Подкорковые и корковые центры слуха. Корковые концы (центры) анализаторов

Средний мозг (mesencephalon) (рис. 4.4.1, 4.1.24) развивается в процессе филогенеза под преимущественным влиянием зрительного ре­цептора. По этой причине его образования име­ют отношение к иннервации глаза. Здесь же образовались центры слуха, которые вместе с центрами зрения в дальнейшем разрослись в виде четырех холмиков крыши среднего мозга. С появлением у высших животных и челове­ка коркового конца слухового и зрительного анализаторов слуховые и зрительные центры среднего мозга попали в подчиненное положе­ние. При этом они стали промежуточными, подкорковыми.

С развитием у высших млекопитающих и человека переднего мозга через средний мозг стали проходить проводящие пути, связываю­щие кору конечного мозга со спинным мозгом


посредством ножек мозга. В результате в сред­нем мозге человека имеются :

1. Подкорковые центры зрения и ядра нер­
вов, иннервирующих мышцы глаза.

2. Подкорковые слуховые центры.

3. Все восходящие и нисходящие проводя­
щие пути, связывающие кору головного мозга
со спинным мозгом.

4. Пучки белого вещества, связывающие
средний мозг с другими отделами центральной
нервной системы.

Соответственно этому средний мозг имеет две основные части: крышу среднего мозга (tectum mesencephalicum), где располагаются подкорковые центры слуха и зрения, и ножки мозга (cms cerebri), где преимущественно про­ходят проводящие пути .

1. Крыша среднего мозга (рис. 4.1.24) скрыта под задним концом мозолистого тела и подразделяется посредством двух идущих крест-накрест канавок - продольной и попе­речной - на четыре холмика, располагающиеся попарно.

Верхние два холмика (colliculi superiores) являются подкорковыми центрами зрения, оба нижних (colliculi inferiores) - подкорковыми


Рис. 4.1.24.Стволовая часть мозга, включающая в свой состав средний мозг (mesencephalon), задний мозг

(metencephalon) и продолговатый мозг (myelencephalon):

а - вид спереди (/-двигательный корешок тройничного нерва; 2 - чувствительный корешок тройничного нерва; 3 - базальная борозда моста; 4 - преддверно-улитковый нерв; 5 - лицевой нерв; 6 - вентролатеральная борозда продолговатого мозга; 7 - олива; 8 - циркумоливарный пучок; 9 - пирамида продолговатого мозга; 10 - передняя срединная щель; // - перекрест пирамид­ных волокон); б - вид сзади (/ - шишковидная железа; 2 - верхние бугорки четверохолмия; 3 - нижние бугорки четверохолмия; 4 - ромбовидная ямка; 5 - колено лицевого нерва; 6 - срединная щель ромбовидной ямки; 7 - верхняя ножка мозжечка; 8 - средняя ножка мозжечка; 9 - нижняя ножка мозжечка; 10 - вестибулярная область; //-треугольник подъязычного нерва; 12 - треугольник блуждающего нерва; 13 - бугорок клиновидного пучка; 14 - бугорок нежного ядра; /5 - срединная борозда)


ватыи мозг

центрами слуха. В плоской канавке между верхними бугорками лежит шишковидное тело. Каждый холмик переходит в так называемую ручку холмика (brachium colliculum), направля­ющуюся латерально, кпереди и кверху к про­межуточному мозгу. Ручка верхнего холмика (brachium colliculum superiores) идет под по­душкой зрительного бугра к латеральному ко­ленчатому телу (corpus geniculatum laterale). Ручка нижнего холмика (brachium colliculum inferiores), проходя вдоль верхнего края trigo-пит lemnisci до sulcus lateralis mesencephali, исчезает под медиальным коленчатым телом (corpus geniculatum mediale). Названные ко­ленчатые тела относятся уже к промежуточ­ному мозгу.

2. Ножки мозга (pedunculi cerebri) содержат
все проводящие пути к переднему мозгу.
Ножки мозга имеют вид двух толстых полуци­
линдрических белых тяжей, которые расходят­
ся от края моста под углом и погружаются в
толщу полушарий большого мозга.

3. Полость среднего мозга, являющаяся ос­
татком первичной полости среднего мозгового
пузыря, имеет вид узкого канала и называется
водопроводом мозга (aqueductus cerebri). Он
представляет узкий, выстланный эпендимой ка­
нал 1,5-2,0 см длиной, соединяющий III и IV
желудочки. Дорзально водопровод ограничи­
вается крышей среднего мозга, а вентрально -
покрышкой ножек мозга.

На поперечном разрезе среднего мозга раз­личают три основные части:

1. Пластинку крыши (lamina tecti).

2. Покрышку (tegmentum), представляющую
верхний отдел ножек мозга.

3. Вентральный отдел ножек мозга, или ос­
нование ножки мозга (basis pedunculi cerebri).
Соответственно развитию среднего мозга под
влиянием зрительного рецептора в нем заложе­
ны различные ядра, имеющие отношение к ин­
нервации глаза (рис. 4.1.25).

Водопровод мозга окружен центральным се­рым веществом, имеющим по своей функции отношение к вегетативной системе. В нем, под вентральной стенкой водопровода, в покрышке ножки мозга заложены ядра двух двигательных черепных нервов - п. oculomotorius (III пара) на уровне верхнего двухолмия и п. trochlearis (IV пара) на уровне нижнего двухолмия. Ядро глазодвигательного нерва состоит из несколь­ких отделов соответственно иннервации не­скольких мышц глазного яблока. Медиально и кзади от него помещаются небольшое, тоже парное, вегетативное добавочное ядро (nucleus accessorius) и непарное срединное ядро.

Добавочное ядро и непарное срединное ядро иннервируют непроизвольные мышцы гла­за (т. ciliaris и т. sphincter pupillae). Выше (ростральнее) ядра глазодвигательного нерва в покрышке ножки мозга располагается ядро медиального продольного пучка.


Рис. 4.1.25. Ядра и связи среднего мозга и его ствола (по Leigh, Zee, 1991):

1 - нижние бугорки; 2 - промежуточное ядро Кахала; 3 - ме­диальный продольный пучок; 4 - ретикулярная формация про­долговатого мозга; 5 - ядро Даркшевича; 6 - п. perihypoglos-sal; 7 - ростральный промежуточный медиальный продольный пучок; 8 -верхние бугорки; 9 -парамедианная ретикулярная формация моста; III, IV, VI - черепно-мозговые нервы

Латерально от водопровода мозга находится ядро среднемозгового тракта тройничного нер­ва (nucleus mesencephalicus n. trigemini).

Между основанием ножки мозга (basis pe­dunculi cerebralis) и покрышкой (tegmentum) располагается черное вещество (substantia nigra). В цитоплазме нейронов этой субстанции обнаруживается пигмент - меланин.

От покрышки среднего мозга (tegmentum mesencephali) отходит центральный покрышеч­ный путь (tractus tegmentalis centralis). Он представляет собой проекционный нисходящий путь, который содержит волокна, идущие от зрительного бугра, бледного шара, красного ядра, а также ретикулярной формации среднего мозга по направлению ретикулярной формации и оливы продолговатого мозга. Эти волокна и ядерные образования относятся к экстрапира­мидной системе. В функциональном отношении черное вещество также относится к экстрапи­рамидной системе.

