Сложные пищевые цепи. Детритная цепь питания

В живой природе практически нет живых организмов, которые не поедали бы других существ или не являлись бы для кого-либо пищей. Так, растениями питаются многие насекомые. Сами насекомые являются добычей для более крупных существ. Те или иные организмы являются звеньями, из которых формируется пищевая цепь. Примеры такой "зависимости" можно встретить повсеместно. При этом в любой такой структуре существует первый исходный уровень. Как правило, это зеленые растения. Какие существуют примеры пищевых Какие организмы могут являться звеньями? Как происходит взаимодействие между ними? Об этом далее в статье.

Общая информация

Пищевая цепь, примеры которой будут приведены ниже, представляет собой определенный набор микроорганизмов, грибов, растений, зверей. Каждое звено находится на своем уровне. Построена эта "зависимость" по принципу "еда - потребитель". На вершине многих цепей питания стоит человек. Чем в той или иной стране выше плотность населения, тем меньше звеньев будет содержаться в природной последовательности, так как люди вынуждены в таких условиях чаще питаться растениями.

Количество уровней

Как происходит взаимодействие внутри экологических пирамид?

Как действует пищевая цепь? Примеры, приведенные выше, показывают, что каждое следующее звено должно стоять на более высоком уровне развития, нежели предыдущее. Как уже было сказано, взаимоотношения в любой экологической пирамиде строятся на принципе "еда-потребитель". За счет поедания одними организмами других осуществляется перенос энергии от низших уровней к высшим. В результате происходит в природе.

Пищевая цепь. Примеры

Условно можно выделить несколько видов экологических пирамид. Существует, в частности, пастбищная пищевая цепь. Примеры, которые можно увидеть в природе, представляют собой последовательности, где перенос энергии осуществляется от низших (простейших) организмов до высших (хищников). К таким пирамидам, в частности, можно отнести следующие последовательности: "гусеницы-мыши-гадюки-ежи-лисы", "грызуны-хищники". Другая, детритная пищевая цепь, примеры которой будут приведены далее, представляет собой последовательность, в которой биомасса не употребляется хищниками, а имеет место процесс гниения с участием микроорганизмов. Считается, что начинается эта экологическая пирамида с растений. Так, в частности, выглядит пищевая цепь леса. Примеры можно привести следующие: "опавшие листья-гниение с участием микроорганизмов", "мертвые (хищные)-хищники-многоножки-бактерии".

Продуценты и консументы

В крупном водоеме (океане, море) планктонные являются пищей для ветвистоусых рачков (животных фильтраторов). Они, в свою очередь, представляют собой добычу для хищных личинок комаров. Этими организмами питается определенный вид рыб. Их поедают более крупные хищные особи. Данная экологическая пирамида - пример пищевой цепи моря. Все организмы, выступающие в качестве звеньев, находятся на разных трофических уровнях. На первой ступени находятся продуценты, на следующей - консументы первого порядка (потребители). К третьему трофическому уровню относятся потребители 2-го порядка (первичные плотоядные). Они, в свою очередь, служат пищей для вторичных хищников - потребителей третьего порядка, и так далее. Как правило, экологические пирамиды суши включают в себя три-пять звеньев.

Открытый водоем

За шельфовым морем, в том месте, где склон материка более-менее круто обрывается по направлению к глубоководной равнине, берет начало открытое море. В этой зоне преимущественно синяя и прозрачная вода. Связано это с отсутствием неорганических взвешенных соединений и меньшим объемом микроскопических планктонных растений и животных (фито- и зоопланктона). На некоторых участках гладь воды отличается особенно яркой синей окраской. Например, В таких случаях говорят о так называемых океанских пустынях. В этих зонах даже на глубине тысячи метров при помощи чувствительной аппаратуры можно обнаружить следы света (в сине-зеленом спектре). Открытому морю присуще полное отсутствие в составе зоопланктона различных личинок донных организмов (иглокожих, моллюсков, ракообразных), количество которых по мере отдаления от берега резко снижается. Как на мелководье, так и на широких просторах в качестве единственного источника энергии выступает солнечный свет. В результате фотосинтеза фитопланктон при помощи хлорофилла формирует органические соединения из углекислого газа и воды. Так образуются так называемые первичные продукты.

