

    Высокая детская смертность при данном заболевании объясняется большим количеством пороков развития внутренних органов. Они незаметны непосредственно при рождении, но присутствуют практически у всех больных. В первые месяцы жизни дети обычно умирают от остановки сердца или дыхания.

    Чаще всего пороки развития наблюдаются в следующих органах и системах:

    • опорно-двигательный аппарат (кости и суставы, включая череп );
    • сердечно-сосудистая система;
    • центральная нервная система;
    • пищеварительная система;
    • мочеполовая система;
    • другие нарушения.

    Опорно-двигательный аппарат

    Основными пороками в развитии опорно-двигательного аппарата является аномальное положение пальцев и искривление стоп. В бедренном суставе наблюдается сведение ног таким образом, что колени почти соприкасаются, а стопы смотрят немного в стороны. Нередко у детей с синдромом Эдвардса обнаруживается необычно короткая грудина. Это деформирует грудную клетку в целом и создает проблемы с дыханием, которые усугубляются по мере роста, даже если сами легкие не затронуты.

    Дефекты развития черепа являются в основном косметическими. Однако такие пороки как волчья пасть, заячья губа и высокое небо создают серьезные трудности с кормлением ребенка. Нередко до проведения операций по исправлению этих дефектов ребенка переводят на парентеральное питание (в виде капельниц с питательными растворами ). Другим вариантом является использование гастростомы – специального зонда, через который пища попадает прямо в желудок. Его установление требует отдельного хирургического вмешательства.

    В целом пороки развития опорно-двигательного аппарата не создают прямой угрозы для жизни ребенка. Однако косвенно они влияют на его рост и развитие. Частота таких изменений у больных синдромом Эдвардса составляет около 98%.

    Сердечно-сосудистая система

    Пороки развития сердечно-сосудистой системы являются основной причиной смерти в раннем детском возрасте. Дело в том, что подобные нарушения встречаются почти в 90% случаев. Чаще всего они серьезно нарушают процесс транспорта крови по организму, приводя к выраженной сердечной недостаточности . Большинство сердечных патологий может быть исправлено хирургическим путем, но не каждому ребенку можно провести такую сложную операцию.

    Наиболее частыми аномалиями со стороны сердечно-сосудистой системы являются:

    • незаращение межпредсердной перегородки;
    • незаращение межжелудочковой перегородки;
    • сращение створок клапанов (или, наоборот, их недоразвитие );
    • коарктация (сужение ) аорты.
    Все эти пороки сердца ведут к серьезным нарушениям кровообращения. Артериальная кровь не поступает в нужном объеме к тканям, из-за чего клетки организма начинают гибнуть.

    Центральная нервная система

    Самым характерным пороком со стороны центральной нервной системы является недоразвитие мозолистого тела и мозжечка. Это причина самых разнообразных нарушений, в том числе и умственной отсталости, которая наблюдается у 100% детей. Кроме того, нарушения на уровне головного и спинного мозга вызывают аномальный тонус мышц и предрасположенность к судорогам или спастическим сокращениям мышц.

    Пищеварительная система

    Частота пороков пищеварительной системы при синдроме Эдвардса составляет до 55%. Чаще всего эти аномалии развития представляют серьезную угрозу жизни ребенка, поскольку не позволяют ему нормально усваивать питательные вещества. Питание же в обход естественных органов пищеварения сильно ослабляет организм и усугубляет состояние ребенка.

    Наиболее частыми пороками развития со стороны пищеварительной системы являются:

    • дивертикул Меккеля (слепой отросток в тонкой кишке );
    • атрезия пищевода (зарастание его просвета, из-за чего пища не проходит в желудок );
    • атрезия желчных путей (накопление желчи в пузыре ).
    Все эти патологии требуют хирургического исправления. В большинстве случаев операция помогает лишь немного продлить жизнь ребенку.

    Мочеполовая система

    Наиболее серьезные пороки со стороны мочеполовой системы связаны с нарушением работы почек. В ряде случаев наблюдается атрезия мочеточников. Почка с одной стороны может быть дублирована или сращена с лежащими рядом тканями. Если имеет место нарушение фильтрации, в организме со временем начинают накапливаться токсичные продукты жизнедеятельности. Кроме того может наблюдаться рост артериального давления и нарушения в работе сердца. Серьезные аномалии развития почек представляют прямую угрозу для жизни.

    Другие нарушения

    Другими возможными нарушениями развития являются грыжи (пупочная, паховая ) . Могут обнаруживаться и дисковые грыжи позвоночника , которые приведут к неврологическим проблемам. Со стороны глаз иногда наблюдается микрофтальмия (маленький размер глазных яблок ).

    Совокупность этих пороков развития предопределяет высокую детскую смертность. В большинстве случаев, если синдром Эдвардса диагностирован на ранних этапах беременности, врачи рекомендуют делать аборт по медицинским показаниям. Тем не менее, окончательное решение принимает сама пациентка. Несмотря на всю серьезность заболевания и плохой прогноз многие предпочитают надеяться на лучшее. Но, к сожалению, в ближайшее время серьезных сдвигов в методах диагностики и лечения синдрома Эдвардса, судя по всему, не предвидится.

Хромосомы - это ядерные структуры, содержащие молекулу ДНК и предназначенные для хранения и передачи генетической информации. В соматических клетках человека каждая такая структура представлена двумя копиями. Трисомия - это вид генетической патологии, при которой в клетках присутствуют три гомологичные хромосомы вместо двух. Такое нарушение происходит при оплодотворении и ведет к гибели плода либо к развитию тяжелых наследственных синдромов. Поскольку на сегодняшний день не существует эффективных методов излечения таких заболеваний, крайне важная роль отводится пренатальной диагностике.

Из 23 хромосомных пар 22 идентичны у обоих полов, они называются аутосомами. 23-я пара представлена половыми хромосомами и различается у мужчин (XY) и у женщин (ХХ). Среди аутосомных нарушений чаще всего встречается трисомия по 21, 13 и 18-й хромосомам. Остальные патологии нежизнеспособны и приводят к самопроизвольному аборту на ранних сроках беременности.

Причины

  • В большинстве случаев трисомии возникают случайно в результате нарушения расхождения хромосом в процессе клеточного деления при образовании половых клеток родителей (85 % случаев связано с яйцеклеткой и 15 % со сперматозоидами). На одной из стадий мейоза (анафазе) обе хромосомы вместо того, чтобы разойтись, идут к одному полюсу. В результате образуется половая клетка, содержащая диплоидный набор хромосом. Такая аномалия приводит к развитию полных форм анеуплоидии, то есть каждая клетка организма будет иметь аномальный кариотип.
  • Второй причиной трисомии является мутация, возникшая уже после оплодотворения, на ранних этапах эмбриогенеза. В этом случае только часть клеток будет аномальный набор хромосом. Такое состояние называется мозаицизмом и протекает более благоприятно, чем синдром полной трисомии. Диагностировать данную патологию трудно, особенно в рамках пренатальной диагностики.

Развитие трисомий носит случайный характер и слабо связано с факторами окружающей среды, состоянием здоровья человека.

Какие бывают трисомии?

