С 37 разложение многочленов на множители. Сложные случаи разложения многочленов на множители

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Рассмотрим на конкретных примерах, как разложить многочлен на множители.

Разложение многочленов будем проводить в соответствии с .

Разложить многочлены на множители:

Проверяем, нет ли общего множителя. есть, он равен 7cd. Выносим его за скобки:

Выражение в скобках состоит из двух слагаемых. Общего множителя уже нет, формулой суммы кубов выражение не является, значит, разложение завершено.

Проверяем, нет ли общего множителя. Нет. Многочлен состоит из трех слагаемых, поэтому проверяем, нет ли формулы полного квадрата. Два слагаемых являются квадратами выражений: 25x²=(5x)², 9y²=(3y)², третье слагаемое равно удвоенному произведению этих выражений:2∙5x∙3y=30xy. Значит, данный многочлен является полным квадратом. Так как удвоенное произведение со знаком «минус», то это — :

Проверяем, нельзя ли вынести общий множитель за скобки. Общий множитель есть, он равен a. Выносим его за скобки:

В скобках — два слагаемых. Проверяем, нет ли формулы разности квадратов или разности кубов. a² — квадрат a, 1=1². Значит, выражение в скобках можно расписать по формуле разности квадратов:

Общий множитель есть, он равен 5. Выносим его за скобки:

в скобках — три слагаемых. Проверяем, не является ли выражение полным квадратом. Два слагаемых — квадраты: 16=4² и a² — квадрат a, третье слагаемое равно удвоенному произведению 4 и a: 2∙4∙a=8a. Следовательно, это — полный квадрат. Так как все слагаемые со знаком «+», выражение в скобках является полным квадратом суммы:

Общий множитель -2x выносим за скобки:

В скобках — сумма двух слагаемых. Проверяем, не является ли данное выражение суммой кубов. 64=4³, x³- куб x. Значит, двучлен можно разложить по формуле :

Общий множитель есть. Но, поскольку многочлен состоит из 4 членов, мы будем сначала , а уже потом выносить за скобки общий множитель. Сгруппируем первое слагаемое с четвертым, в второе — с третьим:

Из первых скобок выносим общий множитель 4a, из вторых — 8b:

Общего множителя пока нет. Чтобы его получить, из вторых скобок вынесем за скобки «-«, при этом каждый знак в скобках изменится на противоположный:

Теперь общий множитель (1-3a) вынесем за скобки:

Во вторых скобках есть общий множитель 4 (этот тот самый множитель, который мы не стали выносить за скобки в начале примера):

Поскольку многочлен состоит из четырех слагаемых, выполняем группировку. Сгруппируем первое слагаемое со вторым, третье — с четвертым:

В первых скобках общего множителя нет, но есть формула разности квадратов, во вторых скобках общий множитель -5:

Появился общий множитель (4m-3n). Выносим его за скобки.

Разложить на множители большое число – нелегкая задача. Большинство людей затрудняются раскладывать четырех- или пятизначные числа. Для упрощения процесса запишите число над двумя колонками.

  • Разложим на множители число 6552.
  • Разделите данное число на наименьший простой делитель (кроме 1), на который данное число делится без остатка. Запишите этот делитель в левой колонке, а в правой колонке запишите результат деления. Как отмечалось выше, четные числа легко раскладывать на множители, так как их наименьшим простым множителем всегда будет число 2 (у нечетных чисел наименьшие простые множители различны).

    • В нашем примере число 6552 – четное, поэтому 2 является его наименьшим простым множителем. 6552 ÷ 2 = 3276. В левой колонке запишите 2, а в правой - 3276.
  • Далее разделите число в правой колонке на наименьший простой делитель (кроме 1), на который данное число делится без остатка. Запишите этот делитель в левой колонке, а в правой колонке запишите результат деления (продолжите этот процесс до тех пор, пока в правой колонке не останется 1).

    • В нашем примере: 3276 ÷ 2 = 1638. В левой колонке запишите 2, а в правой - 1638. Далее: 1638 ÷ 2 = 819. В левой колонке запишите 2, а в правой - 819.
  • Вы получили нечетное число; для таких чисел найти наименьший простой делитель сложнее. Если вы получили нечетное число, попробуйте разделить его на наименьшие простые нечетные числа: 3, 5, 7, 11.