Расположенное вентрально от черного веще­ства основание ножки мозга содержит продоль­ные нервные волокна, спускающиеся от коры полушария большого мозга ко всем нижеле­жащим отделам центральной нервной системы (tractus corticopontinus, corticonuclearis, cortico-spinalis и др.). Покрышка, находящаяся дор­зально от черного вещества, содержит преиму-


Анатомия головного мозга


Ядро VI -^

VI нерв

щественно восходящие волокна, в том числе медиальную и латеральную петли. В составе этих петель восходят к большому мозгу все чувствительные пути, за исключением зритель­ного и обонятельного.

Среди ядер серого вещества самым значи­тельным ядром является красное ядро (nucleus ruber). Это удлиненное образование простира­ется в покрышке ножки мозга от гипоталамуса промежуточного мозга до нижнего двухолмия, где от него начинается важный нисходящий путь (tractus rubrospinalis), соединяющий крас­ное ядро с передними рогами спинного мозга. Пучок нервных волокон после выхода из крас­ного ядра перекрещивается с аналогичным пуч­ком волокон противоположной стороны в вент­ральной части срединного шва - вентральный перекрест покрышки. Красное ядро является весьма важным координационным центром экс­трапирамидной системы. К нему проходят во­локна от мозжечка, после их перекреста под крышей среднего мозга. Благодаря этим связям мозжечок и экстрапирамидная система через посредство красного ядра и отходящего от него красноядерно-спинномозгового пути оказывают влияние на всю поперечнополосатую мускула­туру.

В покрышку среднего мозга продолжают­ся также ретикулярная формация (formatio reticularis) и продольный медиальный пучок. О строении ретикулярной формации излагается несколько ниже. Стоит более подробно остано­виться на медиальном продольном пучке, имею­щем большое значение в функционировании зрительной системы.

Медиальный продольный пучок (fasciculus longitudinalis medialis). Медиальный продоль­ный пучок состоит из волокон, идущих от ядер головного мозга различных уровней. Простира­ется он от ростральной части среднего мозга к спинному мозгу. На всех уровнях пучок распо­лагается вблизи срединной линии и несколько вентральней сильвиевого водопровода, четвер­того желудочка. Ниже уровня расположения ядра отводящего нерва большинство волокон нисходящие, а выше этого уровня преобладают восходящие волокна .

Медиальный продольный пучок соединяет ядра глазодвигательного, блокового и отводя­щего нервов (рис. 4.1.26).

Медиальный продольный пучок координи­рует деятельность двигательных и четырех вес­тибулярных ядер . Он также обеспечивает межсегментарную интеграцию движений, со­путствующих зрению и слуху.

Посредством вестибулярных ядер медиаль­ный пучок имеет обширные связи с клочково-узелковой долей мозжечка (lobus flocculonodu-laris), в которой обеспечивается координация сложных функций восьми черепно-мозговых и спинных нервов (зрительный, глазодвига­тельный, блоковый, тройничный, отводящий,


Рис. 4.1.26. Связь между ядрами глазодвигательного, блокового и отводящего нервов при помощи медиаль­ного продольного пучка

лицевой, преддверно-улитковый нервы) .

Нисходящие волокна формируются, глав­ным образом, в медиальном вестибулярном ядре (nucleus vestibularis medialis), ретикуляр­ной формации, верхних холмиках четверохол­мия и промежуточном ядре Кахала.

Нисходящие волокна от медиального вес­тибулярного ядра (перекрещенные и непере-крещенные) обеспечивают моносинаптическое торможение верхних шейных нейронов в лаби­ринтной регуляции положения головы относи­тельно туловища .

Восходящие волокна исходят из вестибуляр­ных ядер. Проецируются они на ядра глазо­двигательных нервов . Проекция от верхнего вестибулярного ядра проходит в меди­альном продольном пучке к блоковому и дор-зальному глазодвигательному ядру с этой же стороны (нейроны двигателя нижней прямой мышцы глаза).

Вентральные части латерального вестибу­лярного ядра (nucleus vestibularis lateralis) проецируются на противоположные ядра отво­дящего и блокового нервов, а также на часть ядер глазодвигательного комплекса.

Взаимные связи медиального продольного пучка представляют собой аксоны вставочных нейронов в ядрах глазодвигательного и отводя­щего нервов. Пересечение волокон происходит на уровне ядра отводящего нерва. Имеется так­же двусторонняя проекция глазодвигательного ядра на ядро отводящего нерва.

Вставочные нейроны глазодвигательных не­рвов и нейроны верхних холмиков четверохол­мия проецируются на ретикулярную форма­цию. Последние, в свою очередь, проецируются на червь мозжечка . В ретикулярной

Глава 4. ГОЛОВНОЙ МОЗГ И ГЛАЗ

Формации происходит переключение волокон, направляющихся от надъядерных структур к коре мозга.

Отводящие межъядерные нейроны проеци­руются, главным образом, на контрлатераль­ные глазодвигательные нейроны внутренней и нижней прямых мышц .

Верхние бугорки (холмики) четверохол­мия (collicilus superior) (рис. 4.1.24-4.1.27).

Верхние холмики четверохолмия представ­ляют собой два округлых возвышения, располо­женных на дорзальной поверхности среднего мозга. Отделены они друг от друга вертикаль­ной бороздой, содержащей эпифиз. Поперечная борозда отделяет верхние холмики от нижних холмиков. Выше верхних холмиков располага­ется зрительный бугор. Сверху по срединной линии лежит большая вена мозга.

Верхние холмики четверохолмия имеют мно­гослойное клеточное строение (см. «Зрительный путь»). К ним подходят и из них выходят многочисленные нервные тракты .

Каждый холмик получает точную топогра­фическую проекцию сетчатки (рис. 4.1.27). Дор-зальная часть четверохолмия в большей степе­ни является сенсорной. Проецируется она на наружное коленчатое тело и подушку.

Подушка зрительно­го бугра

Претек-тальная область

Рис. 4.1.27. Схематическое изображение основных свя­зей верхних бугорков четверохолмия

Вентральная часть является двигательной и проецируется на моторные субталамические области и ствол мозга .

Поверхностные слои четверохолмия осуще­ствляют обработку зрительной информации и совместно с глубокими слоями обеспечивают ориентацию головы и глаз в процессе определе­ния новых зрительных стимулов.

Стимуляция верхних холмиков у обезьяны вызывает саккадические движения, амплитуда и направление которых зависят от местополо­жения стимула. Вертикальные саккады встре­чаются при двусторонней стимуляции .

Поверхностные клетки отвечают на стацио­нарные и перемещающиеся зрительные стиму­лы. Глубокие клетки обычно возбуждаются перед саккадой.

Третий тип клеток объединяет информацию о положении глаза с информацией, получаемой от сетчатки. Благодаря этому контролируется и уточняется необходимое положение глаза отно­сительно головы. Этот сигнал используется для


воспроизведения саккады, направление которой обращено к зрительной цели . Поверхностные и глубокие слои могут функ­ционировать независимо .

Нижние холмики являются частью слухо­вого пути.

