Значение зрительного анализатора. Строение и функции зрительного анализатора

Вот типичный больной с таким поражением.

Он внимательно рассматривает предложенное ему изображение очков. Он смущен и не знает, что означает это изображение. Он начинает гадать: «Кружок... и еще кружок... и палка... перекладина... наверное, это велосипед?» Он рассматривает изображение петуха с красивыми разноцветными перьями хвоста и, не воспринимая фазу целого образа, говорит: «Наверное, это пожар - вот языки пламени...».

В случаях массивных поражений вторичных отделов затылочной коры явления оптической агнозии могут принимать грубый характер.

В случаях ограниченных поражений этой области они выступают в более стертых формах и проявляются лишь при рассматривании сложных картин или в опытах, где зрительное восприятие осуществляется в усложненных условиях (например, в условиях дефицита времени). Такие больные могут принять телефон с вращающимся диском за часы, а коричневый диван - за чемодан и т. п. Они перестают узнавать контурные или силуэтные изображения, затрудняются, если изображения предъявляются им в «зашумленных» условиях, например когда контурные фигуры перечеркнуты ломаными линиями (рис. 56) или когда они составлены из отдельных элементов и включены в сложное оптическое поле (рис. 57). Особенно отчетливо все эти дефекты зрительного восприятия выступают, когда опыты с восприятием проводятся в условиях дефицита времени - 0,25-0,50 с (с помощью тахистоскопа).

Естественно, что больной с оптической агнозией оказывается не в состоянии не только воспринимать целые зрительные структуры, но и изображать их . Если ему дается задача нарисовать какой-нибудь предмет, легко обнаружить, что образ этого предмета у него распался и что он может изобразить (или, вернее, обозначить) лишь его отдельные части, давая графическое перечисление деталей там, где нормальный человек рисует изображение.

Основные принципы строения зрительного анализатора.

Можно выделить несколько общих принципов строения всех анализаторных систем :

а) принцип параллельной многоканальной переработки информации, в соответствии с которым информация о разных параметрах сигнала одновременно передается по различным каналам анализаторной системы;

б) принцип анализа информации с помощью нейронов-детекторов, направленного на выделение как относительно элементарных, так и сложных, комплексных характеристик сигнала, что обеспечивается разными рецептивными полями;

в) принцип последовательного усложнения переработки информации от уровня к уровню, в соответствии с которым каждый из них осуществляет свои собственные анализаторные функции;



г) принцип топического («точка в точку» ) представительства периферических рецепторов в первичном поле анализаторной системы;

д) принцип целостной интегративной репрезентации сигнала в ЦНС во взаимосвязи с другими сигналами, что достигается благодаря существованию общей модели (схемы) сигналов данной модальности (по типу «сферической модели цветового зрения»). На рис. 17 и 18, А, Б, В, Г (цветная вклейка) показана мозговая организация основных анализаторных систем: зрительной, слуховой, обонятельной и кожно-кинестетической. Представлены разные уровни анализаторных систем - от рецепторов до первичных зон коры больших полушарий.

Человек, как и все приматы, относится к «зрительным» млекопитающим; основную информацию о внешнем мире он получает через зрительные каналы. Поэтому роль зрительного анализатора для психических функций человека трудно переоценить.

Зрительный анализатор, как и все анализаторные системы, организован по иерархическому принципу. Основными уровнями зрительной системы каждого полушария являются: сетчатка глаза (периферический уровень); зрительный нерв (II пара); область пересечения зрительных нервов (хиазма); зрительный канатик (место выхода зрительного пути из области хиазмы); наружное или латеральное коленчатое тело (НКТ или ЛКТ); подушка зрительного бугра, где заканчиваются некоторые волокна зрительного пути; путь от наружного коленчатого тела к коре (зрительное сияние) и первичное 17-е поле коры мозга (рис. 19, А, Б, Вт

рис. 20; цветная вклейка). Работа зрительной системы обеспечивается II, III, IV и VI парами черепно-мозговых нервов.

Поражение каждого из перечисленных уровней, или звеньев, зрительной системы характеризуется особыми зрительными симптомами, особыми нарушениями зрительных функций.



Первый уровень зрительной системы - сетчатка глаза - представляет собой очень сложный орган, который называют «куском мозга, вынесенным наружу».

Рецепторный строй сетчатки содержит два типа рецепторов:

· ¦ колбочки (аппарат дневного, фотопического зрения);

· ¦ палочки (аппарат сумеречного, скотопического зрения).

Когда свет достигает глаза, возникающая в этих элементах фотопическая реакция преобразуется в импульсы, передающиеся через различные уровни зрительной системы в первичную зрительную кору (17-е поле). Количество колбочек и палочек неравномерно распределено в разных областях сетчатки; колбочек значительно больше в центральной части сетчатки (fovea) - зоне максимально ясного зрения. Эта зона несколько сдвинута в сторону от места выхода зрительного нерва - области, которая называется слепым пятном (papilla n. optici).

Человек относится к числу так называемых фронтальных млекопитающих, т. е. животных, у которых глаза расположены во фронтальной плоскости. Вследствие этого зрительные поля обоих глаз (т. е. та часть зрительной среды, которая воспринимается каждой сетчаткой отдельно) перекрываются. Это перекрытие зрительных полей является очень важным эволюционным приобретением, позволившим человеку выполнять точные манипуляции руками под контролем зрения, а также обеспечившим точность и глубину видения (бинокулярное зрение). Благодаря бинокулярному зрению появилась возможность совмещать образы объекта, возникающие в сетчатках обоих глаз, что резко улучшило восприятие глубины изображения, его пространственных признаков.

Зона перекрытия зрительных полей обоих глаз составляет приблизительно 120°. Зона монокулярного видения составляет около 30° для каждого глаза; эту зону мы видим только одним глазом, если фиксировать центральную точку общего для двух глаз поля зрения.

Зрительная информация, воспринимаемая двумя глазами или только одним глазом (левым или правым), Зрительная информация, воспринимаемая двумя глазами или только одним глазом (левым или правым), проецируется на разные отделы сетчатки и, следовательно, поступает в разные звенья зрительной системы.

В целом, участки сетчатки, расположенные к носу от средней линии (нозальные отделы), участвуют в механизмах бинокулярного зрения, а участки, расположенные в височных отделах (темпоральные отделы), - в монокулярном зрении.

Кроме того, важно помнить, что сетчатка организована и по верхненижнему принципу: ее верхние и нижние отделы представлены на разных уровнях зрительной системы по-разному. Знания об этих особенностях строения сетчатки позволяют диагностировать ее заболевания (рис. 21; цветная вклейка).

Второй уровень работы зрительной системы - зрительные нервы (II пара). Они очень коротки и расположены сзади глазных яблок в передней черепной ямке, на базальной поверхности больших полушарий головного мозга. Разные волокна зрительных нервов несут зрительную информацию от разных отделов сетчаток. Волокна от внутренних участков сетчаток проходят во внутренней части зрительного нерва, от наружных участков - в наружной, от верхних участков - в верхней, а от нижних - в нижней.

Область хиазмы составляет третье звено зрительной системы . Как известно, у человека в зоне хиазмы происходит неполный перекрест зрительных путей. Волокна от нозальных половин сетчаток поступают в противоположное (контралатеральное) полушарие, а волокна от темпоральных половин - в ипсилатеральное. Благодаря неполному перекресту зрительных путей зрительная информация от каждого глаза поступает в оба полушария. Важно помнить, что волокна, идущие от верхних отделов сетчаток обоих глаз, образуют верхнюю половину хиазмы, а идущие от нижних отделов - нижнюю; волокна от fovea также подвергаются частичному перекресту и расположены в центре хиазмы.

Четвертый уровень зрительной системы - наружное или латеральное коленчатое тело (НКТ или ЛКТ). Это часть зрительного бугра, важнейшее из таламических ядер, представляет собой крупное образование, состоящее из нервных клеток, где сосредоточен второй нейрон зрительного пути (первый нейрон находится в сетчатке). Таким образом, зрительная информация без какой-либо переработки поступает непосредственно из сетчатки в НКТ. У человека 80 % зрительных путей, идущих от сетчатки, заканчиваются в НКТ, остальные 20 % идут в другие образования (подушку зрительного бугра, переднее двухолмие, стволовую часть мозга), что указывает на высокий уровень кортикализации зрительных функций. НКТ, как и сетчатка, характеризуется топическим строением, т. е. различным областям сетчатки соответствуют различные группы нервных клеток в НКТ. Кроме того, в разных участках НКТ представлены области зрительного поля, которые воспринимаются одним глазом (зоны монокулярного видения), и области, которые воспринимаются двумя глазами (зоны бинокулярного видения), а также область области, которые воспринимаются двумя глазами (зоны бинокулярного видения), а также область центрального видения.