  1. Синдром трисомии 21-й хромосомы. Трисомию 21-й хромосомы называют синдромом Дауна. Он проявляется совокупностью различных патологий, основными из которых является нарушение интеллектуального развития, пороки сердечно-сосудистой и пищеварительной систем, а также специфический внешний вид.
    Возможности современной медицины и педагогики позволяют таким людям интегрироваться в общество и вести активный образ жизни. При этом средняя продолжительность жизни у них составляет около 60 лет.
  2. Трисомия 18-й хромосомы. Синдром трисомии по 18-й хромосоме называется синдромом Эдвардса. Это тяжелая патология, в большинстве случаев приводящая к преждевременным родам или самопроизвольным абортам. Даже если ребенок родился в срок, продолжительность жизни редко превышает один год.
  3. Клинически проявляется пороками развития центральной нервной системы, скелета и внутренних органов. У таких детей диагностируется тяжелая умственная отсталость, микроцефалия, заячья губа, волчья пасть и множество других нарушений.
  4. Синдром Патау. Синдром Патау обусловлен трисомией 13-й хромосомы. Клинически проявляется микроцефалией, нарушением развития ЦНС, тяжелой умственной отсталостью, пороками сердца, транспозицией сосудов, множественными пороками внутренних органов. Продолжительность жизни зависит от формы синдрома. В среднем она не превышает одного года, хотя 2–3% таких детей доживают до десяти лет.
  5. Трисомии половых хромосом. Синдромы трисомии половых хромосом имеют более мягкое проявление, без угрозы жизни и инвалидизирующих пороков развития. Как правило, у таких пациентов нарушена репродуктивная функция, и может диагностироваться интеллектуальная недостаточность разной степени. В связи с этим они могут иметь проблемы с поведением и социализацией.

Диагностика


На сегодняшний день не существует методов излечения хромосомных болезней. Помощь таким пациентам заключается в симптоматическом лечении и создании условий для их максимально возможного развития. В связи с этим встает вопрос о методах ранней (дородовой) диагностики генетических патологий, чтобы родители могли взвесить свои возможности для реабилитации такого ребенка и принять решение относительно его судьбы.

В целом методы пренатальной диагностики можно разделить на инвазивные и неинвазивные. К неинвазивным методам относят:

  • определение биохимических маркеров;
  • исследование ДНК.

Инвазивные методы диагностики (амниоцентез, биопсия ворсин хориона) позволяют взять для изучения генетический материал плода и окончательно определиться с диагнозом. Такие методы исследования несут определенные риски, поэтому назначаются только по показаниям.

Некоторое время назад исследование кариотипа клеток плода было единственным методом выявления хромосомных аномалий. Сейчас появились более щадящие, но не менее надежные диагностические методики, основанные на изучении свободно циркулирующей ДНК плода в крови матери. Речь идет о неинвазивном пренатальном ДНК-тесте – НИПТ. Он отличается высокой чувствительностью и специфичностью, позволяет определить наличие патологии в 99,9% случаев. В его основе лежит применение высокотехнологичных молекулярно-генетических методов, позволяющих выделить ДНК-плода из крови матери и исследовать ее на наличие различных мутаций. Тест абсолютно безопасен – пациентке достаточно сдать кровь из вены.

Преимущества проведения НИПТ в медико-генетическом центре «Геномед»:

  • универсальность. Тест подходит для широкого круга пациенток, в том числе для суррогатных матерей, многоплодной и беременности с донорской яйцеклеткой;
  • доступность. Используются тестовые системы российской разработки. Это позволяет снизить его себестоимость без потери качества исследования. Относительно низкая цена по сравнению с аналогами позволяет выполнить исследование широкому кругу клиентов;
  • надежность – результаты наших тестов подтверждены клиническими испытаниями и позволяют выявить генетические аномалии в 99,9 % случаев;
  • быстрота выполнения анализа – сроки составляют 7–10 дней. Это сокращает период ожидания, экономит эмоциональные ресурсы родителей и дает больше времени на принятие решения относительно беременности.

Важность своевременной диагностики неизлечимых на сегодняшний день хромосомных аномалий трудно переоценить. Родители должны иметь полную информацию о перспективах развития таких детей, возможностях их реабилитации, интеграции в общество и на основании этих данных принимать решение о родах или прерывании беременности. Тест НИПТ позволяет в кратчайшие сроки с высокой диагностической точностью получить необходимые данные без рисков для здоровья матери и будущего ребенка.

Помимо диагностики распространенных синдромов трисомии наша клиника предлагает диагностику других генетических патологий:

  • аутосомно-рецессивных - фенилкетонурия, муковисцидоз, гетерохроматоз и др.;
  • микроделеций - синдром Смита-Магениса, Вольфа-Хиршхорна, делеция 22q, 1p36;
  • анеуплоидию по половым хромосомам - синдром Тернера, Клайнфельтера, Якобса, синдром триплоидии Х.

Выбор необходимой панели осуществляется после консультации генетика.

(трисомия 18, или трисомия по 19-ой хромосоме) представляет собой редко встречающееся генетическое заболевание, при котором дублируется либо часть 18 хромосомы человека либо полностью пара хромосом. Люди с подобным дефектом обладают обычно малой массой тела при рождении, низким интеллектом, а также множественными пороками развития, среди которых - ярковыраженная микроцефалия, неправильно сформированные низко посаженные ушные раковины, выступающий затылок, характерные неповторимые черты лица. В 60 случаях из 100 эмбрионы, обладающие данным генетическим пороком, погибают.

Синдром Эдвардса характерен в большей степени женщинам, нежели мужчинам - практически 80% больных - это женщины. Ребенок с синдромом Эдвардса может появиться у женщин старше 30 лет (хотя бывают и исключения, встречающиеся значительно реже). Всего 12% всех рожденных с данным пороком детей доживают до возраста, в котором уже можно оценить умственные возможности ребенка. Все выжившие младенцы имеют, как правило, имеют уже при рождении серьезные дефекты, поэтому живут совсем недолго.

Причины развития синдрома Эдвардса

Причины развития синдрома Эдвардса не изучены до конца. Данный синдром связан с большим количеством нарушений и дефектов, относящихся к мозгу, сердцу, черепно-лицевой структуре, желудку и почкам.

В организме человека каждая клетка одержит 23 пары , наследуемых от родителей. И в каждой половой клетке - одинаковое число наборов: у мужчин это - сперматозоиды XY, у женщин это - яйцеклетки XX. При делении оплодотворенной яйцеклетки под воздействием определенных факторов происходит мутация, в результате чего в 18-ой паре хромосом возникает еще одна пара - дополнительная. Она-то и является причиной возникновения и развития синдрома Эдвардса.

Вместо двух копий у детей с таким синдромом образуется три копии хромосом. Эта мутация называется трисомией. В названии есть и номер пары хромосом, в которой произошла мутация - трисомия 18. Данный вариант является полной трисомией, которая протекает очень тяжело и имеет все признаки заболевания.

Надо сказать, что есть еще два вида мутаций. Из всех детей с синдромом Эдвардса 2% детей имеют в 18 паре транслокацию. Это значит, что в 18 паре хромосом появилась лишь часть лишней хромосомы. Мозаичную трисомию имеют 3% детей - когда лишняя хромосома наличествует не во всех клетках организма.

Примерно 1 из 150 детей рождается с хромосомной аномалией . Эти нарушения вызваны ошибками в количестве или структуре хромосом. Многие дети с хромосомными проблемами имеют психические и/или физические врожденные дефекты. Некоторые хромосомные проблемы в конечном итоге приводят к выкидышу или мертворождению.