Покрышка среднего мозга расположена кпе­реди или вентральней холмиков. В продольном направлении между крышей и покрышкой сред­него мозга проходит сильвиев водопровод. По­крышка среднего мозга содержит многочислен­ные нисходящие и восходящие волокна, имею­щие отношение к соматосенсорной и двига­тельной системам. Помимо этого, в покрышке находятся несколько ядерных групп, среди ко­торых ядра III и IV пар черепно-мозговых не­рвов, красное ядро, а также скопление ней­ронов, относящихся к ретикулярной формации. Покрышку среднего мозга рассматривают как центральное скопление двигательных и ретику­лярных волокон, которые идут от промежуточ­ного мозга к продолговатому мозгу.

Вентрально или кпереди от покрышки сред­него мозга находится крупный парный пучок волокон - ножка мозга, которая содержит главным образом толстые нисходящие двига­тельные волокна, берущие свое начало в коре мозга. По ним передаются двигательные эф­ферентные импульсы из коры к ядрам череп­но-мозговых нервов и ядрам моста (tractus corticobulbaris sen corticinuclearis), а также к двигательным ядрам спинного мозга (tractus corticispinalis). Между этими важнейшими пуч­ками волокон на передней поверхности средне­го мозга и его покрышки находится большое ядро из пигментированных нервных клеток, содержащих меланин.

Претектальная область получает приво­дящие волокна от зрительного тракта (см. рис. 4.1.27). Она также получает затылочные и лобные кортикотектальные волокна, содейству­ющие вертикальному взгляду, вергентным дви­жениям глаза и его аккомодации . Нейроны этой области избирательно реа­гируют на зрительную информацию, причем с учетом изменения локализации изображения объекта на обеих сетчатках .

В претектальной области содержатся также синапсы зрачкового рефлекса. Некоторые из отводящих волокон пересекаются в области се­рого вещества, располагающегося вокруг силь-виевого водопровода. Направляются волокна к мелкоклеточным ядрам глазодвигательного нерва, управляющим пупилломоторными во­локнами.

Необходимо указать и на наличие трех по­крышечных путей, имеющих большое функцио­нальное значение. Это латеральный спиннотала-мический путь (tractus spinothalamicus late-ralis), медиальный лемнисковый путь (медиаль­ный лемниск; lemniscus medialis) и медиаль-


Анатомия головного мозга

Ный продольный пучок. Латеральный спинно-таламический путь несет афферентные болевые волокна и располагается в покрышке среднего мозга снаружи. Медиальный лемниск обеспечи­вает передачу сенсорной и тактильной инфор­мации, а также информацию о положении тела. Он располагается в области моста медиально, но смещается латерально в среднем мозге. Яв­ляется он продолжением медиальных петель. Соединяет лемниск тонкое и клиновидное ядра с ядрами зрительного бугра.

(Слуховая сенсорная система)

Вопросы лекции:

1. Структурно-функциональная характеристика слухового анализатора:

a. Наружное ухо

b. Среднее ухо

c. Внутреннее ухо

2. Отделы слухового анализатора: периферический, проводниковый, корковый.

3. Восприятие высоты, силы звука и локализации источника звука:

a. Основные электрические явления в улитке

b. Восприятие звуков различной высоты

c. Восприятие звуков различной интенсивности

d. Определение источника звука (бинауральный слух)

e. Слуховая адаптация

1. Слуховая сенсорная система – второй по значению дистантный анализатор человека, играет важную роль именно у человека в связи с возникновением членораздельной речи.

Функция слухового анализатора: превращение звуковых волн в энергию нервного возбуждения и слуховое ощущение.

Как любой анализатор, слуховой анализатор состоит из периферического, проводникового и коркового отдела.

ПЕРИФЕРИЧЕСКИЙ ОТДЕЛ

Превращает энергию звуковых волн в энергию нервного возбуждения – рецепторный потенциал (РП). Этот отдел включает:

· внутреннее ухо (звуковоспринимающий аппарат);

· среднее ухо (звукопроводящий аппарат);

· наружное ухо (звукоулавливающий аппарат).

Составляющие этого отдела объединяются в понятие орган слуха .

Функции отделов органа слуха

Наружное ухо :

a) звукоулавливающая (ушная раковина) и направляющая звуковую волну в наружный слуховой проход;

b) проведение звуковой волны через слуховой проход к барабанной перепонке;

c) механическая защита и защита от температурных воздействий окружающей среды всех остальных отделов органа слуха.

Среднее ухо (звукопроводящий отдел) – это барабанная полость с 3-мя слуховыми косточками: молоточек, наковальня и стремечко.

Барабанная перепонка отделяет наружный слуховой проход от барабанной полости. Рукоятка молоточка вплетена в барабанную перепонку, другой его конец сочленен с наковальней, которая, в свою очередь, сочленена со стремечком. Стремечко прилегает к мембране овального окна. В барабанной полости поддерживается давление, равное атмосферному, что очень важно для адекватного восприятия звуков. Эту функцию выполняет евстахиева труба, которая соединяет полость среднего уха с глоткой. При глотании труба открывается, в результате чего происходит вентиляция барабанной полости и уравнивание давления в ней с атмосферным. Если внешнее давление быстро изменяется (быстрый подъем на высоту), а глотания не происходит, то разность давлений между атмосферным воздухом и воздухом в барабанной полости приводит к натяжению барабанной перепонки и возникновению неприятных ощущений («закладывание ушей»), снижению восприятия звуков.

Площадь барабанной перепонки (70 мм 2) значительно больше площади овального окна (3,2 мм 2), благодаря чему происходит усиление давления звуковых волн на мембрану овального окна в 25 раз. Рычажный механизм косточек уменьшает амплитуду звуковых волн в 2 раза, поэтому происходит такое же усиление звуковых волн на овальном окне барабанной полости. Следовательно, среднее ухо усиливает звук примерно в 60-70 раз, а если учитывать усиливающий эффект наружного уха, то эта величина возрастает в 180-200 раз. В связи с этим, при сильных звуковых колебаниях для предотвращения разрушительного действия звука на рецепторный аппарат внутреннего уха, среднее ухо рефлекторно включает «защитный механизм». Он состоит в следующем: в среднем ухе есть 2 мышцы, одна из них натягивает барабанную перепонку, другая – фиксирует стремечко. При сильных звуковых воздействиях эти мышцы при их сокращении ограничивают амплитуду колебаний барабанной перепонки и фиксируют стремечко. Это «гасит» звуковую волну и предохраняет чрезмерное возбуждение и разрушение фонорецепторов кортиевого органа.

Внутреннее ухо : представлено улиткой – спирально закрученным костным каналом (2,5 завитка у человека). Этот канал разделен по всей его длине на три узкие части (лестницы) двумя мембранами: основной мембраной и вестибулярной мембраной (Рейснера).

На основной мембране расположен спиральный орган – орган корти (кортиев орган) – это собственно звуковоспринимающий аппарат с рецепторными клетками – это и есть периферический отдел слухового анализатора.

Геликотрема (отверстие) соединяет верхний и нижний канал на вершине улитки. Средний канал является обособленным.

Над кортиевым органом расположена текториальная мембрана, один конец которой закреплен, а другой остается свободным. Волоски наружных и внутренних волосковых клеток кортиевого органа соприкасаются с текториальной мембраной, что сопровождается их возбуждением, т.е. энергия звуковых колебаний трансформируется в энергию процесса возбуждения.