Как уже было сказано выше, помимо НКТ существуют и другие инстанции, куда поступает зрительная информация, - это подушка зрительного бугра, переднее двухолмие и стволовая часть мозга. При их поражении никаких нарушений зрительных функций как таковых не возникает, что указывает на иное их назначение. Переднее двухолмие, как известно, регулирует целый ряд двигательных рефлексов (типа старт-рефлексов), в том числе и тех, которые «запускаются» зрительной информацией. По-видимому, сходные функции выполняет и подушка зрительного бугра, связанная с большим количеством инстанций, в частности - с областью базальных ядер. Стволовые структуры мозга участвуют в регуляции общей неспецифической активации мозга через коллатерали, идущие от зрительных путей. Таким образом, зрительная информация, идущая в стволовую часть мозга, является одним из источников, поддерживающих активность неспецифической системы (см. гл. 3).

Пятый уровень зрительной системы - зрительное сияние (пучок Грациоле) - довольно протяженный участок мозга, находящийся в глубине теменной и затылочной долей. Это широкий, занимающий большое пространство веер волокон, несущих зрительную информацию от разных участков сетчатки в разные области 17-го поля коры.

Последняя инстанция - первичное 17-е поле коры больших полушарий, расположено главным образом на медиальной поверхности мозга в виде треугольника, который направлен острием вглубь мозга. Это значительная по протяженности площадь коры больших полушарий по сравнению с первичными корковыми полями других анализаторов, что отражает роль зрения в жизни человека. Важнейшим анатомическим признаком 17-го поля является хорошее развитие IV слоя коры, куда приходят зрительные афферентные импульсы; IV слой связан с V слоем, откуда «запускаются» местные двигательные рефлексы, что характеризует «первичный нейронный комплекс коры» (Г. И. Поляков, 1965). 17-е поле организовано по топическому принципу, т. е. разные области сетчатки представлены в его разных участках. Это поле имеет две координаты: верхне-нижнюю и передне-заднюю. Верхняя часть 17-го поля связана с верхней частью сетчатки, т. е. с нижними полями зрения; в нижнюю часть 17-го поля поступают импульсы от нижних участков сетчатки, т. е. от верхних полей зрения. В задней части 17-го поля представлено бинокулярное зрение в передней части - периферическое монокулярное зрение.

Орган зрения играет важнейшую роль во взаимодействии человека с окружающей средой. С его помощью к нервным центрам поступает до 90 % информации о внешнем мире. Он обеспечивает восприятие света, цветовой гаммы и ощущение пространства. Благодаря тому, что орган зрения является парным и подвижным, зрительные образы воспринимаются объемно, т.е. не только по площади, но и по глубине.

Орган зрения включает глазное яблоко и вспомогательные органы глазного яблока. В свою очередь орган зрения – составная часть зрительного анализатора, который кроме указанных структур включает проводящий зрительный путь, подкорковые и корковые центры зрения.

Глаз имеет округлую форму, передний и задний полюсы (рис. 9.1). Глазное яблоко состоит из:

1) наружной фиброзной оболочки;

2) средней – сосудистой оболочки;

3) сетчатки;

4) ядра глаза (пере­дняя и задняя камеры, хрусталик, стекловидное тело).

Диаметр глаза примерно равен 24 мм, объем глаза у взрослого человека в среднем 7,5 см 3 .

1) Фиброзная оболочка – наружная плотная оболочка, выполняющая каркасную и защитную функции. Фиброзная оболочка подразделяется на задний отдел – склеру и прозрачный передний – роговицу.

Склера – плотная соединительно-тканая оболочка толщиной 0,3–0,4 мм в задней части, 0,6 мм вблизи роговицы. Она образована пучками коллагеновых волокон, между которыми залегают уплощенные фибробласты с небольшим количеством эластических волокон. В толще склеры в зоне соединения ее с роговицей имеется множество мелких разветвленных сообщающихся между собой полостей, образующих венозный синус склеры (шлеммов канал), через кото­рый обеспечивается отток жидкости из передней камеры глаза.К склере прикрепляются глазодвигательные мышцы.

Роговица – это прозрачная часть оболочки, которая не имеет сосудов, а по форме напоминает часовое стекло. Диаметр роговицы – 12 мм, толщина – около 1 мм. Основные свойства роговицы – прозрачность, равномерная сферичность, высокая чувствительность и высокая преломляющая способность (42 дптр). Роговица выполняет защитную и оптическую функции. Она состоит из нескольких слоев: наружного и внутрненнего эпителиальных с множеством нервных окончаний, внутренних, образованных тонкими соединительно-ткаными (коллагеновыми) пластинками, между которыми лежат уплощенные фибробласты. Эпителиоциты наружного слоя снабжены множеством микроворсинок и обильно смочены слезой. Роговица лишена кровеносных сосудов, ее питание происходит за счет диффузии из сосудов лимба и жидкости передней камеры глаза.

Рис. 9.1. Схема строения глаза:

А: 1 – анатомическая ось глазного яблока; 2 – роговица; 3 – передняя камера; 4 – задняя камера; 5 – коньюктива; 6 – склера; 7 – сосудистая оболочка; 8 – цилиарная связка; 8 – сетчатка; 9 – желтое пятно, 10 – зрительный нерв; 11 – слепое пятно; 12 – стекловидное тело, 13 – ресничатое тело; 14 – циннова связка; 15 – радужка; 16 – хрусталик; 17 – оптическая ось; Б: 1 – роговица, 2 – лимб (край роговицы), 3 – венозный синус склеры, 4 – радужно-рого-вичный угол, 5 – конъюнктива, 6 – ресничная часть сетчатки, 7 – склера, 8 – сосудистая оболочка, 9 – зубчатый край сетчатки, 10 – ресничная мышца, 11 – ресничные отростки, 12 – задняя камера глаза, 13 – радужка, 14 – задняя поверхность радужки, 15 – реснич­ный поясок, 16 – капсула хрусталика, 17 – хрусталик, 18 – сфинктер зрачка (мышца, суживающая зрачок), 19 – передняя камера глазного яблока

2) Сосудистая оболочка содержит большое количество кровеносных сосудов и пигмента. Она состоит из трех частей: собственно сосудистой оболочки, ресничного тела и радужки.

Собственно сосудистая оболочка образует большую часть сосудистой оболочки и выстилает заднюю часть склеры.

Большая часть ресничного тела – это ресничная мышца, образованная пучками миоцитов, среди которых различают продольные, циркулярные и радиальные волокна. Сокращение мышцы приводит к расслаблению волокон ресничного пояска (цинновой связки), хрусталик расправляется, округляется, вследствие этого выпуклость хрусталика и его пре­ломляющая сила увеличивается, происходит аккомодация на близлежащие предметы. Миоциты в старческом возрасте частично атрофируются, развивается соединительная ткань; это приводит к нарушению аккомодации.

Ресничное тело кпереди продолжается в радужку, которая представляет собой круглый диск с отверстием в центре (зрачок). Радужка расположена между роговицей и хрусталиком. Она отделяет переднюю камеру (ограниченную спереди роговицей) от задней (ограниченной сзади хрусталиком). Зрачковый край радужки зазубрен, латеральный периферический – ресничный край – пере­ходит в ресничное тело.

Радужка состоит из соединительной ткани с сосудами, пигментных клеток, которые определяют цвет глаз, и мышечных волокон, расположенных радиально и циркулярно, которые образуют сфинктер (суживатель) зрачка и дилататор зрачка. Различное количество и качество пигмента меланина обусловливает цвет глаз – карий, черный, (при наличии большого количества пигмента) или голубой, зеленоватый (если мало пигмента).

3) Сетчатка – внутренняя (светочувствительная) оболочка глазного яблока – на всем протяжении прилежит изнутри к сосудистой оболочке. Она состоит из двух листков: внутреннего – светочувствительного (нервная часть) и наружного – пигментного. Сетчатка делится на две части – заднюю зрительную и переднюю (ресничную и радужковую). Последняя не содержит светочувствительных клеток (фоторецепторов). Границей между ними является зубчатый край, который расположен на уровне перехода собственно сосудистой оболочки в ресничный кружок. Место выхода из сетчатки зрительного нерва называется диском зрительного нерва (слепое пятно, где также отсутствуют фоторецепторы). В центре диска в сетчатку входит центральная артерия сетчатки.

Зрительная часть состоит из наружной пигментной и внутренней нервной частей. Во внутреннюю часть сетчатки входят клетки с отростками в форме колбочек и палочек, которые являются светочувствительными элементами глазного яблока. Колбочки воспринимают световые лучи при ярком (дневном) свете и являются одновременно рецепторами цвета, а палочки функционируют при сумеречном освещении и играют роль рецепторов сумеречного света. Остальные нервные клетки выпол­няют связующую роль; аксоны этих клеток, соединившись в пучок, образуют нерв, который выходит из сетчатки.