Хромосомы – это нитевидные структуры, находящиеся в клетках нашего организма и содержащие в себе набор генов. У людей насчитывается около 20 – 25 тыс. генов, которые определяют такие признаки, как цвет глаз и волос, а также отвечают за рост и развитие каждой части тела. У каждого человека в норме 46 хромосом, собранных в 23 хромосомные пары, в которых одна хромосома – унаследованная от матери, а вторая – от отца.

Причины хромосомных аномалий

Хромосомные патологии обычно являются результатом ошибки, которая происходит во время созревания сперматозоида или яйцеклетки. Почему происходят эти ошибки, пока не известно.

Яйцеклетки и сперматозоиды в норме содержат по 23 хромосомы. Когда они соединяются, они образуют оплодотворенную яйцеклетку с 46 хромосомами. Но иногда во время (или до) оплодотворения что-то идет не так. Так, например, яйцеклетка или сперматозоид могут неправильно развиться, в результате чего в них могут быть лишние хромосомы, или, наоборот, может не хватать хромосом.

При этом клетки с неправильным числом хромосом присоединяются к нормальной яйцеклетке или сперматозоиду, вследствие чего полученный эмбрион имеет хромосомные отклонения.

Наиболее распространенный тип хромосомной аномалии называется трисомией. Это означает, что у человека вместо двух копий конкретной хромосомы имеется три копии. Например, имеют три копии 21-й хромосомы.

В большинстве случаев эмбрион с неправильным числом хромосом не выживает. В таких случаях у женщины происходит выкидыш, как правило, на ранних сроках. Это часто происходит в самом начале беременности, прежде чем женщина может понять, что она беременна. Более чем 50% выкидышей в первом триместре вызваны именно хромосомными патологиями у эмбриона.

Другие ошибки могут возникнуть перед оплодотворением. Они могут привести к изменению структуры одной или нескольких хромосом. У людей со структурными хромосомными отклонениями, как правило, нормальное число хромосом. Тем не менее, небольшие кусочки хромосомы (или вся хромосома) могут быть удалены, скопированы, перевернуты, неуместны или могут обмениваться с частью другой хромосомы. Эти структурные перестройки могут не оказывать никакого влияния на человека, если у него есть все хромосомы, но они просто переставлены. В других случаях такие перестановки могут привести к потере беременности или врожденным дефектам.

Ошибки в делении клеток могут произойти вскоре после оплодотворения. Это может привести к мозаицизму – состоянию, при котором человек имеет клетки с различными генетическими наборами. Например, людям с одной из форм мозаицизма – с синдромом Тернера – не хватает Х-хромосомы в некоторых, но не во всех, клетках.

Диагностика хромосомных аномалий

Хромосомные отклонения можно диагностировать еще до рождения ребенка путем пренатальных исследований, таких как, например, амниоцентез или биопсия хориона, или уже после рождения с помощью анализа крови.

Клетки, полученные в результате этих анализов, выращиваются в лаборатории, а затем их хромосомы исследуются под микроскопом. Лаборатория делает изображение (кариотип) всех хромосом человека, расположенных в порядке от большего к меньшему. Кариотип показывает количество, размер и форму хромосом и помогает врачам выявить любые отклонения.

Первый пренатальный скрининг заключается во взятии на анализ материнской крови в первом триместре беременности (между 10 и 13 неделями беременности), а также в специальном ультразвуковом исследовании задней части шеи ребенка (так называемого воротникового пространства).

Второй пренатальный скрининг проводится во втором триместре беременности и заключается в анализе материнской крови на сроке между 16 и 18 неделями. Этот скрининг позволяет выявить беременности, которые находятся на более высоких рисках по наличию генетических нарушений.

Тем не менее, скрининг-тесты не могут точно диагностировать синдром Дауна или другие. Врачи предлагают женщинам, у которых выявлены аномальные результаты скрининг-тестов, пройти дополнительные исследования – биопсию хориона и амниоцентез, чтобы окончательно диагностировать или исключить эти нарушения.

Самые распространенные хромосомные аномалии

Первые 22 пары хромосом называются аутосомами или соматическими (неполовыми) хромосомами. Наиболее распространенные нарушения этих хромосом включают в себя:

1. Синдром Дауна (трисомия 21 хромосомы) – одно из наиболее распространенных хромосомных отклонений, диагностируемое примерно у 1 из 800 младенцев. Люди с синдромом Дауна имеют различную степень умственного развития, характерные черты лица и, зачастую, врожденные аномалии в развитии сердца и другие проблемы.

Современные перспективы развития детей с синдромом Дауна намного ярче, чем были раньше. Большинство из них имеют ограниченные интеллектуальные возможности в легкой и умеренной форме. При условии раннего вмешательства и специального образования, многие из таких детей учатся читать и писать и с детства участвуют в различных мероприятиях.

Риск синдрома Дауна и других трисомий увеличивается с возрастом матери. Риск рождения ребенка с синдромом Дауна составляет примерно:

  • 1 из 1300 – если возраст матери 25 лет;
  • 1 из 1000 – если возраст матери 30 лет;
  • 1 из 400 – если возраст матери 35 лет;
  • 1 из 100 – если возраст матери 40 лет;
  • 1 из 35 – если возраст матери 45 лет.

2. Трисомии 13 и 18 хромосом – эти трисомии обычно более серьезные, чем синдром Дауна, но, к счастью, довольно редкие. Примерно 1 из 16000 младенцев рождается с трисомией 13 (синдром Патау), и 1 на 5000 младенцев – с трисомией 18 (синдром Эдвардса). Дети с трисомиями 13 и 18, как правило, страдают тяжелыми отклонениями в умственном развитии и имеют множество врожденных физических дефектов. Большинство таких детей умирает в возрасте до одного года.

Последняя, 23-я пара хромосом – это половые хромосомы, называемые хромосомами X и хромосомами Y. Как правило, женщины имеют две Х-хромосомы, а у мужчины одна Х-хромосома и одна Y-хромосома. Аномалии половых хромосом могут вызвать бесплодие, нарушения роста и проблемы с обучением и поведением.

Наиболее распространенные аномалии половых хромосом включают в себя:

1. Синдром Тернера – это нарушение затрагивает приблизительно 1 из 2500 плодов женского пола. У девочки с синдромом Тернера есть одна нормальная Х-хромосома и полностью или частично отсутствует вторая Х-хромосома. Как правило, такие девочки бесплодны и не подвергаются изменениям нормального полового созревания, если они не будут принимать синтетические половые гормоны.

Затронутые синдромом Тернера девушки очень невысокие, хотя лечение гормоном роста может помочь увеличению роста. Кроме того, у них присутствует целый комплекс проблем со здоровьем, особенно с сердцем и почками. Большинство девочек с синдромом Тернера обладают нормальным интеллектом, хотя и испытывают некоторые трудности в обучении, особенно в математике и пространственном мышлении.

2. Трисомия по Х-хромосоме – примерно у 1 из 1000 женщин имеется дополнительная Х-хромосома. Такие женщины отличаются очень высоким ростом. Они, как правило, не имеют физических врожденных дефектов, у них нормальное половое созревание и они способны к деторождению. У таких женщин нормальный интеллект, но могут быть и серьезные проблемы с учебой.