    • В нашем примере вы получили нечетное число 819. Разделите его на 3: 819 ÷ 3 = 273. В левой колонке запишите 3, а в правой - 273.
    • При подборе делителей опробуйте все простые числа вплоть до квадратного корня из наибольшего делителя, который вы нашли. Если ни один делитель не делит число нацело, то вы, скорее всего, получили простое число и можете прекратить вычисления.
  • Продолжите процесс деления чисел на простые делители до тех пор, пока в правой колонке не останется 1 (если в правой колонке вы получили простое число, разделите его само на себя, чтобы получить 1).

    • Продолжим вычисления в нашем примере:
      • Разделите на 3: 273 ÷ 3 = 91. Остатка нет. В левой колонке запишите 3, а в правой - 91.
      • Разделите на 3. 91 делится на 3 с остатком, поэтому разделите на 5. 91 делится на 5 с остатком, поэтому разделите на 7: 91 ÷ 7 = 13. Остатка нет. В левой колонке запишите 7, а в правой - 13.
      • Разделите на 7. 13 делится на 7 с остатком, поэтому разделите на 11. 13 делится на 11 с остатком, поэтому разделите на 13: 13 ÷ 13 = 1. Остатка нет. В левой колонке запишите 13, а в правой - 1. Ваши вычисления закончены.
  • В левой колонке представлены простые множители исходного числа. Другими словами, при перемножении всех чисел из левой колонки вы получите число, записанное над колонками. Если один множитель появляется в списке множителей несколько раз, используйте показатели степени для его обозначения. В нашем примере в списке множителей 2 появляется 4 раза; запишите эти множители как 2 4 , а не как 2*2*2*2.

    • В нашем примере 6552 = 2 3 × 3 2 × 7 × 13. Вы разложили число 6552 на простые множители (порядок множителей в этой записи не имеет значения).
  • Приводится 8 примеров разложения многочленов на множители. Они включают в себя примеры с решением квадратных и биквадратных уравнений, примеры с возвратными многочленами и примеры с нахождением целых корней у многочленов третьей и четвертой степени.

    1. Примеры с решением квадратного уравнения

    Пример 1.1


    x 4 + x 3 - 6 x 2 .

    Решение

    Выносим x 2 за скобки:
    .
    2 + x - 6 = 0 :
    .
    Корни уравнения:
    , .


    .

    Ответ

    Пример 1.2

    Разложить на множители многочлен третьей степени:
    x 3 + 6 x 2 + 9 x .

    Решение

    Выносим x за скобки:
    .
    Решаем квадратное уравнение x 2 + 6 x + 9 = 0 :
    Его дискриминант: .
    Поскольку дискриминант равен нулю, то корни уравнения кратные: ;
    .

    Отсюда получаем разложение многочлена на множители:
    .

    Ответ

    Пример 1.3

    Разложить на множители многочлен пятой степени:
    x 5 - 2 x 4 + 10 x 3 .

    Решение

    Выносим x 3 за скобки:
    .
    Решаем квадратное уравнение x 2 - 2 x + 10 = 0 .
    Его дискриминант: .
    Поскольку дискриминант меньше нуля, то корни уравнения комплексные: ;
    , .

    Разложение многочлена на множители имеет вид:
    .

    Если нас интересует разложение на множители с действительными коэффициентами, то:
    .

    Ответ

    Примеры разложения многочленов на множители с помощью формул

    Примеры с биквадратными многочленами

    Пример 2.1

    Разложить биквадратный многочлен на множители:
    x 4 + x 2 - 20 .

    Решение

    Применим формулы:
    a 2 + 2 ab + b 2 = (a + b) 2 ;
    a 2 - b 2 = (a - b)(a + b) .

    ;
    .

    Ответ

    Пример 2.2

    Разложить на множители многочлен, сводящийся к биквадратному:
    x 8 + x 4 + 1 .