Строение кортиевого органа

Процесс трансформации начинается с попадания звуковых волн в наружное ухо; они приводят в движение барабанную перепонку. Колебания барабанной перепонки через систему слуховых косточек среднего уха передаются на мембрану овального окна, что вызывает колебания перилимфы вестибулярной лестницы. Эти колебания через геликотрему передаются на перилимфу барабанной лестницы и достигают круглого окна, выпячивая его в сторону среднего уха (это не дает затухнуть звуковой волне при прохождении по вестибулярному и барабанному каналу улитки). Колебания перилимфы передаются на эндолимфу, что вызывает колебания основной мембраны. Волокна основной мембраны приходят в колебательные движения вместе с рецепторными клетками (наружными и внутренними волосковыми клетками) кортиевого органа. При этом волоски фонорецепторов контактируют с текториальной мембраной. Реснички волосковых клеток деформируются, это вызывает формирование рецепторного потенциала, а на его основе – потенциала действия (нервный импульс), который проводится по слуховому нерву и передается в следующий отдел слухового анализатора.

ПРОВОДНИКОВЫЙ ОТДЕЛ СЛУХОВОГО АНАЛИЗАТОРА

Проводниковый отдел слухового анализатора представлен слуховым нервом . Он образован аксонами нейронов спирального ганглия (1-й нейрон проводящего пути). Дендриты этих нейронов иннервируют волосковые клетки кортиевого органа (афферентное звено), аксоны образуют волокна слухового нерва. Волокна слухового нерва заканчиваются на нейронах ядер кохлеарного тела (VIII пара ч.м.н.) (второй нейрон). Затем, после частичного перекреста, волокна слухового пути идут в медиальные коленчатые тела таламуса, где опять происходит переключение (третий нейрон). Отсюда возбуждение поступает в кору (височная доля, верхняя височная извилина, поперечные извилины Гешля) – это проекционная слуховая зона коры.

КОРКОВЫЙ ОТДЕЛ СЛУХОВОГО АНАЛИЗАТОРА

Представлен в височной доле коры больших полушарий – верхняя височная извилина, поперечные височные извилины Гешля . С этой проекционной зоны коры связаны корковые гностические слуховые зоны – зона сенсорной речи Вернике и праксическая зона – моторный центр речи Брока (нижняя лобная извилина). Содружественная деятельность трех зон коры обеспечивает развитие и функцию речи.

Слуховая сенсорная система имеет обратные связи, которые обеспечивают регуляцию деятельности всех уровней слухового анализатора с участием нисходящих путей, которые начинаются от нейронов «слуховой» коры и последовательно переключаются в медиальных коленчатых телах таламуса, нижних буграх четверохолмия среднего мозга с формированием тектоспинальных нисходящих путей и на ядрах кохлеарного тела продолговатого мозга с формированием вестибулоспинальных путей. Это обеспечивает в ответ на действие звукового раздражителя формирование двигательной реакции: поворота головы и глаз (а у животных – ушных раковин) в сторону раздражителя, а также повышение тонуса мышц-флексоров (сгибание конечностей в суставах, т.е. готовность к прыжку или бегу).

Слуховая кора

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЗВУКОВЫХ ВОЛН, КОТОРЫЕ ВОСПРИНИМАЮТСЯ ОРГАНОМ СЛУХА

1. Первой характеристикой звуковых волн является их частота и амплитуда.

Частота звуковых волн определяет высоту звука!

Человек различает звуковые волны с частотой от 16 до 20 000 Гц (это соответствует 10-11 октавам). Звуки, частота которых ниже 20 Гц (инфразвуки) и выше 20 000 Гц (ультразвуки) человеком не ощущаются!

Звук, который состоит из синусоидальных или гармонических колебаний, называют тоном (большая частота – высокий тон, малая частота – низкий тон). Звук, состоящий из не связанных между собой частот, называют шумом .

2. Второй характеристикой звука, которую различает слуховая сенсорная система, является его сила или интенсивность.

Сила звука (его интенсивность) совместно с частотой (тоном звука) воспринимается как громкость. Единица измерения громкости – бел = lg I/I 0 , однако в практике чаще используют децибел (dB) (0,1 бела). Децибел – это 0,1 десятичного логарифма отношения интенсивности звука к пороговой его интенсивности: dB = 0,1 lg I/I 0 . Максимальный уровень громкости, когда звук вызывает болевые ощущения, равен 130-140 дБ.

Чувствительность слухового анализатора определяется минимальной силой звука, вызывающей слуховые ощущения.

В области звуковых колебаний от 1000 до 3000 Гц, что соответствует человеческой речи, ухо обладает наибольшей чувствительностью. Эта совокупность частот называется речевой зоной (1000-3000 Гц). Абсолютная звуковая чувствительность в этом диапазоне равна 1*10 -12 вт/м 2 . При звуках выше 20 000 Гц и ниже 20 Гц абсолютная слуховая чувствительность резко снижается – 1*10 -3 вт/м 2 . В речевом диапазоне воспринимаются звуки, имеющие давление меньше 1/1000 бара (бар равен 1/1 000 000 части нормального атмосферного давления). Исходя из этого, в передающих устройствах, чтобы обеспечить адекватное понимание речи, информация должна передаваться в речевом диапазоне частот.

МЕХАНИЗМ ВОСПРИЯТИЯ ВЫСОТЫ (ЧАСТОТЫ), ИНТЕНСИВНОСТИ (СИЛЫ) И ЛОКАЛИЗАЦИИ ИСТОЧНИКА ЗВУКА (БИНАУРАЛЬНЫЙ СЛУХ)

Восприятие частоты звуковых волн

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Выполнила Л.Г.Дурманова МЕХАНИЗМ ЗВУКОВОСПРИЯТИЯ, ПОДКОРКОВЫЕ И КОРКОВЫЕ ЦЕНТРЫ СЛУХА

2 слайд

Описание слайда:

Человек стал Homo sapiens благодаря своей способности говорить. Хотя слух по значимости занимает второе место после зрения, но без него появление речи было бы невозможно. Выделить из колебаний воздуха только значимые и преобразовать их в понятные звуки и слова может только человеческий слуховой анализатор с его сложнейшим устройством.

3 слайд

Описание слайда:

Ушная раковина, которую в быту мы называем просто ухо, играет роль своеобразного локатора. Однако преувеличивать ее значение не стоит. Если для некоторых животных эта функция ушной раковины еще важна (не зря они прядут ушами, улавливая источник звука), то человек вполне обходится без нее (попробуйте ушами пошевелить – мало у кого это получится). Наружный слуховой проход не только место для образования серы, по нему звук достигает барабанной перепонки, за которой скрыто самое интересное – среднее и внутреннее ухо.

4 слайд

Описание слайда:

Слуховой анализатор человека состоит их четырех частей: Наружное ухо К наружному уху относятся ушная раковина, слуховой проход и барабанная перепонка, которая закрывает внутренний конец слухового прохода. Слуховой проход имеет неправильную изогнутую форму. У взрослого человека длина его составляет около 2,5 см, а диаметр около 8 мм. Поверхность слухового прохода покрыта волосками и содержит железы, выделяющие ушную серу, которая необходима для поддержания влажности кожи. Слуховой проход обеспечивает также постоянную температуру и влажность барабанной перепонки.

5 слайд

Описание слайда:

Наружное ухо Ушная раковина, которая помогает нам определить, откуда исходит звук. Слуховой проход (место, где может скапливаться ушная сера), который служит в качестве звукового канала.