Поскольку такие девушки здоровы и имют нормальный внешний вид, их родители часто не знают, что у их дочери есть . Некоторые родители узнают, что у их ребенка подобное отклонение, если матери во время вынашивания беременности был проведен один из инвазивных методов пренатальной диагностики (амниоцентез или хориоцентез).

3. Синдром Клайнфельтера – это нарушение затрагивает приблизительно 1 из 500 – 1000 мальчиков. У мальчиков с синдромом Клайнфельтера есть две (а иногда и больше) Х-хромосомы вместе с одной нормальной Y-хромосомой. Такие мальчики обычно имеют нормальный интеллект, хотя у многих наблюдаются проблемы с учебой. Когда такие мальчики взрослеют, у них отмечается пониженная секреция тестостерона и они оказываются бесплодными.

4. Дисомия по Y-хромосоме (XYY) – примерно 1 из 1000 мужчин рождается с одной или несколькими дополнительными Y-хромосомами. У такихх мужчин нормальное половое созревание и они не бесплодны. Большинство из них имеют нормальный интеллект, хотя могут быть некоторые трудности в обучении, поведении и проблемы с речью и усвоением языков. Как и в случае с трисомией по Х-хромосоме у женщин, многие мужчины и их родители не знают, что у них есть такая аномалия, пока не будет проведена пренатальная диагностика.

Менее распространенные хромосомные аномалии

Новые методы анализа хромосом позволяют определить крошечные хромосомные патологии, которые не могут быть видны даже под мощным микроскопом. В результате, всё больше родителей узнают, что у их ребенка есть генетическая аномалия.

Некоторые из таких необычных и редких аномалий включают в себя:

  • Делеция – отсутствие небольшого участка хромосомы;
  • Микроделеция — отсутствие очень небольшого количества хромосом, возможно, не хватает только одного гена;
  • Транслокация – часть одной хромосомы присоединяется к другой хромосоме;
  • Инверсия – часть хромосомы пропущена, а порядок генов изменен на обратный;
  • Дублирование (дупликация) – часть хромосомы дублируется, что приводит к образованию дополнительного генетического материала;
  • Кольцевая хромосома – когда на обоих концах хромосомы происходит удаление генетического материала, и новые концы объединяются и образуют кольцо.

Некоторые хромосомные патологии настолько редки, что науке известен только один или несколько случаев. Некоторые аномалии (например, некоторые транслокации и инверсии) могут никак не повлиять на здоровье человека, если отсутствует не генетический материал.

Некоторые необычные расстройства могут быть вызваны небольшими хромосомными делециями. Примерами являются:

  • Синдром кошачьего крика (делеция по 5 хромосоме) – больные дети в младенчестве отличаются криком на высоких тонах, как будто кричит кошка. У них есть существенные проблемы в физическом и интеллектуальном развитии. С таким заболеванием рождается примерно 1 из 20 – 50 тыс. младенцев;
  • Синдром Прадера-Вилл и (делеция по 15 хромосоме) – больные дети имеют отклонения в умственном развитии и в обучении, низкий рост и проблемы с поведением. У большинства таких детей развивается экстремальное ожирение. С таким заболеванием рождается примерно 1 из 10 – 25 тыс. младенцев;
  • Синдром Ди Джорджи (делеция по 22 хромосоме или делеция 22q11) – с делецией в определенной части 22 хромосомы рождается примерно 1 из 4000 младенцев. Данная делеция вызывает различные проблемы, которые могут включать в себя пороки сердца, расщелину губы/неба (волчья пасть и заячья губа), нарушения иммунной системы, аномальные черты лица и проблемы в обучении;
  • Синдром Вольфа-Хиршхорна (делеция по 4 хромосоме) – это расстройство характеризуется отклонениями в умственном развитии, пороками сердца, плохим мышечным тонусом, судорогами и другими проблемами. Это заболевание затрагивает примерно 1 из 50000 младенцев.

За исключением людей с синдромом Ди Джорджи, люди с вышеперечисленными синдромами бесплодны. Что касается людей с синдромом Ди Джорджи, то эта патология передается по наследству на 50% с каждой беременностью.

Новые методы анализа хромосом иногда могут точно определить, где отсутствует генетический материал, или где присутствует лишний ген. Если врач точно знает, где находится виновник хромосомной аномалии , он может оценить всю степень его влияния на ребенка и дать примерный прогноз развития этого ребенка в будущем. Часто это помогает родителям принять решение о сохранении беременности и заранее подготовиться к рождению немножко не такого, как все, малыша.

В основу статьи положены работы проф. Буэ.

Остановка развития зародыша в дальнейшем приводит к изгнанию плодного яйца, что проявляется в виде самопроизвольного выкидыша. Однако во многих случаях остановка развития происходит на очень ранних сроках и сам факт зачатия остается неизвестным для женщины. В большом проценте случаев такие выкидыши связаны с хромосомными аномалиями у зародыша.

Самопроизвольные выкидыши

Самопроизвольные выкидыши, определением которых служит "самопроизвольное прерывание беременности между сроком зачатия и сроком жизнеспособности плода", во многих случаях с большим трудом поддаются диагностике: большое число выкидышей происходит на очень ранних сроках: задержки месячных не происходит, или эта задержка настолько мала, что сама женщина не подозревает о беременности.

Клинические данные

Изгнание плодного яйца может произойти внезапно, или ему могут предшествовать клинические симптомы. Чаще всего угроза выкидыша проявляется кровянистыми выделениями и болями внизу живота, переходящими в схватки. Далее следуют изгнание плодного яйца и исчезновение признаков беременности.

Клиническое обследование может выявить несоответсвие между предполагаемым сроком беременности и размерами матки. Уровни гормонов в крови и моче могут быть резко снижены, указывая на отсутствие жизнеспособности зародыша. Ультразвуковое исследование позволяет уточнить диагноз, выявляя либо отсутствие зародыша ("пустое плодное яйцо"), либо отставание в развитии и отсутствие сердцебиения

Клинические проявления самопроизвольного выкидыша значительно варьируют. В одних случаях выкидыш проходит незамеченным, в других — сопровождается кровотечением и может потребовать выскабливания полости матки. Хронология симптоматики может косвенно указывать на причину самопроизвольного выкидыша: кровянистые выделения с ранних сроков беременности, остановка роста матки, исчезновение признаков беременности, "немой" период в течение 4-5 недель, а затем изгнание плодного яйца чаще всего свидетельствуют о хромосомных нарушениях зародыша, а соответствие срока развития зародыша сроку выкидыша говорит в пользу материнских причин невынашивания беременности.

Анатомические данные

Анализ материала самопроизвольных выкидышей, сбор которого был начат в начале двадцатого века в Институте Карнеги, позволил выявить огромный процент аномалий развития среди абортусов ранних сроков

В 1943 году Хертиг и Шелдон опубликовали результаты патологоанатомического исследования материала 1000 выкидышей на ранних сроках. Материнские причины невынашивания беременности были ими исключены в 617 случаев. Современные данные указывают на то, что мацерированные зародыши во внешне нормальных оболочках тоже могут быть связаны с хромосомными аномалиями, что в сумме составляет около 3/4 всех случаев данного исследования.