Звенья пищевой цепи моря

Синтезированные водорослями органические соединения передаются косвенно либо прямо всем организмам. Вторым звеном пищевой цепи в море являются животные фильтраторы. Организмы, составляющие фитопланктон, обладают микроскопически малыми размерами (0.002-1мм). Часто они формируют колонии, но и их размер не превышает пяти миллиметров. Третьим звеном являются плотоядные животные. Они питаются фильтраторами. В шельфовых, как и в открытых морях, таких организмов достаточно много. К ним, в частности, относятся сифонофоры, гребневики, медузы, веслоногие рачки, щетинкочелюстные, каринариды. Среди рыб к фильтраторам следует отнести сельдей. Их основной пищей являются формирующие в северных акваториях большие скопления. Четвертым звеном считаются хищные крупные рыбы. Некоторые виды имеют промысловое значение. К конечному звену следует также отнести головоногих моллюсков, зубатых китов и морских птиц.

Перенос питательных веществ

Передача органических соединений внутри пищевых цепей сопровождается существенными потерями энергии. Это главным образом обусловлено тем, что большая ее часть тратится на обменные процессы. Около 10% энергии преобразуется в вещество тела организма. Поэтому, например, анчоус, питающийся планктонными водорослями и входящий в структуру исключительно короткой пищевой цепи, может развиваться в таких огромных количествах, как это происходит в Перуанском течении. Перенос пищи в сумеречную и глубинную зону из светлой обусловлен активными вертикальными миграциями зоопланктона и отдельных видов рыб. Перемещающиеся вверх-вниз животные в разное время суток оказываются на различных глубинах.

Заключение

Следует сказать, что линейные пищевые цепи являются достаточно редким явлением. Чаще всего экологические пирамиды включают в себя популяции, принадлежащие сразу к нескольким уровням. Одни и те же виды могут употреблять в пищу и растения, и животных; плотоядные могут питаться как консументами первого, так и второго и следующих порядков; многие животные употребляют живые и отмершие организмы. В связи со сложностью звеньевых связей, выпадение какого-либо вида зачастую практически не сказывается на состоянии экосистемы. Те организмы, которые принимали выпавшее звено в пищу, могут вполне найти другой источник питания, а еду исчезнувшего звена начинают употреблять другие организмы. Так в целом сообщество сохраняет равновесие. Устойчивее будет та экологическая система, в которой присутствуют более сложные цепи питания, состоящие из большого количества звеньев, включающих в себя множество разных видов.

Перенос энергии в экосистеме осуществляется через так называемые пищевые цепи . В свою очередь, пищевая цепь - это перенос энергии от ее первоначального источника (обычно им являются автотрофы) через ряд организмов, путем поедания одних другими. Пищевые цепи подразделяются на два вида:

Сосна обыкновенная => Тли => Божьи коровки => Пауки =>Насекомоядные

птицы => Хищные птицы.

Трава => Травоядные млекопитающие => Блохи => Жгутиконосцы.

2) Детритная пищевая цепь. Она берет свое начало от мертвого органического вещества (т.н. детрита ), которое либо потреблятеся в пищу мелкими, преймущественно беспозвоночными животными, либо разлагается бактериями или грибами. Организмы, потребляющие мертвое органическое вещество, называются детритофагами , разлагающие его - деструкторами .

Пастбищная и детритная пищевые цепи обычно существуют в экосистемах совместно, но один из видов пищевых цепей почти всегда доминирует над другим. В некоторых же специфических средах (например в подземной), где из-за отсутствия света невозможна жизнедеятельность зеленых растений, существуют только детритные пищевые цепи.