Каждая палочка состоит из наружного и внутреннего сегментов. Наружный сегмент – светочувствительный – образован сдвоенными мембранными дисками, которые представляют собой складки плазматической мем­браны. Зрительный пурпур – родопсин, располагающийся в мембранах наружного сегмента, под действием света изменяется, что приводит к возникновению импульса. Наружный и внутренний сегменты связаны между собой ресничкой. Во внутреннем сегменте – множество митохондрий, рибосом, элементов эндоплазматической сети и пластинчатого комплекса Гольджи.

Палочки покрывают почти всю сетчатку за исключением «слепого» пятна. Наибольшее количество колбочек находится на расстоянии около 4 мм от диска зрительного нерва в углублении округлой формы, так называемое желтое пятно, в нем отсутствуют сосуды и оно является местом наилучшего видения глаза.

Различают три типа колбочек, каждый из которых воспринимает свет определенной длины волны. В отличие от палочек в наружном сег­менте одного типа имеется иодопсин, к оторый воспринимает красный свет. Количество колбочек в сетчатке глаза человека достигает 6–7 млн, коли­чество палочек – в 10–20 раз больше.

4) Ядро глаза состоит из камер глаза, хрусталика и стекловидного тела.

Радужка разделяет пространство между роговицей, с одной стороны, и хрусталиком с цинновой связкой и ресничным телом, с другой, на две камеры переднюю изаднюю, которые играют важную роль в циркуляции водянистой влаги внутри глаза. Водянистая влага – жидкость с очень низкой вязкостью, она содер­жит около 0,02 % белка. Водянистая влага вырабатывается капиллярами ресничных отростков и радужки. Обе камеры сообщаются между собой через зрачок. В углу передней камеры, образованном краем радужки и роговицы, по окружности располагаются выстланные эндотелием щели, через которые передняя камера сообщается с венозным синусом склеры, а последний – с системой вен, куда оттекает водянистая влага. В норме количе­ство образовавшейся водянистой влаги строго соответствует количеству оттекающей. При нарушении оттока водянистой влаги возникает повышение внутриглазного давления – глаукома. При несвоевременном лечении данное состояние может привести к слепоте.

Хрусталик – прозрачная двояковыпуклая линза диаметром около 9 мм, имеющая переднюю и заднюю поверхности, которые переходят одна в другую в области экватора. Коэффициент преломления хрусталика в поверхностных слоях равен 1,32; в центральных – 1,42. Эпителиальные клетки, распо­ложенные вблизи экватора, являются ростковыми, они делятся, уд­линяются, дифференцируются в хрусталиковые волокна и накладываются на периферические волокна позади экватора, в результате чего диаметр хрусталика увеличивается. В процессе дифференцировки ядро и органеллы исчезают, в клетке сохраняются лишь свободные рибосомы и микротрубочки. Хрусталиковые волокна дифференцируются в эмбриональном периоде из эпителиальных клеток, покрывающих заднюю поверхность образующегося хрусталика, и сохраняются в течение всей жизни человека. Волокна склеены между собой веществом, чей индекс светопреломления аналогичен таковому в волокнах хрусталика.

Хрусталик как бы подвешен на ресничном пояске (цинновой связке) между волокнами которого расположены пространства пояска, (петитов канал), сообщающиеся с камерами глаза. Волокна пояска прозрачны, они сливаются с веществом хрусталика и пере­дают ему движения ресничной мышцы. При натяжении связки (расслабление ресничной мышцы) хрусталик уплощается (установ­ка на дальнее видение), при расслаблении связки (сокращение ресничной мышцы) выпуклость хрусталика увеличивается (уста­новка на ближнее видение). Это и называется аккомодацией глаза.

Снаружи хрусталик покрыт тонкой прозрачной эластичной капсулой, к ко­торой прикрепляется ресничный поясок (циннова связка). При сокращении ресничной мышцы изменяются размеры хрусталика и его преломляющая способность.Хрусталик обеспечивает аккомодацию глазного яблока, преломляя световые лучи силой в 20 диоптрий.

Стекловидное тело заполняет пространство между сетчаткой сзади, хрусталиком и задней стороной ресничного пояска спереди. Оно представляет собой аморфное межклеточное вещество желеобразной консистенции, которое не имеет сосудов и нервов и покрыто оболочкой, его индекс светопреломления – 1,3. Стекловидное тело состоит из гигроскопического белка витреина и гиалуроновой кислоты. На передней поверхности стекловидного тела имеется ямка, в которой располагается хрусталик.

Вспомогательные органы глаза. К вспомогательным органам глаза относятся мышцы глазного яблока, фасции глазницы, веки, брови, слезный аппарат, жировое тело, конъюнктива, влагалище глазного яблока. Двигательный аппарат глаза представлен шестью мышцами. Мышцы начинаются от сухожильного кольца вокруг зрительного нерва в глубине глазницы и прикрепляются к глазному яблоку. Мышцы действуют таким образом, что оба глаза поворачиваются согласованно и направлены в одну и ту же точку (рис. 9.2).

Рис. 9.2. Мышцы глазного яблока (глазодвигательные мышцы):

А – вид спереди, Б – вид сверху; 1 – верхняя прямая мышца, 2 – блок, 3 – верхняя косая мышца, 4 – медиальная прямая мышца, 5 – нижняя косая мышца, б – нижняя прямая мышца, 7 – латеральная прямая мышца, 8 – зрительный нерв, 9 – перекрест зрительных нервов

Глазница, в которой находится глазное яблоко, состоит из надкостницы глазницы. Между влагалищем и надкостницей глазницы находится жировое тело глазницы, которое выполняет роль эластичной подушки для глазного яблока.

Веки (верхнее и нижнее) представляют собой образования, которые лежат впереди глазного яблока и прикрывают его сверху и снизу, а при смыкании полностью его скрывают. Пространство между краями век называется глазной щелью, вдоль переднего края век расположены ресницы. Основу века составляет хрящ, который сверху покрыт кожей. Веки уменьшают или перекрывают доступ светового потока. Брови и ресницы – это короткие щетинковые волосы. При мигании ресницы задерживают крупные частицы пыли, а брови способствуют отведению пота в латеральном и медиальном направлении от глазного яблока.

Слезный аппарат состоит из слезной железы с выводными протоками и слезоотводящих путей (рис. 9.3). Слезная железа расположена в верхнелатеральном углу глазницы. Она выделяет слезу, состоящую в основном из воды, в которой содержится около 1,5 % NaCl, 0,5 % альбумина и слизь, а также в слезе имеется лизоцим, обладающий выраженным бактерицидным действием.

Кроме того, слеза обеспечивает смачивание роговицы – препятствует ее воспалению, удаляет с ее поверхности частицы пыли и участвует в обеспечении ее питания. Движе­нию слезы способствуют мигательные движения век. Затем слеза по капиллярной щели около края век оттекает в слезное озеро. В этом месте берут начало слезные канальца, которые открываются в слезный мешок. После­дний находится в одноименной ямке в нижнемедиальном углу глазницы. Книзу он переходит в довольно широкий носослезный канал, по которому слезная жид­кость попадает в полость носа.

Зрительное восприятие

Формирование изображения в глазу происходит при участии оптических систем (роговицы и хрусталика), дающих перевернутое и уменьшенное изображение объекта на поверхности сетчатки. Кора головного мозга осуществляет еще один поворот зрительного образа, благодаря чему мы видим различные объекты окружающего мира в реальном виде.

Приспособление глаза к ясному видению на расстоянии удаленных предметов называют аккомодацией. Механизм аккомодации глаза связан с сокращением ресничных мышц, которые изменяют кривизну хрусталика. При рассмотрении предметов на близком расстоянии одновременно с аккомодацией действует и конвергенция, т. е. происходит сведение осей обоих глаз. Зрительные линии сходятся тем больше, чем ближе находится рассматриваемый предмет.

Преломляющую силу оптической системы глаза выражают в диоптриях – (дптр). Преломляющая сила глаза человека составляет 59 дптр при рассмотрении дале­ких и 72 дптр – при рассмотрении близких предметов.

Существуют три главные аномалии преломления лучей в глазу (рефракции): близорукость, или миопия; дальнозоркость, или гиперметропия, и астигматизм (рис. 9.4). Основная причина всех дефектов глаза состоит в том, что не согласуются между собой преломляющая сила и длина глазного яблока, как в нормальном глазу. При близорукости лучи сходятся перед сетчаткой в стекловидном теле, а на сетчатке вместо точки возникает круг светорассеяния, глазное яблоко при этом имеет большую длину, чем в норме. Для коррекции зрения используют вог­нутые линзы с отрицательными диоптриями.

Рис. 9.4. Ход лучей света в глазу:

а – при нормальном зрении, б – при близорукости, в – при дальнозоркости, г – при астигматизме; 1 – коррекция двояковогнутой линзой для исправления дефектов близорукости, 2 – двояковыпуклой – дальнозоркости, 3 – цилиндрической – астигматизма

При дальнозоркости глазное яблоко короткое, и поэтому параллельные лучи, идущие от далеких предметов, собираются сзади сетчатки, а на ней получается неясное, расплывчатое изображение предмета. Этот недостаток может быть компенсирован путем использования преломляющей силы выпуклых линз с положительными диоптриями. Астигматизм – различное преломление лучей света в двух главных меридианах.