6 слайд

Описание слайда:

Среднее ухо Среднее ухо – это заполненная воздухом полость за барабанной перепонкой. Эта полость соединяется с носоглоткой посредством евстахиевой трубы – узкого хрящевого канала, который обычно находится в закрытом состоянии. Глотательные движения открывают евстахиеву трубу, что обеспечивает поступление воздуха в полость и выравнивание давления по обе стороны барабанной перепонки для ее оптимальной подвижности. В полости среднего уха находятся три миниатюрные слуховые косточки: молоточек, наковальня и стремя. Одним концом молоточек соединен с барабанной перепонкой, другой его конец связан с наковальней, которая, в свою очередь соединена со стременем, а стремя с улиткой внутреннего уха. Барабанная перепонка постоянно колеблется под действием улавливаемых ухом звуков, а слуховые косточки передают ее колебания во внутреннее ухо.

7 слайд

Описание слайда:

Барабанная перепонка, которая туго натянута, подобно коже настоящего барабана, и превращает звуковые колебания в вибрации. Цепочка из трех маленьких косточек, которые называются молоточек, наковальня и стремечко и проводят вибрации во внутреннее ухо. СРЕДНЕЕ УХО

8 слайд

Описание слайда:

Внутреннее ухо Во внутреннем ухе содержится несколько структур, но к слуху отношение имеет только улитка, получившая свое название из-за спиральной формы. Улитка разделена на три канала, заполненные лимфатическими жидкостями. Жидкость в среднем канале отличается по составу от жидкости в двух других каналах. Орган, непосредственно ответственный за слух (Кортиев орган), находится в среднем канале. Кортиев орган содержит около 30000 волосковых клеток, которые улавливают колебания жидкости в канале, вызванные движением стремени, и генерируют электрические импульсы, которые по слуховому нерву передаются к слуховой зоне коры головного мозга. Каждая волосковая клетка реагирует на определенную звуковую частоту, причем высокие частоты улавливаются клетками нижней части улитки, а клетки, настроенные на низкие частоты, располагаются в верхней части улитки. Если волосковые клетки по каким-либо причинам гибнут, человек перестает воспринимать звуки соответствующих частот.

9 слайд

Описание слайда:

Внутреннее ухо Улитка, которая свернута спиралью наподобие настоящей улитки и наполнена жидкостью. Она содержит очень чувствительные клетки, которые называются волосковыми клетками, потому что на конце каждой клетки имеется крошечное образование, похожее на волосок. Волосковые клетки, колеблясь, вырабатывают электрические импульсы которые по слуховому нерву поступают в головной мозг который и распознает их как звуки.

10 слайд

Описание слайда:

11 слайд

Описание слайда:

Слуховые проводящие пути Слуховые проводящие пути – это совокупность нервных волокон, проводящих нервные импульсы от улитки к слуховым центрам коры головного мозга, в результате чего возникает слуховое ощущение. Слуховые центры расположены в височных долях головного мозга. Время, потраченное на прохождение слухового сигнала от внешнего уха к слуховым центрам мозга, составляет около 10 миллисекунд. улитка

12 слайд

Описание слайда:

С окружающим миром барабанная полость сообщается посредством слуховой (евстахиевой) трубы, которая открывается в носоглотке. Она необходима для вентиляции барабанной полости и поддержания в ней давления, одинакового с внешним. Поэтому становится ясно, почему заболевания носоглотки могут осложняться средним отитом. Трансформация механических (звуковых) колебаний в электрический сигнал, который дойдет до отделов мозга, происходит во внутреннем ухе. Воспринимающие звук волосковые клетки располагаются в улитке, которая представляет собой тонкий конус, закрученный в спираль канал из 2,5 витка. У каждой рецепторной клетки (а их количество может достигать до 25 000) на свободном конце имеются от 30-40 до 100-120 микроворсинок-волосков. Деформация волосков приводит к генерации электрических импульсов, а затем к возбуждению волокон слухового нерва, которые передают его в анализаторы головного мозга. При этом разные группы волосковых клеток «настроены» на звуки различной частоты. Высокочастотный звук улавливается клетками, расположенными внизу улитки, низкие частоты регистрируются клетками, находящимися в ее верхней части. Определенную избирательность обнаруживают и нервные элементы слухового анализатора. Таким образом, результат слаженной работы всех его отделов, чисто физический феномен – колебания воздуха, становится основой для деятельности одного из наших органов чувств

13 слайд

Описание слайда:

14 слайд

Описание слайда:

Восприятие звука Ухо последовательно преобразует звуки в механические колебания барабанной перепонки и слуховых косточек, затем в колебания жидкости в улитке и, наконец, в электрические импульсы, которые по проводящим путям центральной слуховой системы передаются в височные доли мозга для распознавания и обработки. Мозг и промежуточные узлы слуховых проводящих путей извлекают не только информацию о высоте и громкости звука, но и другие характеристики звука, например, интервал времени между моментами улавливания звука правым и левым ухом – на этом основана способность человека определять направление, по которому приходит звук. При этом мозг оценивает как информацию, полученную от каждого уха в отдельности, так и объединяет всю полученную информацию в единое ощущение. В нашем мозгу хранятся «шаблоны» окружающих нас звуков – знакомых голосов, музыки, опасных звуков и т.д. При снижении слуха мозг начинает получать искаженную информацию (звуки становятся более тихими), что приводит к ошибкам в интерпретации звуков. Для того чтобы правильно слышать и понимать звуки, необходима согласованная работа слухового анализатора и мозга. Таким образом, без преувеличения можно сказать, что человек слышит не ушами, а мозгом!

15 слайд

Описание слайда:

16 слайд

Описание слайда:

Проводящий путь слухового анализатора. Слуховой нервный импульс --- нервные клетки улитки (их аксоны образуют слуховой нерв)---волокна улиткового нерва –мозг (ядра, расположенные в мосту) ---подкорковые слуховые центры (воспринимаются импульсы подсознательно) ---корковый центр слухового анализатора. Слуховая кора осуществляет обработку информации: анализ звуковых сигналов, дифференцировку звуков. В коре формируются комплексные представления о звуковых сигналах, поступающих в оба уха раздельно, а также она отвечает за пространственную локализацию звуковых сигналов. Нервные импульсы, поступающие по проводящему пути слухового анализатора передаются на покрышечно-спинномозговой путь к передним рогам спинного мозга, а через них к скелетным мышцам. При участии покрышечно –спинномозгового пути замыкается сложная рефлекторная дуга, по которой импульсы вызывают сокращение скелетных мышц в ответ на те или иные звуковые сигналы (сторожевой, оборонительный рефлексы).