    Решение

    Применим формулы:
    a 2 + 2 ab + b 2 = (a + b) 2 ;
    a 2 - b 2 = (a - b)(a + b) :

    ;

    ;
    .

    Ответ

    Пример 2.3 с возвратным многочленом

    Разложить на множители возвратный многочлен:
    .

    Решение

    Возвратный многочлен имеет нечетную степень. Поэтому он имеет корень x = -1 . Делим многочлен на x - (-1) = x + 1 . В результате получаем:
    .
    Делаем подстановку:
    , ;
    ;


    ;
    .

    Ответ

    Примеры разложения многочленов на множители с целыми корнями

    Пример 3.1

    Разложить многочлен на множители:
    .

    Решение

    Предположим, что уравнение

    6
    -6, -3, -2, -1, 1, 2, 3, 6 .
    (-6) 3 - 6·(-6) 2 + 11·(-6) - 6 = -504 ;
    (-3) 3 - 6·(-3) 2 + 11·(-3) - 6 = -120 ;
    (-2) 3 - 6·(-2) 2 + 11·(-2) - 6 = -60 ;
    (-1) 3 - 6·(-1) 2 + 11·(-1) - 6 = -24 ;
    1 3 - 6·1 2 + 11·1 - 6 = 0 ;
    2 3 - 6·2 2 + 11·2 - 6 = 0 ;
    3 3 - 6·3 2 + 11·3 - 6 = 0 ;
    6 3 - 6·6 2 + 11·6 - 6 = 60 .

    Итак, мы нашли три корня:
    x 1 = 1 , x 2 = 2 , x 3 = 3 .
    Поскольку исходный многочлен - третьей степени, то он имеет не более трех корней. Поскольку мы нашли три корня, то они простые. Тогда
    .

    Ответ

    Пример 3.2

    Разложить многочлен на множители:
    .

    Решение

    Предположим, что уравнение

    имеет хотя бы один целый корень. Тогда он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
    -2, -1, 1, 2 .
    Подставляем поочередно эти значения:
    (-2) 4 + 2·(-2) 3 + 3·(-2) 3 + 4·(-2) + 2 = 6 ;
    (-1) 4 + 2·(-1) 3 + 3·(-1) 3 + 4·(-1) + 2 = 0 ;
    1 4 + 2·1 3 + 3·1 3 + 4·1 + 2 = 12 ;
    2 4 + 2·2 3 + 3·2 3 + 4·2 + 2 = 54 .
    Если предположить, что это уравнение имеет целый корень, то он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
    1, 2, -1, -2 .
    Подставим x = -1 :
    .

    Итак, мы нашли еще один корень x 2 = -1 . Можно было бы, как и в предыдущем случае, разделить многочлен на , но мы сгруппируем члены:
    .

    Поскольку уравнение x 2 + 2 = 0 не имеет действительных корней, то разложение многочлена на множители имеет вид.

    Любой алгебраический многочлен степени n может быть представлен в виде произведения n-линейных множителей вида и постоянного числа, которое является коэффициентов многочлена при старшей ступени х, т.е.

    где - являются корнями многочлена.

    Корнем многочлена называют число (действительное или комплексное), обращающее многочлен в нуль. Корнями многочлена могут быть как действительные корни, так и комплексно-сопряженные корни, тогда многочлен может быть представлен в следующем виде:

    Рассмотрим методы разложения многочленов степени «n» в произведение множителей первой и второй степени.

    Способ №1. Метод неопределенных коэффициентов.

    Коэффициенты такого преобразованного выражения определяются методом неопределенных коэффициентов. Суть метода сводится к тому, что заранее известен вид множителей, на которые разлагается данный многочлен. При использовании метода неопределённых коэффициентов справедливы следующие утверждения:

    П.1. Два многочлена тождественно равны в случае, если равны их коэффициенты при одинаковых степенях х.

    П.2. Любой многочлен третьей степени разлагается в произведение линейного и квадратного множителей.

    П.3. Любой многочлен четвертой степени разлагается на произведение двух многочленов второй степени.