Морфологическое исследование 1000 абортусов (по Hertig и Sheldon, 1943)
Грубые патологические нарушения плодного яйца:
плодное яйцо без зародыша или с недифференцированным зародышем
489
Локальные аномалии зародышей 32
Аномалии плаценты 96 617
Плодное яйцо без грубых аномалий
с мацерированными зародышами 146
763
с немацерированными зародышами 74
Аномалии матки 64
Другие нарушения 99

Дальнейшие исследования Микамо и Миллера и Полланда позволили уточнить связь между сроком выкидыша и частотой нарушений развития зародыша. Оказалось, что чем меньше срок выкидыша, тем частота аномалий выше. В материалах выкидышей, происшедших до 5-й недели после зачатия макроскопические морфологические аномалии плодного яйца встречаются в 90% случаев, при сроке выкидыша от 5 до 7 недель после зачатия — в 60%, при сроке больше 7 недель после зачатия — менее, чем в 15—20%.

Важность значения остановки развития зародыша в ранних самопроизвольных выкидышах была показана прежде всего фундаментальными исследованиями Артура Хертига, который в 1959 г. опубликовал результаты исследования человеческих зародышей до 17 дней после зачатия. Это был плод его 25-летней работы.

У 210 женщин в возрасте до 40 лет, идущих на операцию гистерэктомии (удаления матки) дата операции была сопоставлена с датой овуляции (возможного зачатия). После операции матки подвергались самому тщательному гистологическому исследованию на предмет выявления возможной беременности малого срока. Из 210 женщин только 107 были оставлены в исследовании в связи с обнаружением признаков овуляции, и отсутствием грубых нарушений труб и яичников, препятствующих наступлению беременности. Было обнаружено 34 плодных яйца, из них 21 плодное яйцо было внешне нормальным, а 13 (38%) имело явные признаки аномалий, которые, по мнению Хертига, обязательно привели бы к выкидышу или на этапе имплантации или вскоре после имплантации. Поскольку в то время не было возможности проведения генетического исследования плодных яиц, причины нарушений развития зародышей оставались неизвестными.

При обследовании женщин с подтвержденной фертильностью (все пациентки имели по несколько детей) было обнаружено, что одно из трех плодных яиц имеет аномалии и подвергается выкидышу до появления признаков беременности.

Эпидемиологические и демографические данные

Нечеткая клиническая симптоматика ранних самопроизвольных выкидышей приводит к тому, что достаточно большой процент выкидышей на малых сроках проходит незамеченным женщинами.

В случае клинически подтвержденных беременностей около 15% всех беременностей заканчивается выкидышем. Большая часть самопроизвольных выкидышей (около 80%) происходит в первом триместре беременности. Однако если принять во внимание тот факт, что выкидыши часто случаются спустя 4-6 недель после остановки развития беременности, можно сказать, что с первым триместром связано более 90% всех самопроизвольных выкидышей.

Специальные демографические исследования позволили уточнить частоту внутриутробной смертности. Так, Френч и Бирман в 1953 — 1956 гг. регистрировали все беременности у женщин острова Канаи и показали, что из 1000 беременностей, диагностированных при сроке после 5 недель, 237 не увенчались рождением жизнеспособного ребенка.

Анализ результатов нескольких исследований позволил Леридону составить таблицу внутриутробной смертности, включающей в себя и неудачи оплодотворения (половой акт в оптимальные сроки — в течение суток после овуляции).

Полная таблица внутри утробной смертности (на 1000 яйцеклеток, подвергшихся риску оплодотворения) (по Leridon, 1973)
Недели после зачатия Остановка развития с последующим изгнанием Процент продолжающихся беременностей
16* 100
0 15 84
1 27 69
2 5,0 42
6 2,9 37
10 1,7 34,1
14 0,5 32,4
18 0,3 31,9
22 0,1 31,6
26 0,1 31,5
30 0,1 31,4
34 0,1 31,3
38 0,2 31,2
* — неудачи зачатия

Все эти данные указывают на огромную частоту самопроизвольных выкидышей и на важную роль нарушений развития плодного яйца в этой патологии.

Эти данные отражают общую частоту нарушений развития, не выделяя среди них конкретные экзо- и эндогенные факторы (иммунологические, инфекционные, физические, химические и т. д.).

Важно отметить, что независимо от причины повреждающего воздействия, при исследовании материала выкидышей обнаруживается очень большая частота генетический нарушений (хромосомных аберраций (на сегодня изучены лучше всего) и генных мутаций) и аномалий развития, как, например, дефекты развития нервной трубки.

Хромосомные аномалии, ответственные за остановку развития беременности

Цитогенетические исследования материала выкидышей позволили уточнить характер и частоту тех или иных хромосомных аномалий.

Общая частота

При оценке результатов больших серий анализов следует иметь в виду следующее. На результаты исследований подобного рода могут оказать значительное влияние следующие факторы: способ сбора материала, относительная частота более ранних и более поздних выкидышей, доля материала искусственных абортов в исследовании, часто не поддающаяся точной оценке, успех культивирования клеточных культур абортуса и хромосомного анализа материала, тонкие методы обработки мацерированного материала.

Общая оценка частоты хромосомных аберраций при невынашивании беременности составляет около 60%, а в первом триместре беременности — от 80 до 90%. Как будет показано ниже, анализ, основанный на стадийности развития зародыша, позволяет сделать гораздо более точные выводы.

Относительная частота

Практически все большие исследования хромосомных аберраций в материале выкидышей дали поразительно сходные результаты относительно характера нарушений. Количественные аномалии составляют 95% всех аберраций и распределяются следующим образом:

Количественные хромосомные аномалии

Различные типы количественных хромосомных аберраций могут возникать в результате:

  • сбоев мейотического деления : речь идет о случаях "нон-дисджанкшн" (неразделения) парных хромосом, что приводит к появлению либо трисомии, либо моносомии. Неразделение может происходить как во время первого, так и во время второго мейотического деления, и может касаться как яйцеклеток, так и сперматозоидов.
  • сбои, возникающие при оплодотворении: : случаи оплодотворения яйцеклетки двумя сперматозоидами (диспермия), в результате чего возникает триплоидный зародыш.
  • сбои, возникающие во время первых митотических делений : полная тетраплоидия возникает в случае, когда первое деление привело к удвоению хромосом, но неразделению цитоплазмы. Мозаики возникают в случае подобных сбоев на этапе последующих делений.

Моносомии

Моносомия X (45,X) представляет одну из часто встречающихся аномалий в материале самопроизвольных выкидышей. При рождении она соответствует синдрому Шерешевского-Тернера, и при рождении она встречается реже, чем другие количественные аномалии половых хромосом. Эта бросающаяся в глаза разница между относительно высокой частотой обнаружения лишних X-хромосом у новорожденных и относительно редким обнаружением моносомии X у новорожденных указывает на высокую частоту летальности моносомии X у зародыша. Кроме того, обращает на себя внимание очень большая частота мозаик у больных с синдромом Шерешевского-Тернера. В материале выкидышей, наоборот, мозаики с моносомией X крайне редки. Данные исследований показали, что только менее 1% всех моносомий X доходит до срока родов. Моносомии аутосом в материале выкидышей встречаются довольно редко. Это очень контрастирует с высокой частотой соответствующих трисомий.