Старческая дальнозоркость (пресбиопия) связана со слабой эластичностью хрусталика и ослаблением натяжения цинновых связок при нормальной длине глазного яблока. Исправить это нарушение рефракции можно с помощью двояковыпуклых линз.

Зрение одним глазом дает нам представление о предмете лишь в одной плоскости. Только зрение одновременно двумя глазами дает восприятие глубины и правильное представление о взаимном расположении предметов. Способность к слиянию отдельных изображений, получаемых каждым глазом, в единое целое обеспечивает бинокулярное зрение.

Острота зрения характеризует пространственную разрешающую способность глаза и определяется тем наименьшим углом, при котором человек способен различать раздельно две точки. Чем меньше угол, тем лучше зрение. В норме этот угол равен 1 минуте, или 1 единице.

Для определения остроты зрения используют специальные таблицы, на которых изображены буквы или фигурки различного размера.

Поле зрения – это пространство, которое воспринимается одним глазом при неподвижном его состоянии. Изменение поля зрения может быть ранним признаком некоторых заболеваний глаз и головного мозга.

Механизм фоторецепции основан на поэтапном превращении зрительного пигмента родопсина под действием квантов света. Последние поглощаются группой атомов (хромофоры) специализированных молекул – хромолипопротеинов. В каче­стве хромофора, который определяет степень поглощения света в зрительных пигментах, выступают альдегиды спиртов витамина А, или ретиналь. Ретиналь в норме (в темноте) связывается с бесцветным белком опсином, образуя при этом зрительный пигмент родопсин. При поглощении фотона цис-ретиналь переходит в полную трансформу (изменяет конформацию) и отсоединяется от опсина, при этом в фоторецепторе запускается электрический импульс, который направляется в головной мозг. При этом молекула теряет цвет, и этот процесс называют выцветанием. После прекращения воздействия света родопсин тотчас же ресинтезируется. В полной темноте необходимо около 30 минут, чтобы все палочки адап­тировались и глаза приобрели максимальную чувствительность (весь цис-ретиналь соединился с опсином, вновь образуя родопсин). Этот процесс беспрерывный и лежит в основе темновой адаптации.

От каждой фоторецепторной клетки отходит тонкий отросток, заканчивающийся в наружном сетчатом слое утолщением, которое образует синапс с отростками биполярных нейронов.

Ассоциативные нейроны , расположенные в сетчатке, передают возбуждение от фоторецепторных клеток к крупным оптикоганглионарным невроцитам , аксоны которых (500 тыс – 1 млн) и образуют зрительный нерв, который выходит из глазницы через канал зрительного нерва. На нижней поверхности мозга образуется перекрест зрительных нервов. Информация от латеральных частей сетчатки, не перекрещиваясь, направляется в зрительный тракт, а от медиальных – перекрещивается. Затем импульсы проводятся к подкорковым центрам зрения, которые расположены в среднем и промежуточном мозге: верхние холмики среднего мозга обеспечивают ответную реакцию на неожиданные зри­тельные раздражители; задние ядра таламуса (зрительного бугра) промежуточного мозга обеспечивают бессознательную оценку зрительной информации; от латеральных коленчатых тел промежуточного мозга по зрительной лучистости импульсы направляются к корковому центру зрения. Он расположен в шпорной борозде затылочной доли и обеспечивает сознательную оценку поступившей информации (рис. 9.5).

  • Инж. геол. изыск.проводят для сбора данных характерных геологическое строение местности по к-ой прокладывается дорога и ее гидрогеологические условия

  • У человека есть удивительный дар, который он не всегда ценит, — возможность видеть. Человеческий глаз способен различать мелкие предметы и малейшие оттенки, при этом видеть не только днем, но и ночью. Специалисты утверждают, что с помощью зрения мы узнает от 70 до 90 процентов всей информации. Многие произведения искусства не были бы возможны при отсутствии глаз.

    Поэтому разберемся подробнее, зрительный анализатор – что это такое, какие он выполняет функции, какое имеет строение?

    Составляющие зрения и их функции

    Начнем с рассмотрения строения зрительного анализатора, состоящего из:

    • глазного яблока;
    • проводящих путей — по ним картинка, зафиксированная глазом, подается в подкоровые центры, а потом и в кору мозга.

    Поэтому в целом выделяют три отдела зрительного анализатора:

    • периферическая – глаза;
    • проводниковая – зрительный нерв;
    • центральная – зрительная и подкорковая зоны коры головного мозга.

    Зрительный анализатор еще называют зрительной секреторной системой. Глаз включает в себя глазницу, а также вспомогательный аппарат.

    Центральная часть находится в основном в затылочной части мозговой коры. Вспомогательный аппарат глаза представляет собой систему защиты и движения. В последнем случае внутренняя часть век имеет слизистую оболочку, называемую конъюнктивой. Защитная система включает нижнее и верхнее веко с ресницами.

    Пот с головы спускается вниз, но не попадает в глаза за счет существования бровей. В слезах есть лизоцим, который убивает вредоносные микроорганизмы, попадающие в глаза. Моргание век способствует регулярному увлажнению яблока, после чего слезы спускаются ближе к носу, где попадают в слезной мешок. Дальше они переходят в полость носа.

    Глазное яблоко двигается постоянно, для чего предусмотрено 2 косые и 4 прямые мышцы. У здорового человека оба глазных яблока перемещаются в одном направлении.

    Диаметр органа составляет 24 мм, а его масса – около 6-8 г. Яблоко располагается в глазнице, сформированной костями черепа. Есть три оболочки: сетчатка, сосудистая и наружная.

    Наружная

    Внешняя оболочка имеет роговицу и склеру. В первой нет кровеносных сосудов, однако имеет множество нервных окончаний. Питание осуществляется благодаря межклеточной жидкости. Роговица пропускает свет, а также выполняет защитную функцию, предотвращая повреждение внутренности глаза. Она имеет нервные окончания: в результате попадания на нее даже небольшой пыли появляются режущие боли.

    Склера имеет либо белый, либо голубоватый цвет. К ней фиксируются глазодвительные мышцы.

    Средняя

    В средней оболочке можно выделить три части:

    • сосудистая оболочка, находящаяся под склерой, имеет множество сосудов, поставляет кровь для сетчатки;
    • ресничное тело контактирует с хрусталиком;
    • радужка – зрачок реагирует на интенсивность света, который попадает на сетчатку (расширяется при слабом, сужается при сильном освещении).

    Внутренняя

    Сетчатка – мозговая ткань, которая позволяет реализовать функцию зрения. Она выглядит как тонкая оболочка, прилегающая по всей поверхности к сосудистой оболочке.

    Глаз имеет две камеры, заполненные прозрачной жидкостью:

    • переднюю;
    • заднюю.

    В итоге можно выделить факторы, которые обеспечивают выполнение всех функций зрительного анализатора:

    • достаточное количество света;
    • фокусировка картинки на сетчатке;
    • аккомодационный рефлекс.

    Глазодвигательные мышцы

    Они являются частью вспомогательной системы органа зрения и зрительного анализатора. Как отмечалось, есть две косые и четыре прямые мышцы.

    • нижняя;
    • верхняя.
    • нижняя;
    • латеральная;
    • верхняя;
    • медиальная.

    Прозрачные среды внутри глаз

    Они необходимы, чтобы пропускать лучи света к сетчатке, а также их преломлять в роговице. Дальше лучи попадают в переднюю камеру. Затем преломление осуществляется хрусталиком – линзой, меняющей силу преломления.

    Можно выделить два основных нарушения зрения:

    • дальнозоркость;
    • близорукость.

    Первое нарушение образуется при снижении выпуклости хрусталика, близорукость – наоборот. В хрусталике нет нервов, сосудов: развитие воспалительных процессов исключено.

    Бинокулярное зрение

    Чтобы получить одну картинку, сформированную двумя глазами, картинка фокусируется в одной точке. Такие линии зрения расходятся при взгляде на удаленные объекты, сходятся – близкие.

    Еще благодаря бинокулярному зрению можно определить нахождение объектов в пространстве по отношению друг к другу, оценивать их удаленность, прочее.

    Гигиена зрения

    Мы рассмотрели строение зрительного анализатора, а также определенным образом разобрались, как ведется работа зрительного анализатора. А напоследок стоит узнать, как же правильно следить за гигиеной органов зрения, чтобы обеспечить их эффективную и бесперебойную работу.

    • необходимо защищать глаза от механического воздействия;
    • читать книги, журналы и прочую текстовую информацию необходимо с хорошим освещением, держать объект чтения на должном расстоянии – около 35 см;
    • желательно, чтобы свет падал слева;
    • чтение на коротком расстоянии способствует развитию близорукости, поскольку хрусталику длительное время приходится пребывать в выпуклом состоянии;
    • нельзя допускать воздействия излишне яркого освещения, которое способно разрушить световоспринимающие клетки;
    • не стоит читать в транспорте или лежа, поскольку в этом случае постоянно меняется фокусное расстояние, снижается эластичность хрусталика, ослабевает ресничная мышца;
    • нехватка витамина А может спровоцировать снижение остроты зрения;
    • частые прогулки на свежем воздухе – хорошая профилактика многих заболеваний глаз.