    Пример 1.1. Необходимо разложить на множители кубическое выражение:

    П.1. В соответствии с принятыми утверждениями для кубического выражения справедливо тождественное равенство:

    П.2. Правая часть выражения может быть представлена в виде слагаемых следующим образом:

    П.3. Составляем систему уравнений из условия равенства коэффициентов при соответствующих степенях кубического выражения.

    Данная система уравнений может быть решена методом подбора коэффициентов (если простая академическая задача) или использованы методы решения нелинейных систем уравнений. Решая данную систему уравнений, получим, что неопределённые коэффициенты определяются следующим образом:

    Таким образом, исходное выражение раскладывается на множители в следующем виде:

    Данный метод может использоваться как при аналитических выкладках, так и при компьютерном программировании для автоматизации процесса поиска корня уравнения.

    Способ №2. Формулы Виета

    Формулы Виета - это формулы, связывающие коэффициенты алгебраических уравнений степени n и его корни. Данные формулы были неявно представлены в работах французского математика Франсуа Виета (1540 - 1603). В связи с тем, что Виет рассматривал только положительные вещественные корни, поэтому у него не было возможности записать эти формулы в общем явном виде.

    Для любого алгебраического многочлена степени n, который имеет n-действительных корней,

    справедливы следующие соотношения, которые связывают корни многочлена с его коэффициентами:

    Формулами Виета удобно пользоваться для проверки правильности нахождения корней многочлена, а также для составления многочлена по заданным корням.

    Пример 2.1. Рассмотрим, как связаны корни многочлена с его коэффициентами на примере кубического уравнения

    В соответствии с формулами Виета взаимосвязь корней многочлена с его коэффициентами имеет следующий вид:

    Аналогичные соотношения можно составить для любого полинома степени n.

    Способ №3. Разложение квадратного уравнения на множители с рациональными корнями

    Из последней формулы Виета следует, что корни многочлена являются делителями его свободного члена и старшего коэффициента. В связи с этим, если в условии задачи задан многочлен степени n c целыми коэффициентами

    то данный многочлен имеет рациональный корень (несократимая дробь), где p - делитель свободного члена , а q – делитель старшего коэффициента . В таком случае многочлен степени n можно представить в виде (теорема Безу):

    Многочлен , степень которого на 1 меньше степени начального многочлена, определяется делением многочлена степени n двучлен , например, с помощью схемы Горнера или самым простым способом - «столбиком».

    Пример 3.1. Необходимо разложить многочлен на множители

    П.1. В связи с тем, что коэффициент при старшем слагаемом равен единицы, то рациональные корни данного многочлена являются делителями свободного члена выражения, т.е. могут быть целыми числами . Подставляем каждое из представленных чисел в исходное выражение найдем, что корень представленного многочлена равен .

    Выполним деление исходного многочлена на двучлен:

    Воспользуемся схемой Горнера

    В верхней строке выставляются коэффициенты исходного многочлена, при этом первая ячейка верхней строки остается пустой.

    В первой ячейке второй строки записывается найденный корень (в рассматриваемом примере записывается число «2»), а следующие значения в ячейках вычисляются определенным образом и они являются коэффициентами многочлена, который получится в результате деления многочлена на двучлен. Неизвестные коэффициенты определяются следующим образом:

    Во вторую ячейку второй строки переносится значение из соответствующей ячейки первой строки (в рассматриваемом примере записывается число «1»).

    В третью ячейку второй строки записывается значение произведения первой ячейки на вторую ячейку второй строки плюс значение из третьей ячейки первой строки (в рассматриваемом примере 2 ∙1 -5 = -3).

    В четвертую ячейку второй строки записывается значение произведения первой ячейки на третью ячейку второй строки плюс значение из четвертой ячейки первой строки (в рассматриваемом примере 2 ∙ (-3) +7 = 1).

    Таким образом, исходный многочлен раскладывается на множители:

    Способ №4. Использование формул сокращенного умножения

    Формулы сокращенного умножения применяют для упрощения вычислений, а также разложение многочленов на множители. Формулы сокращенного умножения позволяют упростить решение отдельных задач.

    Формулы, используемые для разложения на множители