Трисомии

В материале выкидышей трисомии представляют более половины всех количественных хромосомных аберраций. Обращает на себя внимание то, что в случаях моносомий недостающей хромосомой обычно оказывается X-хромосома, а в случаях избыточных хромосом, дополнительная хромосома чаще всего оказывается аутосомой.

Точная идентификация дополнительной хромосомы стала возможна благодаря методу G-бэндинга. Исследования показали, что все аутосомы могут принимать участие в нон-дисджанкшн (см. таблицу). Обращает на себя внимание, что три хромосомы, чаще всего встречающиеся при трисомиях новорожденных (15-я, 18-я и 21-я) чаще всего обнаруживаются и при летальных трисомиях у зародышей. Вариации относительных частот различных трисомий у зародышей отражают во многом сроки, на которых происходит гибель зародышей, поскольку, чем более летальной является комбинация хромосом, тем на более ранних сроках происходит остановка развития, тем реже будет обнаруживаться такая аберрация в материалах выкидышей (чем меньше срок остановки развития, тем труднее обнаружить такой зародыш).

Лишняя хромосома при летальных трисомиях у зародыша (данные 7 исследований: Буэ (Франция), Карр (Канада), Кризи (Великобритания), Дилл (Канада), Кадзи (Швейцария), Такахара (Япония), Теркелсен (Дания))
Дополнительная аутосома Количество наблюдений
A 1
2 15
3 5
B 4 7
5
C 6 1
7 19
8 17
9 15
10 11
11 1
12 3
D 13 15
14 36
15 35
E 16 128
17 1
18 24
F 19 1
20 5
G 21 38
22 47

Триплоидии

Крайне редко наблюдаемые при мертворождениях, триплоидии составляют пятую по частоте хромосомную аномалию в материале выкидыше. В зависимости от соотношения половых хромосом может быть 3 варианта триплоидий: 69XYY (самая редкая), 69, XXX и 69, XXY (самая частая). Анализ полового хроматина показывает, что при конфигурации 69, XXX чаще всего обнаруживается только одна глыбка хроматина, а при конфигурации 69, XXY чаще всего половой хроматин не обнаруживается.

Приведенный ниже рисунок иллюстрирует различные механизмы, приводящие к развитию триплоидии (диандрию, дигинию, диспермию). С помощью специальных методов (хромосомные маркеры, антигены тканевой совместимости) удалось установить относительную роль каждого из этих механизмов в развитии триплоидии у зародыша. Оказалось, что на 50 случаев наблюдений триплоидия была следствием дигинии в 11 случаях (22%), диандрии либо диспермии — в 20 случаях (40%), диспермии — в 18 случаях (36%).

Тетраплоидии

Тетраплоидии встречаются примерно в 5% случаев количественных хромосомных аберраций. Чаще всего встречаются тетраплоидии 92, XXXX. Такие клетки всегда содержат 2 глыбки полового хроматина. В клетках с тетраплоидией 92, XXYY никогда не бывает видно полового хроматина, но в них обнаруживают 2 флуоресцирующие Y-хромосомы.

Двойные аберрации

Большая частота хромосомных аномалий в материале выкидышей объясняет высокую частоту комбинированных аномалий в одном и том же зародыше. Напротив, у новорожденных комбинированные аномалии крайне редки. Обычно в таких случаях наблюдаются комбинации аномалии половой хромосомы и аномалии аутосомы.

В связи с более высокой частотой аутосомных трисомий в материале выкидышей, при комбинированных хромосомных аномалиях у абортусов чаще всего встречаются двойные аутосомные трисомии. Трудно сказать, связаны ли такие трисомии с двойным "нон-дисджанкшн" в одной и той же гамете, или со встречей двух аномальных гамет.

Частота сочетаний различных трисомий в одной и той же зиготе носит случайный характер, что позволяет предположить независимость друг от друга появления двойных трисомий.

Комбинация двух механизмов, приводящих к появлению двойных аномалий, позволяет объяснить появление других аномалий кариотипа, встречающихся при выкидышах. "Нон-дисджанкшн" при образовании одной из гамет в сочетании с механизмами образования полиплоидии объясняет появление зигот с 68 или 70 хромосомами. Сбой первого митотического деления у такой зиготы с трисомией может приводить к таким кариотипам, как 94,XXXX,16+,16+.

Структурные хромосомные аномалии

Согласно классическим исследованиям, частота структурных хромосомных аберраций в материале выкидышей составляет 4—5%. Однако многие исследования были сделаны до широкого использования метода G-бэндинга. Современные исследования указывают на более высокую частоту структурных хромосомных аномалий у абортусов. Обнаруживаются самые разные виды структурных аномалий. Примерно в половине случаев эти аномалии являются унаследованными от родителей, примерно в половине случаев они возникают de novo .

Влияние хромосомных аномалий на развитие зиготы

Хромосомные аномалии зиготы проявляются как правило уже в первые недели развития. Выяснение конкретных проявлений каждой аномалии сопряжено с целым рядом трудностей.

Во многих случаях установление срока беременности при анализе материала выкидышей крайне затруднено. Обычно сроком зачатия считается 14-й день цикла, но у женщин с невынашиванием беременности часто бывают задержки цикла. Кроме того, очень трудно бывает установить дату "смерти" плодного яйца, поскольку от момента гибели до выкидыша может пройти много времени. В случыае триплоидии этот период может составить 10—15 недель. Применение гормональных препаратов может еще более удлиннить это время.

С учетом этих оговорок, можно сказать, что чем меньше срок беременности на момент гибели плодного яйца, тем выше частота хромосомных аберраций. Согласно исследованиям Кризи и Лоритсена, при выкидышах до 15 недель беременности частота хромосомных аберраций составляет около 50%, при сроке 18 — 21 неделя — около 15%, при сроке более 21 недели — около 5—8%, что примерно соответствует частоте хромосомных аберраций в исследованиях перинатальной смертности.

Фенотипические проявления некоторых летальных хромосомных аберраций

Моносомии X обычно останавливаются в развитии к 6 неделям после зачатия. В двух третях случаев плодный пузырь размером 5—8 см не содержит зародыша, но существует шнурообразное образование с элементами эмбриональной ткани, остатками желточного мешка, плацента содержит субамниотические тромбы. В одной трети случаев плацента имеет такие же изменения, но обнаруживается морфологически неизмененный зародыш, погибший в возрасте 40—45 дней после зачатия.

При тетраплоидиях развитие останавливается к сроку 2-3 недели после зачатия, морфологически эта аномалия характеризуется "пустым плодным мешком".

При трисомиях наблюдаются различные типы аномалий развития, в зависимости от того, какая хромосома является лишней. Однако в подавляющем большинстве случаев развитие останавливается на очень ранних сроках, элементов зародыша не обнаруживается. Это классический случай "пустого плодного яйца" (анэмбрионии).

Трисомия 16, очень частая аномалия, характеризуется наличием маленького плодного яйца диаметром около 2,5 см, в полости хориона находится небольшой амниотический пузырек около 5 мм в диаметре и эмбриональный зачаток размером 1—2 мм. Чаще всего развитие останавливается на стадии эмбрионального диска.

При некоторых трисомиях, например, при трисомиях 13 и 14, возможно развитие зародыша до срока около 6 недель. Зародыши характеризуются циклоцефалической формой головы с дефектами закрытия верхнечелюстных холмиков. Плаценты гипопластичны.