17 слайд

Описание слайда:

Путь слухового анализатора состоит из трех нейронов Первые нейроны - это биполярные клетки, находящиеся в спиральном узле улитки.Дендриты этих нейронов идут от волосковых слуховых клеток спирального (кортиева) органа, воспринимающих колебания эндолимфы и превращающих их в нервные импульсы. Аксоны биполярных клеток формируют улитковый нерв, который вместе с преддверным и лицевым нервами через внутренний слуховой проход входит в полость черепа и в мостомозжечковом углу заходит в верхние отделы продолговатого мозга и нижние отделы моста. В стволе мозга улитковый нерв отделяется от преддверного и заканчивается в вентральном и дорсальном слуховых ядрах, где расположены вторые нейроны слухового анализатора. От этих ядер слуховые волокна, к которым присоединяются проводники от дополнительных образований серого вещества (верхней оливы, ядра трапециевидного тела), частично перейдя на противоположную сторону, частично на своей стороне поднимаются в стволе мозга вверх, формируя боковую петлю.Боковая петля, состоящая из перекрещенных и неперекрещенных волокон, поднимается вверх и заканчивается в подкорковых слуховых центрах внутреннем коленчатом теле и нижнем бугорке пластинки крыши среднего мозга. Третий нейрон начинается от внутреннего коленчатого тела, проходит через внутреннюю капсулу и лучистый венец к корковому отделу слухового анализатора, расположенному в извилине Гешля в области заднего отдела верхней височной извилины. Волокна, которые заканчиваются в нижнем бугорке пластинки крыши, имеют связь с подкорковыми двигательными центрами и играют важную роль в пространственной локализации источника звука и обеспечении двигательных реакций на слуховые раздражители.19 слайд

Описание слайда:

Патология слухового анализатора. Различают такие расстройства слуха: полная потеря слуха, глухота (anacusis), снижение слуха (hypacusis), повышение восприятия (hyperacusis). Раздражение патологическим процессом нейрорецепторного слухового аппарата во внутреннем ухе или улиткового нерва сопровождается шумом, свистом, звоном в ухе, голове. Одностороннее снижение или отсутствие слуха возможно лишь при патологии лабиринта внутреннего уха, улиткового нерва или его ядер (в неврологической практике чаще при нейропатии улиткового нерва или его невриноме в мостомозжечковом углу). Одностороннее поражение боковой петли, подкоркового слухового центра или коркового отдела слухового анализатора ощутимых расстройств слуха не вызывает из-за того, что ядра улиткового нерва имеют двустороннюю связь с корковыми слуховыми центрами. В таких случаях может отмечаться лишь некоторое снижение слуха с обеих сторон. Если патологический процесс раздражает корковый отдел слухового анализатора, возникают слуховые галлюцинации, которые иногда могут быть аурой генерализованного судорожного эпилептического приступа.

20 слайд

Описание слайда:

Ослабленный, а тем более полностью потерянный слух - тяжёлый недуг, и учёные давно работают над тем, чтобы облегчить страдания людей с недостатками слуха. В тех случаях, когда нельзя путём лечения возвратить слух, пытаются достичь этого путём усиления звуковой волны. С этой целью применяются усиливающие приборы-протезы. Раньше ограничивались употреблением специальных рупоров, воронок, рогов и разговорных трубок. Теперь нередко применяются электрические усилители. Часто эти приборы бывают настолько малых размеров, что они помещаются в самом ухе, перед барабанной перепонкой.

21 слайд

Описание слайда:

5.2009-2013 LIKEBOOK.RU Электронная библиотека 6.Copyright © 2011-2013 Неврология. Онлайн-энциклопедия nevro-enc.ru 3. www.rostmaster.ru 4.tolkslovar.ru›s15462.html 1.anypsy.ru›Словарь›slukhovoi-analizator 2.BronnikovMethod.ru›tormozyashchee-deystvie-kory…0… ИНТЕРНЕТРЕСУРСЫ ЛИТЕРАТУРА 1.Иванов В.А., Яковлева Е.А. Анатомо-физиологические основы аурикулотерапии. – Курск, 2006 2.Иванов В.А. Анатомия, физиология, патология органов слуха, речи и зрения: Учебное сетевое электронное издание (IMS Content Package)/ В.А.Иванов –Курск: Курск.гос. ун-т, 2010

Сенсорная система - совокупность периферических и центральных структур нервной системы, ответственных за восприятие сигналов различных модальностей из окружающей или внутренней среды. Сенсорная система состоит из рецепторов, нейронных проводящих путей и отделов головного мозга, ответственных за обработку полученных сигналов. Наиболее известными сенсорными системами являются зрение, слух, осязание, вкус и обоняние. С помощью сенсорной системы можно почувствовать такие физические свойства, как температура, вкус, звук или давление.

Также сенсорными системами называют анализаторы. Понятие «анализатор» ввёл российский физиолог И. П. Павлов. Анализаторы (сенсорные системы) - это совокупность образований, которые воспринимают, передают и анализируют информацию из окружающей и внутренней среды организма.

Оптикобиологическая бинокулярная (стереоскопическая) система, эволюционно возникшая у животных и способная воспринимать электромагнитное излучение видимого спектра (света), создавая изображение, в виде ощущения (сенсо́рного чувства) положения предметов в пространстве. Зрительная система обеспечивает функцию зрения.

Зрительная система (зрительный анализатор) у млекопитающих включает следующие анатомические образования:

· периферический парный орган зрения - глаз (с его воспринимающими свет фоторецепторами - палочками и колбочками сетчатки);

· нервные структуры и образования ЦНС: зрительные нервы, хиазма, зрительный тракт, зрительные пути - II-я пара черепно-мозговых нервов, глазодвигательный нерв - III-я пара, блоковый нерв - IV-я пара и отводящий нерв - VI-я пара;

· латеральное коленчатое тело промежуточного мозга (с подкорковыми зрительными центрами), передние бугры четверохолмия среднего мозга (первичные зрительные центры);

· подкорковые (и стволовые) и корковые зрительные центры: латеральное коленчатое тело и подушки зрительного бугра, верхние холмики крыши среднего мозга (четверохолмия) и зрительная кора.

Зрение человека

Процесс психофизиологической обработки изображения объектов окружающего мира, осуществляемый зрительной системой, и позволяющий получать представление о величине, форме (перспективе) и цвете предметов, их взаимном расположении и расстоянии между ними. Из-за большого числа этапов процесса зрительного восприятия его отдельные характеристики рассматриваются с точки зрения разных наук - оптики (в том числе биофизики), психологии, физиологии, химии (биохимии). На каждом этапе восприятия возникают искажения, ошибки, сбои, но мозг человека обрабатывает полученную информацию и вносит необходимые коррективы. Эти процессы носят неосознаваемый характер и реализуются в многоуровневой автономной корректировке искажений. Так устраняются сферическая и хроматическая аберрации, эффекты слепого пятна, проводится цветокоррекция, формируется стереоскопическое изображение и т. д. В тех случаях, когда подсознательная обработка информации недостаточна, или же избыточна, возникают оптические иллюзии.



Слуховая система

Сенсорная система, обеспечивающая кодирование акустических стимулов и обусловливающая способность животных ориентироваться в окружающей среде посредством оценки акустических раздражителей. Периферические отделы слуховой системы представлены органами слуха и лежащими во внутреннем ухе фонорецепторами. На основе формирования сенсорных систем (слуховой и зрительной) формируется назывательная (номинативная) функция речи - ребёнок ассоциирует предметы и их названия.

Человеческое ухо состоит из трех частей:

· Наружное ухо - латеральная часть периферического отдела слуховой системы млекопитающих, птиц, некоторых пресмыкающихся и единичных видов земноводных [* 1] . У наземных млекопитающих включает ушную раковину и наружный слуховой проход; от среднего уха отделяется барабанной перепонкой . Иногда последнюю рассматривают в качестве одной из структур наружного уха .