    Подведение итогов

    Следовательно, можно отметить, что зрительный анализатор представляет собой непростой, но весьма важный инструмент для обеспечения качественной жизни человека. Не зря изучение органов зрения переросло в отдельную дисциплину – офтальмологию.

    Кроме определенной функции, глаза играют еще и эстетическую роль, украшая человеческое лицо. Поэтому зрительный анализатор – очень важный элемент организма, очень важно соблюдать гигиену органов зрения, периодически приходить на осмотр к врачу и правильно питаться, вести здоровый образ жизни.

    Возрастная анатомия и физиология сенсорных систем организма человека.

    Классификация анализаторов, их строение и функции

    По определению И.П. Павлова, анализаторы – это сложные нервные аппараты, воспринимающие и анализирующие раздражения, которые поступают из внешней и внутренней сред организма.

    Анализатор включает:

    Рецептор – периферический отдел, проводниковый отрезок, центральный – мозговой, или, точнее, корковый, отдел анализатора, в котором рождается ощущение.

    Все звенья анализатора действуют как единое целое. При повреждении любого из трех звеньев происходит нарушение работы анализатора.

    Анализаторы организма человека: зрительный, обонятельный, слуховой, мышечный, вестибулярный, кожный, вкусовой.

    Периферическим отделом зрительной сенсорной системой является глаз, который расположен в углублении черепа – глазнице.

    Сзади и с боков он защищен от внешних воздействий костными стенками глазницы, а спереди – веками. Он состоит из глазного яблока и вспомогательных структур: слезных желез, ресничной мышцы, кровеносных сосудов и нервов. Слезная железа выделяет жидкость, предохраняющую глаз от высыхания. Равномерному распределению слезной жидкости по поверхности глаза способствует мигание век.

    Глазное яблоко ограниченно тремя оболочками – наружной, средней и внутренней. Наружная оболочка глаза – склера, или белочная оболочка. Это плотная непрозрачная ткань белого цвета, толщиной около 1 мм, в передней части она переходит в прозрачную роговицу.

    Под склерой расположена сосудистая оболочка глаза, толщина которой не превышает 0,2–0,4 мм. В ней содержится большое количество кровеносных сосудов. В переднем отделе глазного яблока сосудистая оболочка переходит в ресничное (цилиарное) тело и радужную оболочку (радужку).

    В центре радужки располагается зрачок, его диаметр изменяется, от чего в глаз может попадать большее или меньшее количество света. Просвет зрачка регулируется мышцей, находящейся в радужке.

    В радужной оболочке содержится особое красящее вещество – меланин. От количества этого пигмента цвет радужки может колебаться от серого и голубого до коричневого, почти черного. Цветом радужки определяется цвет глаз. Если пигмент отсутствует (таких людей называют альбиносами), лучи света могут проникать в глаз не только через зрачок, но и через ткань радужки. У альбиносов глаза имеют красноватый оттенок, зрение понижено.

    В ресничном теле расположена мышца, связанная с хрусталиком и регулирующая его кривизну.

    Хрусталик – прозрачное, эластичное образование, имеет форму двояковыпуклой линзы. Он покрыт прозрачной сумкой, по всему его краю к ресничному телу тянутся тонкие, но очень упругие волокна. Они сильно натянуты и держат хрусталик в растянутом состоянии.



    В передней и задней камере глаза находиться прозрачная жидкость, которая снабжает питательными веществами роговицу и хрусталик. Полость глаза позади хрусталика заполнена прозрачной желеобразной массой – стекловидным телом . Оптическая система глаза представлена роговицей, камерами глаза, хрусталиком и стекловидным телом. Каждая из этих сред имеет свой показатель оптической силы.

    Оптическая сила выражается в диоптриях . Одна диоптрия (дптр) – это оптическая сила линзы с фокусным расстоянием 1 м. Оптическая сила системы глаза в целом – 59 дптр при рассматривании далеких предметов и 70,5 дптр при рассматривании близких предметов.

    Глаз – чрезвычайно сложная оптическая система, которую можно сравнить с фотоаппаратом, в котором объективом выступают все части глаза, а фотопленкой – сетчатка. На сетчатке фокусируются лучи света, давая уменьшенное и перевернутое изображение. Фокусировка происходит за счет изменение кривизны хрусталика: при рассматривании близкого предмета он становится выпуклым, а при рассматривании удаленного – более плоским.

    Световоспринимающий аппарат глаза. Внутренняя поверхность глаза выстлана тонкой (0,2–0,3 мм), весьма сложной по строению оболочкой – сетчаткой, или ретиной, на которой находятся светочувствительные клетки – палочки и колбочки, или рецепторы (рис. 5.5).

    Колбочки сосредоточены в основном в центральной области сетчатки – в желтом пятне. По мере удаления от центра число колбочек уменьшается, а палочек – возрастает. На периферии сетчатки имеются только палочки. У взрослого человека насчитывается 6–7 млн. палочек, которые обеспечивают восприятие дневного и сумеречного света. Колбочки являются рецепторами цветного зрения, палочки – черно-белого.

    Местом наилучшего видения является желтое пятно, и особенно его центральная ямка. Такое зрение называют центральным. Остальные части сетчатки принимают участие в боковом, или периферическом, зрении. Центральное зрение обеспечивает возможность рассматривать мелкие детали предметов, а периферическое позволяет ориентироваться в пространстве.

    В палочках содержится особое вещество пурпурного цвета – зрительный пурпур, или родопсин, в колбочках – вещество фиолетового цвета – йодопсин, который, в отличие от родопсина, в красном свете выцветает.

    Возбуждение палочек и колбочек вызывает появление нервных импульсов в связанных с ними волокнах зрительного нерва. Колбочки менее возбудимы, поэтому, если слабый свет попадает в центральную ямку, где находятся колбочки, а палочек нет, мы его видим очень плохо или не видим вовсе. Зато слабый свет хорошо виден, когда он попадает на боковые поверхности сетчатки. Таким образом, при ярком освещении функционируют в основном колбочки, при слабом освещении – палочки.

    В сумерках при слабом освещении мы видим за счет зрительного пурпура. Распад зрительного пурпура под действием света вызывает возникновение импульсов возбуждения в окончаниях зрительного нерва и является начальным моментом зрительной афферентации.

    Зрительный пурпур на свету распадается на белок опсин и пигмент ретинен – производное витамина А. В темноте витамин А превращается в ретинен, который соединяется с опсином и образует родопсин, т. е. зрительный пурпур восстанавливается. В темноте сетчатка содержит мало витамина А, а на свету обнаруживается значительное его количество. Следовательно, витамин А – источник зрительного пурпура.

    Недостаток в пище витамина А сильно нарушает образование зрительного пурпура, что вызывает резкое ухудшение сумеречного зрения, так называемую куриную слепоту (гемералопию).

    Рецепторы сетчатки передают сигналы по волокнам зрительного нерва, в котором насчитывают до 1 млн. нервных волокон, только один раз, в момент появления нового предмета. Затем добавляются сигналы о наступающих изменениях в изображении предмета по сравнению с его прежним изображением и о его исчезновении. Зрительные ощущения возникают только в момент фиксации взгляда в ряде последовательных точек предмета.

    Проводниковый отдел зрительной сенсорной системы – это зрительный нерв, ядра верхних бугров четверохолмия среднего мозга, ядра наружного коленчатого тела промежуточного мозга.

    Центральный отдел зрительного анализатора расположен в затылочной доле.

    Возрастные особенности. Элементы сетчатки начинают развиваться на 6–10-й неделе внутриутробного развития, но окончательное ее морфологическое созревание происходит лишь к 10–12-ти годам. В процессе развития существенно меняются цветоощущения ребенка. У новорожденного в сетчатке функционируют только палочки, обеспечивающие черно-белое зрение. Колбочки, ответственные за цветовое зрение, еще не зрелые, и их количество невелико. И хотя функции цветоощущения у новорожденных есть, но полноценное включение колбочек в работу происходит только к концу 3-го года жизни. По мере созревания колбочек дети начинают различать сначала желтый, потом зеленый, а затем красный цвета (уже с 3-х месяцев удавалось выработать условные рефлексы на эти цвета); распознавание цветов в более раннем возрасте зависит от яркости, а не от спектральной характеристики цвета. Полностью различать цвета дети начинают с конца 3-го года жизни. В школьном возрасте различительная цветовая чувствительность глаза повышается. Максимального развития ощущение цвета достигает к 30-ти годам и затем постепенно снижается. Важное значение для формирования этой способности имеет тренировка.