Зародыши с трисомиями 21 (синдром Дауна у новорожденных) не всегда имеют аномалии развития, а если и имеют, то незначительные, не могущие служить причиной их гибели. Плаценты в таких случаев бывают бедны клетками, и представляются остановившимися в развитии на ранней стадии. Гибель зародыша в таких случаях представляется следствием плацентарной недостаточности.

Заносы. Сравнительный анализ цитогенетических и морфологических данных позволяет выделить два типа заносов: классический пузырный занос и эмбриональный триплоидный занос.

Выкидыши при триплоидиях имеют четкую морфологическую картину. Это выражается в сочетании полной или (чаще) частичной пузырной дегенерации плаценты и амниотического пузырька с зародышем, размеры которого (зародыша) очень малы по сравнению с относительно большим амниотическим пузырьком. Гистологическое исследование показывает не гипертрофию, а гипотрофию пузырно измененного трофобласта, образующего микрокисты в результате многочисленный инвагинаций.

Напротив, классический пузырный занос не затрагивает ни амниотический мешок, ни зародыш. В пузырьках обнаруживается избыточное образование синцитиотрофобласта с выраженной васкуляризацией. Цитогенетически большинство классических пузырных заносов имеет кариотип 46,XX. Проведенные исследования позволили установить хромосомные сбои, участвующие в образовании пузырного заноса. Было показано, что 2 X-хромосомы в классическом пузырном заносе идентичны и имеют отцовское происхождение. Наиболее вероятным механизмом развития пузырного заноса является истинный андрогенез, возникающий вследствие оплодотворения яйцеклетки диплоидным сперматозоидом, возникшим в результате сбоя второго мейотического деления и последующим полным выключением хромосомного материала яйцеклетки. С точки зрения патогенеза, такие хромосомные нарушения близки к нарушениям при триплоидии.

Оценка частоты хромосомных нарушений в момент зачатия

Можно попробовать расчитать количество зигот с хромосомными аномалиями при зачатии, основываясь на частоте хромосомных аномалий, обнаруживаемых в материале выкидышей. Однако прежде всего следует отметить, что поразительное сходство результатов исследований материала выкидышей, проведенное в разных частях света, говорит о том, что хромосомные сбои в момент зачатия являются очень характерным явлением в репродукции у человека. Кроме того, можно констатировать, что реже всего встречающиеся аномалии (например, трисомии A, B и F) связаны с остановкой развития на очень ранних стадиях.

Анализ относительной частоты различных аномалий, возникающих при нерасхождении хромосом в процессе мейоза, позволяет сделать следующие важные выводы:

1. Единственной моносомией, обнаруживаемой в материале выкидышей, является моносомия X (15% всех аберраций). Напротив, аутосомные моносомии практически не обнаруживаются в материале выкидышей, хотя теоретически их должно быть столько же, сколько и аутосомных трисомий.

2. В группе аутосомных трисомий частота трисомий разных хромосом значительно варьирует. Исследования, выполненные с использованием метода G-бэндинга, позволили установить, что все хромосомы могут быть участницами трисомии, однако некоторые трисомии встречаются гораздо чаще, например, трисомия 16 встречается в 15% случаев всех трисомий.

Из этих наблюдений можно сделать вывод, что, скорее всего, частота нерасхождения разных хромосом приблизительно одинакова, а различная частота аномалий в материале выкидышей связана с тем, что отдельные хромосомные аберрации приводят к остановке развития на очень ранних стадиях и поэтому с трудом поддаются обнаружению.

Эти соображения позволяют приблизительно расчитать реальную частоту хромосомных нарушений в момент зачатия. Расчеты, сделанные Буэ, показали, что каждое второе зачатие дает зиготу с хромосомными аберрациями .

Данные цифры отражают среднюю частоту хромосомных аберраций при зачатии в популяции. Однако данные цифры могут значительно колебаться у разных супружеских пар. У некоторых супружеских пар вероятность возникновения хромосомных аберраций в момент зачатия значительно превышает средний риск в популяции. У таких супружеских пар невынашивание беременности на малых сроках происходит гораздо чаще, чем у остальных супружеских пар.

Данные расчеты подтверждаются другими исследованиями, проведенными с использованием других методов:

1. Классическими исследованиями Хертига
2. Определением уровня хорионического гормона (ХГ) в крови женщин после 10 после зачатия. Часто этот тест оказывается положительным, хотя менструация приходит вовремя или с небольшой задержкой, и субъективно наступления беременности женщина не замечает ("биохимическая беременность")
3. Хромосомный анализ материала, полученного при искусственных абортах показал, что при абортах на сроке 6—9 недель (4—7 недель после зачатия) частота хромосомных аберраций составляет примерно 8%, а при искусственных абортах на сроке 5 недель (3 недели после зачатия) эта частота возрастает до 25%.
4. Было показано, что нерасхождение хромосом в процессе сперматогенеза является очень частым явлением. Так Пирсон и сотр. обнаружили, что вероятность нерасхождения в процессе сперматогенеза для 1-й хромосомы составляет 3,5%, для 9-й хромосомы — 5%, для Y-хромосомы — 2%. Если и другие хромосомы имеют вероятность нерасхождения примерно такого же порядка, то тогда только 40% всех сперматозоидов имеют нормальный хромосомный набор.

Экспериментальные модели и сравнительная патология

Частота остановки развития

Хотя различия в типе плацентации и количестве плодов затрудняют сравнение риска неразвивающейся беременности у домашних животных и у человека, определенные аналогии проследить можно. У домашних животных процент летальных зачатий колеблется между 20 и 60%.

Изучение летальных мутаций у приматов дало цифры, сравнимые с таковыми у человека. Из 23 бластоцист, выделенных у макак до зачатия, у 10 были грубые морфологические аномалии.

Частота хромосомных аномалий

Только экспериментальные исследования позволяют провести хромосомный анализ зигот на разных стадиях развития и оценить частоту хромосомных аберраций. Классические исследования Форда выявили хромосомные аберрации у 2% зародышей мышей в возрасте от 8 до 11 дней после зачатия. Дальнейшие исследования показали, что это слишком продвинутая стадия развития зародышей, и что частота хромосомных аберраций гораздо выше (см. ниже).

Влияние хромосомных аберраций на развитие

Большой вклад в дело выяснения масштаба проблемы внесли исследования Альфреда Гроппа из Любека и Чарльза Форда из Оксфорда, проводившиеся на так называемых "табачных мышах" (Mus poschiavinus ). Скрещивание подобных мышей с нормальными мышами дает большой спектр триплоидий и моносомий, позволяющих оценить влияние обоих типов аберраций на развитие.

Данные профессора Гроппа (1973 г.) приведены в таблице.

Распределение эуплоидных и анэуплоидных зародышей у гибридных мышей
Стадия развития День Кариотип Всего
Моносомии Эуплоидии Трисомии
До имплантации 4 55 74 45 174
После имплантации 7 3 81 44 128
9—15 3 239 94 336
19 56 2 58
Живые мыши 58 58

Эти исследования позволили подтвердить гипотезу о равной вероятности возникновения моносомий и трисомий при зачатии: аутосомные моносомии возникают с такой же частотой, как и трисомии, но зиготы с аутосомными моносомиями погибают еще до имплантации и не обнаруживаются в материале выкидышей.