· Среднее ухо - часть слуховой системы млекопитающих (в том числе человека), развившаяся из костей нижней челюсти и обеспечивающая преобразование колебаний воздуха в колебания жидкости, наполняющей внутреннее ухо. Основной частью среднего уха является барабанная полость - небольшое пространство объемом около 1см³, находящееся в височной кости. Здесь находятся три слуховые косточки: молоточек, наковальня и стремечко - они передают звуковые колебания из наружного уха во внутреннее, одновременно усиливая их.

· Внутреннее ухо - один из трёх отделов органа слуха и равновесия. Является наиболее сложным отделом органов слуха, из-за своей замысловатой формы называется лабиринтом.

ПЛАН:

Периферический отдел слуховой системы

Центральный отдел слуховой системы.

Особенности развития органа слуха у детей

1.Слух представляет собой функцию организма, обеспечивающую восприятие звуковых колебаний в конкретной среде обитания. У человека эта функция реализуется совокупностью механических, рецепторных и центральных нервных структур, образующих слуховой анализатор, или слуховую сенсорную систему.

Слуховая сенсорная система - совокупность периферических и мозговых нервных структур, обеспечивающих восприятие звуковых колебаний. Слуховая сенсорная система состоит из периферического и центрального отделов.

Периферический отдел включает наружное, среднее и внутреннее ухо.

Центральный отдел представлен подкорковыми и корковыми центрами слуха.

На разных уровнях эволюционного развития и тесной связи с особенностями среды обитания- водной, наземной, воздушной- сложились разнообразные формы организации слуховой системы с различными функциональными возможностями восприятия тех или иных характеристик звуковых сигналов.

Итак, вернёмся к периферическому отделу слуховой системы.

Наружное ухо.

Наружное ухо представлено ушной раковиной и наружным слуховым проходом. Ушная раковина состоит из хрящевой ткани, покрытой кожей. Она переходит непосредственно в наружный слуховой проход. Кпереди от наружного слухового прохода расположен хрящевой выступ –козелок. Мочка уха – нижняя часть ушной раковины, она состоит из мягкой ткани и не содержит хряща. Наружный слуховой проход- у взрослого человека имеет длину 2,5-3,0 см. Начальная его часть состоит из хрящевой ткани. Большая (внутренняя) часть наружного слухового прохода-костная трубка- представляет собой часть височной кости черепа. Наружный слуховой проход образует изгиб в месте перехода хрящевой части в костную. На всём протяжении наружный слуховой проход покрыт кожей, в которой находятся сальные и серные железы, выделяющие ушную серу- воскообразное защитное вещество. Несмотря на значительные размеры, наружные структуры уха человека играют относительно небольшую роль в процессах восприятия звука. Функции наружного уха (ушная раковина, наружный слуховой проход и внешняя сторона барабанной перепонки) сводятся к обеспечению направленного приёма звуковых волн. Ушные раковины являются рупором и способствуют концентрации звуков, исходящих из разных участков пространства. Части наружного уха несут защитную функцию. Они охраняют барабанную перепонку от механических и термических воздействий, обеспечивают постоянную температуру и влажность этой области вне зависимости от колебаний температуры и влажности во внешней среде, благодаря этому поддерживается стабильность упругих свойств барабанной перепонки. Выработка ушной серы защищает от насекомых.



Барабанная перепонка. Наружный слуховой проход заканчивается барабанной перепонкой, которая передаёт колебания воздуха в наружном ухе по системе косточек среднего уха. Барабанная перепонка, площадь которой составляет 66-70мм2, является границей между наружным и средним ухом. Она имеет форму конуса с вершиной, направленной в полость среднего уха, и расположена под углом 45-50 градусов от наружного прохода. Со стороны наружного слухового прохода барабанная перепонка порыта тонким слоем кожи-эпидермисом. Со стороны среднего уха она покрыта слизистой оболочкой, как и вся оболочка среднего уха.

Большая часть барабанной перепонки вставлена в костный желобок в глубине слухового прохода и называется натянутой. Меньшая часть, передневерхняя, прикреплена там, где костный желобок прерывается, -это расслабленная часть, или шрапнелевая перепонка. Средняя часть натянутой барабанной перепонки состоит из радиальных и циркулярных фиброзных волокон, которые придают ей особую прочность. В шрапнелевой перепонке фиброзный слой отсутствует.

Со стороны наружного уха барабанная перепонка выглядит как блестящая серая пластинка овальной формы, в верхнепередней части видно выпячивание-место прикрепления короткого отростка молоточка-косточки среднего уха. В центре барабанной перпонки закреплена рукоятка молоточка. Эта часть, втянутая внутрь среднего уха, называется пупком барабанной перепонки. Основной функцией барабанной перепонки является передача звуковых колебаний в наружном слуховом проходе на систему слуховых косточек. Барабанная перепонка выполняет защитную функцию, так как благодаря фиброзному слою имеет особую прочность и может выдержать воздушное давление до двух атмосфер.

Среднее ухо.

Среднее ухо состоит из воздухоносных полостей в толще пирамиды височной кости и включает:

- барабанную полость

-слуховую (евстахиеву)трубу

-сосцевидный отросток

Барабанная полость , центральная часть среднего уха, представляет собой узкую неправильную пирамиду объёмом около 1см.куб. В неё помещается примерно 10 капель жидкости или ягодка чёрной смородины. В барабанной полости хорошо различимы шесть стенок:

Наружная барабанная перепонка

Внутренняя- отделяет барабанную полость от внутреннего уха

Верхняя- отделяет барабанную полость от полости черепа

Нижняя-граничит с крупным кровеносным сосудом-луковицей ярёмной вены

Передняя- в её нижней части имеется отверстие, ведущее в евстахиеву трубу

Задняя- в ней расположено отверстие, соединяющее барабанную полость с пещерой сосцевидного отростка

Во внутренней стенке есть два отверстия-окна: овальное, или окно преддверия (диаметр 3-4 мм), и круглое, или окно улитки (диаметр1-2 мм). В овальное окно вставлено основание стремени, прикреплённое посредством кольцевидной связки. Круглое окно затянуто эластичной плёнкой, которая называется вторичной барабанной перепонкой. В толще внутренней и задней стенок находится канал лицевого нерва, поэтому при заболевании среднего уха он может быть вовлечён в воспалительный процесс.

Барабанную полость обычно делят на три отдела: верхний, средний и нижний.

В барабанной полости на тонких связках подвижно укреплены слуховые косточки: молоточек, наковальня и стремечко . Размеры косточек исчисляют миллиметрами. Самая маленькая из них, стремечко, весит2.5мг, её высота 4мм, длина 3мм, ширина 1.4мм.

Молоточек имеет головку, рукоятку и два отростка (короткий и длинный). Наковальня представлена в виде тела и двух отростков(длинного и короткого). Стремечко состоит из двух ножек, головки и основания.

Колебания барабанной перепонки приводят в движение молоточек, рукоятка которого прикреплена к пупку барабанной перепонки. Движения молоточка передаются на наковальню и далее на конечную в этой цепи косточку-стремечко. Основание стремечка (подвижная пластина) укреплено с помощью кольцевидной связки в овальном окне улитки, ведущим во внутреннее ухо. Звуковое давление у входа в улитку благодаря передаточной функции слуховых косточек усиливается в 20 раз. Такое усиление несёт большую функциональную роль, так как жидкость внутреннего уха обладает значительно большим акустическим сопротивлением, чем воздух.