    Миелинизация проводящих путей начинается лишь на 8–9-м месяце внутриутробного развития, и заканчивается лишь к 3–4-му году жизни.

    Корковый отдел зрительного анализатора в основном формируется на 6–7-м месяце внутриутробной жизни, но окончательно зрительная кора созревает к 7-летнему возрасту.

    Что касается дорецепторных структур, то у новорожденного глазное яблоко составляет 16 мм, а его масса 3,0 г. Рост глазного яблока продолжается после рождения. Интенсивнее всего оно растет первые 5 лет жизни, менее интенсивно – до 9–12-ти лет. У взрослых диаметр глазного яблока составляет около 24 мм, а вес 8,0 г.

    У новорожденных форма глазного яблока более шаровидная, чем у взрослых, в результате в 80–94% случаев у них отмечается дальнозоркая рефракция (см. рис. 5.6, с. 128). Повышенная растяжимость и эластичность склеры у детей способствует легкой деформации глазного яблока, что важно в формировании рефракции глаза. Так, если ребенок играет, рисует или читает, низко наклонив голову, в силу давления жидкости на переднюю стенку, глазное яблоко удлиняется и развивается близорукость (рис. 5.6).

    В первые годы жизни радужка содержит мало пигментов и имеет голубовато-сероватый оттенок, а окончательное формирование ее окраски завершается только к 10–12-ти годам.

    Зрачок у новорожденных узкий. В возрасте 6–8-ми лет зрачки широкие из-за преобладания тонуса симпатических нервов, иннервирующих мышцы радужной оболочки, что повышает риск солнечных ожогов сетчатки. В 8–10 лет зрачок вновь становится узким, а к 12–13-ти годам быстрота и интенсивность зрачковой реакции на свет такие же, как и у взрослого.

    У новорожденных и детей дошкольного возраста хрусталик более выпуклый и более эластичный, чем у взрослого, и его преломляющая способность выше. Это делает возможным четкое видение предмета при большем приближении его к глазу, чем у взрослого. В свою очередь, привычка рассматривать предметы на малом расстоянии может приводить к развитию косоглазия.

    Сенсорные и моторные функции зрения развиваются одновременно. В первые дни после рождения движения глаз несинхронны, при неподвижности одного глаза можно наблюдать движение другого. Способность фиксировать взглядом предмет, или, образно говоря, «механизм точной настройки», формируется в возрасте от 5-ти дней до 3–5-ти месяцев. Функциональное созревание зрительных зон коры головного мозга, по некоторым данным, происходит уже к рождению ребенка, по другим – несколько позже.

    Реакция на форму предмета отмечается уже у 5-месячного ребенка. У дошкольников первую реакцию вызывает форма предмета, затем его размеры и в последнюю очередь – цвет.

    Острота зрения с возрастом повышается, улучшается и стереоскопическое зрение.

    Стереоскопическое зрение к 17–22-м годам достигает своего оптимального уровня, причем с 6-ти лет у девочек острота стереоскопического зрения выше, чем у мальчиков.

    В 7–8 лет глазомер у детей значительно лучше, чем у дошкольников, но хуже, чем у взрослых; половых различий не имеет. В дальнейшем у мальчиков линейный глазомер становиться лучше, чем у девочек.

    Интенсивно увеличивается и поле зрение у детей, к 7-ми годам его размер составляет приблизительно 80% от размера поля зрения взрослого человека. В развитии поля зрения наблюдаются половые особенности.

    Нарушения зрения. Коррекция зрения. Важное значение в процессе обучения и воспитания детей с дефектами органов чувств имеет высокая пластичность нервной системы, позволяющая компенсировать выпавшие функции за счет оставшихся. Известно, что у слепоглухих детей повышена чувствительность вкусового и обонятельного анализаторов. С помощью обоняния они могут хорошо ориентироваться на местности и узнавать родственников и знакомых. Чем более выражена степень поражения органов чувств ребенка, тем более трудной становится и учебно-воспитательная работа с ним.

    Подавляющая часть всей информации из окружающего мира (примерно 90%) поступает в наш мозг через зрительные и слуховые каналы, поэтому для нормального физического и психического развития детей и подростков особое значение имеют органы зрения и слуха.

    Среди дефектов зрения наиболее часто встречаются различные формы нарушения рефракции оптической системы глаза или нарушения нормальной длины глазного яблока. В результате лучи, идущие от предмета, преломляются не на сетчатке. При слабой рефракции глаза вследствие нарушения функций хрусталика – его уплощения, или при укорочении глазного яблока, изображение предмета оказывается за сетчаткой. Люди с такими нарушениями зрения плохо видят близкие предметы; такой дефект называют дальнозоркостью.

    При усилении физической рефракции глаза, например, из-за повышения кривизны хрусталика, или удлинении глазного яблока, изображение предмета фокусируется впереди сетчатки, что нарушает восприятия удаленных предметов. Этот дефект зрения называют близорукостью.

    При развитии близорукости школьник плохо видит написанное на классной доске, просит пересадить его на первые парты. При чтении он приближает книгу к глазам, сильно склоняет голову во время письма, в кино или в театре стремится занять место поближе к экрану или сцене. При рассматривании предмета ребенок прищуривает глаза. Что бы сделать изображение на сетчатке более четким, он чрезмерно приближает рассматриваемый предмет к глазам, что вызывает значительную нагрузку на мышечный аппарат глаза. Нередко мышцы не справляются с такой работой, и один глаз отклоняется в сторону виска – возникает косоглазие. Близорукость может развиваться при таких заболеваниях, как рахит, туберкулез, ревматизм.

    Частичное нарушение цветового зрения получило название дальтонизма (по имени английского химика Дальтона, у которого впервые был обнаружен этот дефект). Дальтоники обычно не различают красный и зеленый цвета (они им кажутся серыми разных оттенков). Около 4–5% всех мужчин страдают дальтонизмом. У женщин он встречается реже (до 0,5%). Для обнаружения дальтонизма пользуются специальными цветовыми таблицами.

    Профилактика нарушений зрения основывается на создании оптимальных условий для работы органа зрения. Зрительное утомление приводит к резкому снижению работоспособности детей, что отражается на их общем состоянии. Своевременная смена видов деятельности, изменение обстановки, в которой проводятся учебные занятия, способствуют повышению работоспособности.

    Большое значение имеет правильный режим труда и отдыха, школьная мебель, отвечающая физиологическим особенностям учащихся, достаточное освещение рабочего места и др. во время чтения каждые 40-60 мин необходимо делать перерыв на 10-15 мин, чтобы дать отдохнуть глазам; для снятия напряжения аппарата аккомодации детям рекомендуют посмотреть вдаль.

    Кроме того, важная роль в охране зрения и его функции принадлежит защитному аппарату глаза (веки, ресницы), который требуют бережного ухода, соблюдения гигиенических требований и своевременного лечения. Неправильное использование косметических средств может привести к конъюнктивитам, блефаритам и другим заболеваниям органов зрения.

    Особое внимание следует обратить на организацию работы с компьютерами, а также просмотр телевизионных передач. При подозрении на нарушение зрения необходима консультация врача – офтальмолога.

    До 5-ти лет у детей преобладает гиперметропия (дальнозоркость). При данном дефекте помогают очки с собирательными двояковыпуклыми стеклами (придающими проходящим через них лучам сходящееся направление), которые улучшают остроту зрения и снижают излишнее напряжение аккомодации.

    В дальнейшем в связи с нагрузкой при обучении частота гиперметрии снижается, а частота эмметропии (нормальной рефракции) и миопии (близорукости) увеличивается. К окончанию школы по сравнению с начальными классами распространенность близорукости возрастает в 5 раз.

    Формированию и прогрессированию близорукости способствует дефицит света. В условиях Заполярья, при постоянном искусственном освещении в период полярной ночи, в тех школах, где уровень освещенности на рабочих местах был в 5–10 раз ниже гигиенических нормативов, у детей и подростков близорукость развивалась чаще.

    Острота зрения и устойчивость ясного видения у учащихся существенно снижаются к окончанию уроков, и это снижение тем резче, чем ниже уровень освещенности. С повышением уровня освещенности у детей и подростков увеличивается быстрота различения зрительных стимулов, возрастает скорость чтения, улучшается качество работы. При освещенности рабочих мест 400 лк без ошибок было выполнено 74% работ, при освещенности 100 лк и 50 лк – соответственно 47 и 37%.

    При хорошем освещении у нормально слышащих детей у подростков обостряется острота слуха, что также благоприятствует работоспособности, положительно сказывается на качестве работы. Так, если диктанты проводились при уровне освещенности 150 лк, число пропущенных или написанных с ошибками слов было на 47% меньше, чем в аналогичных диктантах, проведенных при освещенности 35 лк.

    На развитие близорукости оказывает влияние учебная нагрузка, непосредственно связанная с необходимостью рассматривать объекты на близком расстоянии, ее продолжительность в течение дня.