При трисомиях гибель зародышей происходит на более поздних сдадиях, но ни один зародыш при аутосомных трисомиях у мышей не доживает до родов.

Исследования группы Гроппа позволили показать, что в зависимости от типа трисомии, зародыши погибают на разных сроках: с трисомиями 8, 11, 15, 17 — до 12 дня после зачатия, с трисомиями 19 — ближе к сроку родов.

Патогенез остановки развития при хромосомных аномалиях

Исследование материала выкидышей показывает, что во многих случаях хромосомных аберраций эмбриогенез резко нарушается, так что элементов эмбриона не обнаруживается вообще ("пустые плодные яйца", анэмбриония) (остановка развития до срока 2-3 недель после зачатия). В других случаях удается обнаружить элементы зародыша, часто неоформленные (остановка развития на сроке до 3-4 недель после зачатия). При наличии хромосомных аберраций эмбриогенез часто или вообще невозможен, или резко нарушается с самых ранних стадий развития. Проявления таких нарушений выражены в гораздо большей степени в случае аутосомных моносомий, когда развитие зиготы останавливается в первые дни после зачатия, но и в случае трисомий хромосом, имеющих ключевое значение для эмбриогенеза, развитие также прекращается в первые дни после зачатия. Так, например, трисомия 17 обнаруживается только у зигот, остановившихся в развитии на самых ранних стадиях. Кроме того, многие хромосомные аномалии связаны вообще с пониженной способностью к делению клеток, как показывает изучение культур таких клеток in vitro .

В других случаях развитие может продолжаться до 5—6—7 недель после зачатия, в редких случаях — дольше. Как показали исследования Филиппа, в таких случаях гибель плода объясняется не нарушением эмбрионального развития (обнаруживаемые дефекты сами по себе не могут быть причиной смерти зародыша), а нарушением формирования и функционирования плаценты (стадия развития плода опережает стадию формирования плаценты.

Исследования культур клеток плаценты при различных хромосомных аномалиях показали, что в большинстве случаев деление плацентарных клеток происходит гораздо медленнее, чем при нормальном кариотипе. Это во многом объясняет, почему новорожденные с хромосомными аномалиями обычно имеют низкую массу тела и сниженную массу плаценты.

Можно предположить, что многие нарушения развития при хромосомных аберрациях связаны именно с пониженной способностью клеток к делению. При этом возникает резкая диссинхронизация процессов развития зародыша, развития плаценты и индукции дифференциации и миграции клеток.

Недостаточное и запоздалое формирование плаценты может приводить к нарушению питания и к гипоксии зародыша, а также — к снижению гормональной продукции плаценты, что может быть дополнительной причиной развития выкидышей.

Исследования клеточных линий при трисомиях 13, 18 и 21 у новорожденных показало, что клетки делятся медленнее, чем при нормальном кариотипе, что проявляется в снижении плотности клеток в большинстве органов.

Загадкой является то, почему при единственной аутосомной трисомии, совместимой с жизнью (трисомия 21, синдром Дауна), в одних случаях происходит задержка развития зародыша на ранних стадиях и самопроизвольный выкидыш, а в других — ненарушенное развитие беременности и рождение жизнеспособного ребенка. Сравнение клеточных культур материала выкидышей и доношенных новорожденных при трисомии 21 показало, что различия в способности клеток к делению в первом и втором случаях резко различается, что возможно объясняет разную судьбу таких зигот.

Причины количественных хромосомных аберраций

Изучение причин хромосомных аберраций крайне затруднено, прежде всего из-за высокой частоты, можно сказать, всеобщности этого явления. Очень трудно корректно собрать контрольную группу беременных женщин, с большим трудом поддаются изучению нарушения сперматогенеза и оогенеза. Несмотря на это, некоторые этиологические факторы повышения риска хромосомных аберраций выяснить удалось.

Факторы, напрямую связанные с родителями

Влияние возраста матери на вероятность рождения ребенка с трисомией 21 наводит на мысль о возможном влиянии возраста матери на вероятность возникновения летальных хромосомных аберраций у зародыша. Приводимая ниже таблица показывает связь возраста матери с кариотипом материала выкидышей.

Средний возраст матери при хромосомных аберрациях абортусов
Кариотип Число наблюдений Средний возраст
Нормальный 509 27,5
Моносомия X 134 27,6
Триплоидии 167 27,4
Тетраплоидия 53 26,8
Аутосомные трисомии 448 31,3
Трисомии D 92 32,5
Трисомии E 157 29,6
Трисомии G 78 33,2

Как видно из таблицы, не было обнаружено связи между возрастом матери и самопроизвольными выкидышами, связанными с моносомией X, триплоидией или тетраплоидией. Повышение среднего возраста матери отмечено для аутосомных трисомий в целом, но по разным группам хромосом цифры были получены разные. Однако общее число наблюдений в группах недостаточно, чтобы уверенно судить о каких-либо закономерностях.

Возраст матери в большей степени связан с повышенным риском выкидышей с трисомиями акроцентрических хромосом группы D (13, 14, 15) и G (21, 22), что совпадает и со статистикой хромосомных аберраций при мертворождениях.

Для некоторых случаев трисомий (16, 21) было определено происхождение лишней хромосомы. Оказалось, что возраст матери связан с повышением риска трисомий только в случае материнского происхождения лишней хромосомы. Не было обнаружено связи возраста отца с повышением риска трисомий.

В свете исследований на животных высказываются предположения о возможной связи старения гамет и задержки оплодотворения на риск возникновения хромосомных аберраций. Под старением гамет понимают старение сперматозоидов в половых путях женщины, старение яйцеклетки либо в результате перезрелости внутри фолликула или в результате задержки выхода яйцеклетки из фолликула, либо в результате трубной перезрелости (запоздалого оплодотворения в трубе). Скорее всего, подобные законы действуют и у человека, но достоверных подтверждений этого пока не получено.

Факторы окружающей среды

Было показано, что вероятность хромосомных аберраций при зачатии повышается у женщин, подвергшихся действию ионизирующей радиации. Предполагается связь между риском хромосомных аберраций и действием других факторов, в частности — химических.

Заключение

1. Не каждую беременность удается сохранить на малых сроках. В большом проценте случаев выкидыши обусловлены хромосомными нарушениями у плода, и родить живого ребенка невозможно. Гормональное лечение может отсрочить момент выкидыша, но не может помочь зародышу выжить.

2. Повышенная нестабильность генома супругов является одним из причинных факторов бесплодия и невынашивания беременности. Выявить такие супружеские пары помогает цитогенетическое обследование с анализом на хромосомные аберрации. В некоторых случаях повышенной нестабильности генома специальная антимутагенная терапия может помочь повысить вероятность зачатия здорового ребенка. В других случаях рекомендуется донорская инсеминация или использование донорской яйцеклетки.

3. При невынашивании беременности, обусловленном хромосомными факторами, организм женщины может "запомнить" неблагоприятный иммунологический ответ на плодное яйцо (иммунологический импринтинг). В таких случаях возможно развитие реакции отторжения и на зародыши, зачатые после донорской инсеминации или с использованием донорской яйцеклетки. В таких случаях рекомендуется проведение специального иммунологического обследования.