Помимо передаточной функции система слуховых косточек играет защитную роль: при больших интенсивностях стимула меняется характер движения косточек, что обеспечивает изменение объёма перемещаемых жидкостей во внутреннем ухе и, предохраняет слуховую систему от перегрузок. Нарушение деятельности системы слуховых косточек не приводит к полной потере слуха. Благодаря передаче звуковых колебаний круглому окну улитки и костной проводимости слуховая чувствительность сохраняется.

Напряжение барабанной перепонки и цепи слуховых косточек обеспечивается двумя мышцами: тимпанальной (барабанной), натягивающей барабанную перепонку и прикреплённой к рукоятке молоточка, и стапедиальный (стременной), прикреплённый к головке стремечка. Функция этих мышц в том, что, сокращаясь, они изменяют амплитуду колебаний барабанной перепонки и косточек и тем самым влияют на коэффициент передачи звукового давления на внутреннее ухо. Они поддерживают тонус барабанной перепонки и обеспечивают аккомодацию проводящего звуки аппарата к раздражителям разной интенсивности и частоты. При сокращении мышцы, натягивающей барабанную перепонку, слуховая чувствительность повышается, т.е. происходит настораживание, особенно при неожиданных звуках. Сокращения барабанной и стременной мышц возникают при интенсивностях звуков более 90 дБ и несут защитную функцию. Латентный период сокращения мышц слишком велик, чтобы предохранить ухо от воздействия резких внезапных звуков, но при длительном пребывании в условиях действия продолжительных сильных шумов сокращение мышц приобретает важную защитную роль- адаптивную.

Сокращения мышц, особенно натягивающей барабанную перепонку, происходит также при действии нового акустического раздражителя, при глотании, жевании и зевании, при собственной речевой деятельности. Это свидетельствует о том, что мышцы среднего уха участвуют в не только в защитном акустическом рефлексе, но и также в ориентировочной реакции и реализации обратной связи от речевой системы к слуховому входу. Так, когда человек говорит или поёт, мышцы среднего уха сокращаются и низкочастотные звуки голоса подавляются, а высокочастотные проходят среднее ухо без искажений.

Если мышцы среднего уха парализованы из-за патологического процесса, нормальное восприятие громких звуков нарушается, при этом возрастает опасность акустической травмы. Т.о, мышцы среднего уха являются защитно-приспособительным активным механизмом регуляции интенсивности внешнего стимула и повышения помехоустойчивости слуха.

Слуховая(евстахиева)труба – соединяет барабанную полость среднего уха с носоглоткой. Она представляет собой узкий канал длиной 3,5 см. Евстахиева труба выслана мерцательным эпителием, волоски которого двигаются в направлении глотки. Функция евстахиевой трубы- уравнивание давления в среднем ухе с давлением наружной воздушной среды. Стенки евстахиевой трубы со стороны носоглотки обычно соприкасаются между собой, но при глотании расходятся в результате сокращения глоточных мышц. При этом воздух из носоглотки проходит в барабанную полость, и давление в полости среднего уха уравнивается с атмосферным. Это особенно важно, когда возникают резкие перепады давления у барабанной перепонки (при скоростном подъёме или спуске в лифте, самолёте и т.п.). В этих условиях евстахиева труба обеспечивает выравнивание давления по обе стороны барабанной перепонки, что снимает неприятные и болевые ощущения, возникающие при резких изменениях давления во внешней среде.

Сосцевидный отросток – височной кости, расположенный позади ушной раковины. В толще сосцевидного отростка имеется множество связанных между собой воздухоносных полостей. Самая крупная полость –пещера (антрум)- сообщается с барабанной полостью среднего уха через отверстие в её задней стенке. Обе полости имеют большое значение в обеспечении резонансных свойств среднего уха.

Внутреннее ухо- это система каналов височной кости с находящимися в ней рецепторами слуховой и вестибулярной сенсорной систем. Взаимоотношение структур внутреннего уха сложное, что оправдывает его название –лабиринт. Различают костный и перепончатый лабиринты. Костный лабиринт является как бы футляром для перепончатого лабиринта. Перепончатый лабиринт заполнен жидкостью-эндолимфой, а пространство между перепончатым лабиринтом и костным-жидкостью перилимфой. Внутреннее ухо состоит из преддверия, полукружных каналов и улитки.

Преддверие, центральная часть лабиринта, представлено круглым и овальным перепончатыми мешочками. Круглый мешочек сообщается с улиткой, овальный – с полукружными каналами.

Полукружные каналы- верхний, задний и наружный расположены в трёх взаимно-перпендикулярных плоскостях. Один из концов каждого канала расширенный и называется ампулой. Преддверие и полукружные каналы относятся к периферическому отделу вестибулярного (пространственного)анализатора, или органа равновесия. В мешочках преддверия -рецептором вестибулярного анализатора является отолитовый аппарат. Отолитовый рецептор состоит из волосковых и опорных клеток. Волоски клеток покрыты отолитовой мембраной, в состав которой входят шестигранной формы кристаллы-отолиты, образованные солями кальция и магния. В полукружных каналах рецептор органа равновесия состоит из волосковых (ресничных) и опорных клеток, образующих в ампуле каналов особый гребешок.

Улитка- костная структура внутреннего уха, выполняющая функцию рецепции звука. Улитка закручена в виде спирали (костный лабиринт). Спираль образует 2.5-2.75 оборота, начинается широким основанием и заканчивается суженной верхушкой. Общая длина канала улитки примерно35 мм. Центральный костный стержень, вокруг которого закручена спираль улитки называется веретеном(модиолюс).

В улитковом ходе расположен кортиев (спиральный)орган. Основной его функциональной частью являются слуховые клетки, заканчивающиеся чувствительными волосками и поэтому называемые волосковыми клетками.

Роль улитки в восприятии звука и следовательно:

· Улитка как рецепторный аппарат осуществляет преобразование акустической энергии звуковых колебаний в энергию возбуждения нервных волокон

· В улитке осуществляется 1 этап частотного анализа действующего звука

Т.о. в улитке производиться частотно-временной пространственный анализ звука.

Периферический отдел слухового анализатора соединяется с центральным, или корковым, концом проводящими нервными путями, состоящими из четырёх отрезков, или невронов.

2 вопрос . Центральный конец слухового анализатора расположен в коре верхнего отдела височной доли каждого из полушарий головного мозга (в слуховой области коры). Особенно важное значение в восприятии звуковых раздражителей имеют, поперечные височные извилины, или так называемые извилины Гешля. В продолговатом мозгу происходит частичный перекрёст нервных волокон, соединяющих периферический отдел слухового анализатора с его центральным отделом. Таким образом, корковый центр слуха одного полушария оказывается связанным с периферическими рецепторами (кортиевыми органами) обеих сторон.

Рассмотрим классический слуховой путь. Этот восходящий специфический путь представляет собой несколько последовательных уровней. (Подробнее на семинаре и на невропатологии)

1. Спиральный ганглий улитки

2. Кохлеарные ядра продолговатого мозга

3. Верхняя олива продолговатого мозга

4. нижние бугры четверохолмия среднего мозга

5. медиальные коленчатые тела таламуса

6.слуховые поля височной коры головного мозга.

Кроме классического пути были обнаружены дополнительные восходящие слуховые пути.