    Следует также знать, что у учащихся, мало бывающих или совсем не бывающих на воздухе в околополуденное время, когда интенсивность ультрафиолетовой радиации максимальна, нарушается фосфорно-кальциевый обмен. Это приводит к уменьшению тонуса глазных мышц, что при высокой зрительной нагрузке и недостаточной освещенности способствует развитию близорукости и ее прогрессированию.

    Больными считаются дети, у которых миопическая рефракция составляет 3,25 дптр и выше, а острота зрения с коррекцией – 0,5–0,9. Таким учащимся рекомендованы занятия физической культурой только по специальной программе. Им также противопоказано выполнение тяжелой физической работы, длительное пребывание в согнутом положении с наклоненной головой.

    С целью профилактики близорукости необходимы ежегодные медицинские осмотры учащихся врачом – окулистом. При миотопии слабой и средней степени, гиперметропии, астигматизме учащиеся осматриваются окулистом один раз в год, а в случаях высокой степени миопии (более 6,0 дптр) – два раза в год.

    При близорукости назначают очки с рассеивающими двояковогнутыми стеклами, которые превращают параллельные лучи в расходящиеся. Близорукость в большинстве случаев врожденная, но она может увеличиваться в школьном возрасте от младших классов к старшим. В тяжелых случаях близорукость сопровождается изменениями сетчатки, что ведет к падению зрения и даже отслойке сетчатки. Поэтому детям, страдающим близорукостью, необходимо строго выполнять предписания окулиста. Своевременное ношение очков школьниками является обязательным.

    Строение и функции слухового анализатора

    Периферический отдел слуховой сенсорной системы состоит из трех частей: наружного, среднего и внутреннего уха.

    Наружное ухо включает ушную раковину и наружный слуховой проход.

    Ушная раковина предназначена для улавливания звуковых колебаний, которые далее передаются по наружному слуховому проходу к барабанной перепонке. Наружный слуховой проход имеет длину около 24 мм, он выстлан кожей, снабженной тонкими волосками и особыми потовыми железами, которые выделяют ушную серу. Ушная сера состоит из жировых клеток, содержащих пигмент. Волоски и ушная сера выполняют защитную роль.

    Барабанная перепонка находится на границе между наружным и средним ухом. Она очень тонкая (около 0,1 мм), снаружи покрыта эпителием, а изнутри – слизистой оболочкой. Барабанная перепонка расположена наклонно и при воздействии на нее звуковых волн начинает колебаться. И так как барабанная перепонка не имеет собственного периода колебаний, то она колеблется при всяком звуке соответственно его частоте и амплитуде.

    Среднее ухо представлено барабанной полостью неправильной формы в виде маленького плоского барабана, на который туго натянута колеблющаяся перепонка, и слуховой, или евстахиевой, трубой.

    В полости среднего уха расположены сочленяющиеся между собой слуховые косточки – молоточек, наковальня, стремечко. Среднее ухо отделено от внутреннего перепонкой овального окна.

    Рукоятка молоточка одним концом соединена с барабанной перепонкой, другим с наковальней, которая в свою очередь с помощью сустава подвижно соединена со стремечком. К стремечку прикреплена стременная мышца, удерживающая его у перепонки овального окна преддверия. Звук, пройдя наружное ухо, действует на барабанную перепонку, с которой соединен молоточек. Система этих трех косточек увеличивает давление звуковой волны в 30–40 раз и передает ее на перепонку овального окна преддверия, где она трансформируется в колебания жидкости – эндолимфы .

    Посредствам слуховой трубы барабанная полость соединена с носоглоткой. Функция евстахиевой трубы заключается в выравнивании давления на барабанную перепонку изнутри и снаружи, что создает наиболее благоприятные условия для ее колебания. Поступление воздуха в барабанную полость происходит во время глотания или зевания, когда просвет трубы открывается, и давление в глотке и барабанной полости выравнивается.

    Внутреннее ухо представляет собой костный лабиринт, внутри которого находится перепончатый лабиринт из соединительной ткани. Между костным и перепончатым лабиринтом имеется жидкость – перилимфа, а внутри перепончатого лабиринта – эндолимфа.

    В центре костного лабиринта находится преддверие, спереди от него улитка, а сзади – полукружные каналы. Костная улитка – спирально извитой канал, образующий 2,5 оборота вокруг стержня конической формы. Диаметр костного канала у основания улитки 0,04 мм, а на вершине – 0,5 мм. От стержня отходит костная спиральная пластинка, которая делит полость канала на две части, или лестницы.

    В улитковом ходе, внутри среднего канала улитки, находится звуковоспринимающий аппарат – спиральный, или кортиев, орган. Он имеет базальную (основную) пластину, которая состоит из 24 тыс. тонких фибриозных волоконец различной длины, очень упругих и слабо связанных друг с другом. Вдоль нее в 5 рядов располагаются опорные и волосковые чувствительные клетки, которые являются собственно слуховыми рецепторами.

    Рецепторные клетки имеют удлиненную форму. Каждая волосковая клетка несет 60–70 мельчайших волосков (длиной 4–5 мкм), которые омываются эндолимфой и контактируют с покровной пластиной. Слуховой анализатор воспринимает звук различных тонов. Основной характеристикой каждого звукового тона является длина звуковой волны.

    Длина звуковой волны определяется расстоянием, которое проходит звук за 1 сек., деленным на число полных колебаний, совершаемых звучащим телом за это же время. Чем больше число колебаний, тем меньше длина волны. У высоких звуков волна короткая, измеряемая в миллиметрах, у низких – длинная, измеряемая в метрах.

    Высота звука определяется его частотой, или числом колебаний за 1 сек. Частота измеряется в герцах (Гц). Чем больше частота звука, тем звук выше. Сила звука пропорциональна амплитуде колебаний звуковой волны и измеряется в белах (чаще применяется децибел, дБ).

    Звук улавливается ушной раковиной, направляется по наружному слуховому проходу к барабанной перепонке. Колебания барабанной перепонки передаются через среднее ухо, в котором имеются три слуховые косточки. Через систему рычага они усиливают звуковые колебания и передают их жидкости, находящейся между костным и перепончатым лабиринтом улитки. Волны, достигая основания улитки, вызывают смещение основной мембраны, с которой соприкасаются волосковые клетки. Клетки начинают колебаться, вследствие чего возникает рецепторный потенциал, возбуждающий окончания нервных волокон. Эластичность основной мембраны на разных участках не одинакова. Вблизи овального окна мембрана уже и жестче, далее – шире и эластичнее. Волосковые клетки в узких отрезках воспринимают звуки высокими частотами, а в более широких – с низкими частотами.

    Различение звуков происходит на уровне рецепторов. Сила звука кодируется числом возбужденных нейронов и частотой их импульсации. Внутренние волосковые клетки возбуждаются при большой силе звука, наружные при меньшей.

    Проводниковый отдел . Волосковые клетки охватываются нервными волокнами улитковой ветви слухового нерва, который несет нервный импульс в продолговатый мозг, далее, перекрещиваясь со вторым нейроном слухового пути, он направляется к задним буграм четверохолмия и ядрам внутренних коленчатых тел промежуточного мозга, а от них – в височную область коры, где располагается центральная часть слухового анализатора.

    Центральный отдел слухового анализатора расположен в височной доле. Первичная слуховая кора занимает верхний край верхней височной извилины, она окружена вторичной корой. Смысл услышанного интерпретируется в ассоциативных зонах. У человека в центральном ядре слухового анализатора особое значение имеет зона Вернике, расположенная в задней части верхней височной извилины. Эта зона ответственна за понимание смысла слов, она является центром сенсорной речи. При длительном действии сильных звуков возбудимость звукового анализатора понижается, а при длительном пребывании в тишине возрастает. Это адаптация наблюдается в зоне более высоких звуков.

    Возрастные особенности . Закладка периферического отдела слуховой сенсорной системы начинается на 4-й неделе эмбрионального развития. У 5-месячного плода улитка уже имеет форму и размеры, характерные для взрослого человека. К 6-му месяцу пренатального развития заканчивается дифференциация рецепторов.

    Миелинизация проводникового отдела идет медленными темпами, и заканчивается лишь к 4-м годам.

    Слуховая зона копы выделяется на 6-м месяце внутриутробной жизни, но особенно интенсивно первичная сенсорная кора развивается на протяжении второго года жизни, развитие продолжается до 7-ми лет.

    Несмотря на незрелость сенсорной системы уже в 8–9 месяцев пренатального развития ребенок воспринимает звуки и реагирует на них движениями.

    У новорожденных орган слуха не волне развит, и нередко считают, что ребенок рождается глухим. В действительности имеет место относительная глухота, которая связана с особенностями строения уха. Наружный слуховой проход у новорожденных короткий и узкий и поначалу расположен вертикально. До 1 года он представлен хрящевой тканью, которая в дальнейшем окостеневает, этот процесс длится до 10–12-ти лет. Барабанная перепонка расположена почти горизонтально, она намного толще, чем у взрослых. Полость среднего уха заполнена амниотической жидкостью, что затрудняет колебания слуховых косточек. С возрастом эта жидкость рассасывается, и полость заполняется воздухом. Слуховая (евстахиева) труба у детей шире и короче, чем у взрослых, и через нее в полость среднего уха могут попадать микробы, жидкости при насморке, рвоте и др. Этим объясняется довольно частое у детей воспаление среднего уха (отит).

    С первых дней после рождения ребенок реагирует на громкие звуки вздрагиванием, изменением дыхания, прекращением плача. На 2-м месяце ребенок дифференцирует качественно разные звуки, в 3–4 месяца различает высоту звуков в пределах от 1-ой до 4-х октав, в 4–5 месяцев звуки становятся условнорефлекторными раздражителями. К 1–2-м годам дети дифференцируют звуки, разница между которыми составляет 1–2, а к 4–5-ти годам – даже ¾ и ½ музыкального тона.

    Порог слышимости также изменяется с возрастом. У детей 6–9-ти лет он составляет 17–24 дБ, у 10–12-летних – 14–19 дБ. Наибольшая острота слуха достигается к среднему и старшему школьному возрасту (14–19 лет). У взрослого порог слышимости лежит в пределах 10–12 дБ.

    Чувствительность слухового анализатора к различным частотам неодинакова в разном возрасте. Дети лучше воспринимают низкие частоты, чем высокие. У взрослых до 40 лет наибольший порог слышимости отмечается при частоте 3000 Гц, в 40–50 лет – 2000 Гц, после 50 лет – 1000 Гц, причем с этого возраста понижается верхняя граница воспринимаемых звуковых колебаний.

    Функциональное состояние слухового анализатора зависит от действия многих факторов окружающей среды. Специальной тренировкой можно добиться повышения его чувствительности. Например, занятия музыкой, танцами, фигурным катанием, спортивной и художественной гимнастикой вырабатывают тонкий слух. С другой стороны, физическое и умственное утомление, высокий уровень шумов, резкие колебания температуры и давления значительно снижают чувствительность органов слуха.

    Зрительный анализатор состоит из глазного яблока, строение которого схематично представлено на рис. 1, проводящих путей и зрительной коры головного мозга.

    Собственно глазом называется сложно устроенное, упругое, почти шарообразное тело - глазное яблоко. Оно находится в глазнице, окружено костями черепа. Между стенками глазницы и глазным яблоком есть жировая прокладка.

    Глаз состоит из двух частей: собственно глазного яблока и вспомогательных мышц, век, слезного аппарата. Как физический прибор глаз представляет подобие фотоаппарату - темную камеру, в передней части которой находится отверстие (зрачок), пропускающее в нее световые лучи. Вся внутренняя поверхность камеры глазного яблока выстлана сетчатой оболочкой, состоящей из элементов воспринимающих световые лучи и перерабатывающих их энергию в первое раздражение, которое передается далее в мозг по зрительному каналу.

    Глазное яблоко

    По форме глазное яблоко имеет не совсем правильную шаровидную форму. Глазное яблоко имеет три оболочки: наружную, среднюю и внутреннюю и ядро, то- есть хрусталик, и стекловидное тело - студенистую массу, заключенную в прозрачную оболочку.

    Наружная оболочка глаза построена из плотной соединительной ткани. Это самая плотная из всех трех оболочек, благодаря ей глазное яблоко сохраняет свою форму.

    Наружная оболочка в основном белая, поэтому ее называют белком или cклерой. Передняя ее часть отчасти видна в области глазной щели, центральная ее часть более выпукла. В своем переднем отделе она соединяется с прозрачной роговицей.

    Вместе они образуют роговидно - склеральную капсулу глаза, которая является наиболее плотной и упругой наружной частью глаза, выполняет защитную функцию, составляя как бы скелет глаза.

    Роговица

    Роговица глаза напоминает часовое стекло. Она имеет переднюю выпуклую и заднюю вогнутую поверхность. Толщина роговицы в центре около 0,6, а на периферии до 1 мм. Роговица является наиболее преломляющейся средой глаза. Она как бы является окном, через которое в глаз проходят пути света. В роговице нет кровеносных сосудов и ее питание осуществляется за счет диффузии из сосудистой сети, расположенной на границе между роговицей и склерой.

    В поверхностных слоях роговицы располагаются многочисленные нервные окончания, по этому она самая чувствительная часть тела. Даже легкое касание вызывает рефлекторное мгновенное смыкание век, что предупреждает попадание на роговицу инородных тел и ограждает ее от холод и тепловых повреждений.

    Средняя оболочка носит название сосудистой, потому что в ней сосредоточена основная масса кровеносных сосудов, питающих ткани глаза.

    В состав сосудистой оболочки входит радужка с отверстием (зрачком) посредине, выполняющая роль диафрагмы на пути лучей, идущих в глаз через роговицу.

    Радужная оболочка

    Радужная оболочка является передним, хорошо видимым отделом сосудистого тракта. Она представляет собой пигментированную круглую пластинку, расположенную между роговой оболочкой и хрусталиком.

    В радужной оболочке имеются две мышц: мышца, суживающая зрачок и мышца, расширяющая зрачок. Радужка имеет губчатую структуру и содержит пигмент, в зависимости от количества и толщины которого оболочки глаза могут быть темными (черными или коричневыми) или светлыми (серыми или голубыми).

    Сетчатка

    Внутренняя оболочка глаза - сетчатка - самая важная часть глаза. Имеет очень сложное строение и состоит глазным образом из нервных клеток. По анатомическому строению сетчатка состоит из десяти слоев. В ней различают пигментный, нервоклеточный, фоторецепторный и др.

    Наиболее важным из них является слой зрительных клеток, состоящий из световоспринимающих клеток - палочек и колбочек, осуществляющих также восприятие цвета. Количество палочек в сетчатке человека достигает 130 млн., колбочек около 7 млн. Палочки способны воспринимать даже слабые световые раздражения и являются органами сумеречного зрения, а колбочки - органами дневного зрения. В них происходит преобразование физической энергии лучей света, попадающих в глаз, в первичный импульс, который по зрительно первому пути передается в затылочную долю головного мозга, где и формируется зрительный образ.

    В центре сетчатки расположена область желтого пятна, которое осуществляет наиболее тонкое и дифференцированное зрение. В носовой поло вине сетчатой оболочки примерно в четырех мм от желтого пятна, находится место выхода зрительного нерва, образующее диск диаметром 1,5 мм.

    Из центра диска зрительного нерва выходят сосуды артерии и века, которые делятся на ветви, распределяющиеся почти по всей сетчатой оболочки. Полость глаза заполнена хрусталиком и стекловидным телом.

    Оптическую часть глаза

    Оптическую часть глаза составляют светопреломляющие среды: роговица, хрусталик, стекловидное тело. Благодаря им световые лучи, идущие от предметов вешнего мира, после своего преломления в них дают четкое изображение на сетчатой оболочке.

    Хрусталик является важнейшей оптической средой. Он представляет собой двояковыпуклую линзу, состоящую из многочисленных клеток, наслаивающихся друг на друга пластами. Он расположен между радужной оболочкой и стекловидным телом. Сосудов и нервов в хрусталике нет. Благодаря своим эластичным свойствам хрусталик может менять свою форму и становиться то более, то менее выпуклым в зависимости от того, рассматривается предмет близкого или дальнего расстояния. Этот процесс (аккомодация) осуществляется посредством особой системы глазных мышц, связанных тонкими нитями с прозрачной сумкой, в которой заключен хрусталик. Сокращение этих мышц обуславливает изменение кривизны хрусталика: он становиться выпуклее и сильнее преломляет лучи при рассматривании близко расположенных предметов, а при рассматривании далеко расположенных предметов - становиться более плоским, преломляются лучи слабее.

    Стекловидное тело

    Стекловидное тело - бесцветная студенистая масса, занимающая большую часть полости глаза. Оно располагается позади хрусталика и составляет 65 % содержимого массы глаза (4 г). Стекловидное тело является опорной тканью глазного яблока. Благодаря относительному постоянству состава и формы, практической однородности и прозрачности структуры, эластичности и упругости, тесному контакту с цилиарным телом, хрусталиком и сетчаткой, стекловидное тело обеспечивает свободное прохождение световых лучей к сетчатке, пассивно участвует в акте аккомодации. Оно создает благоприятные условия для постоянства внутриглазного давления и стабильной формы глазного яблока. Кроме того, оно выполняет и защитную функцию, предохраняет внутренние оболочки глаза (сетчатку, цилиарное тело, хрусталик) от дислокации, особенно при повреждении органов зрения.

    Функции глаза

    Основной функцией зрительного анализатора человека является восприятие света и трансформация лучей от светящихся и несветящихся предметов в зрительные образы. Центральный зрительно - нервный аппарат (колбочки) обеспечивает дневное зрение (острота зрения и цветоощущение), а периферийный зрительно-нервый аппарат - ночное или сумеречное зрение (светоощущение, темновая адаптация).