В экосистемах пещевые цепи не изолированы друг от друга, а тесно переплетены. Они составляют так называемые пищевые сети . Это происходит потому, что каждый продуцент имеет не одного, а нескольких консументов, которые, в свою очередь, могут иметь несколько источников питания. Взаимосвязи внутри пищевой сети наглядно иллюстрирует приведенная ниже схема.

Схема пищевой сети.

В пищевых цепях образуются так называемые трофические уровни . Трофические уровни классифицируют организмы в пищевой цепи по типам их жизнедеятельности или по источникам получения энергии. Растения занимают первый трофический уровень (уровень продуцентов), травоядные (консументы первого порядка) относятся ко второму трофическому уровню, хищники, поедающие травоядных, образуют третий трофический уровень, вторичные хищники - четвертый и т.д. первого порядка.

Поток энергии в экосистеме

Как нам известно, перенос энергии в экосистеме осуществляется через пищевые цепи. Но далеко не вся энергия предыдущего трофического уровня переходит на следующий. В качестве примера можно привести следующую ситуацию: чистая первичная продукция в экосистеме (то есть количество энергии, накопленное продуцентами) составляет 200 ккал/м^2, вторичная продуктивность (энергия, накопленная консументами первого порядка) равна 20 ккал/м^2 или 10% от предыдущего трофческого уровня, энергия же следующего уровня составляет 2 ккал/м^2, что равно 20% от энергии предыдущего уровня. Как видно из данного примера, при каждом переходе на более высокий уровень теряется 80-90% энергии предыдущего звена пищевой цепи. Подобные потери связаны с тем, что значительная часть энергии при переходе с одной ступени на другую не усваивается представителями следующего трофического уровня или превращается в тепло, недоступное для использования живыми организмами.

Универсальная модель потока энергии.

Поступление и расход энергии можно рассмотреть с помощью универсальной модели потока энергии . Она применима к любому живому компоненту экосистемы: растению, животному, микроорганизмам, популяции или трофической группе. Подобные графические модели, соединенные между собой, могут отражать пищевые цепи (при последовательном соединении схем потока энергии нескольких трофических уровней образуется схема потока энергии в пищевой цепи) или биоэнергетику в целом. Поступившая в биомассу энергия на схеме имеет обозначение I . Однако, часть поступившей энергии, не подвергается превращнию (на рисунке обозначена, как NU ). Например, это происходит в случае, когда часть света, проходящего через растения, не поглощается ими, или когда часть пищи, проходящей через пищеварительный тракт животного, не усваивается его организмом. Усвоенная (или ассимилированная ) энергия (обозначенная за A ) используется для различных целей. Она тратитися на дыхание (на схеме-R ) т.е. на поддержание жизнедеятельности биомассы и на продуцирование органического вещества (P ). Продукция, в свою очередь, принимате различные формы. Она выражается в энергетических затратах на рост биомассы (G ), в различных выделениях органического вещетсва во внешнюю среду (E ), в запасе энергии организмом (S ) (примером подобного запаса являются жировые накопления). Запасенная энергия образует на схеме так называемую рабочую петлю , так как данная часть продукции используется для обеспечения энергией в будущем (напимер, хищник использует свой запас энергии для поиска новых жертв). Оставшаяся часть продукции представляет собой биомассу (B ).

Универсальную модель потока энергии можно интерпретировать двояко. Во-первых она может представлять популяцию какого-либо вида. В данном случае каналы потока энергии и связи рассматриваемого вида с другими видами представляют собой схему пищевой цепи. Другая интерпритация трактует модель потока энергии как изображение какого-либо энергетического уровня. Тогда прямоугольник биомассы и каналы потока энергии представляют все популяции, поддерживаемые одним и тем же источником энергии.

Для того, чтобы наглядно показать различие подходов трактовки универсальной модели потока энергии можно рассмотреть пример с популяцией лис. Часть рациона лисиц составляет растительность (плоды и т.д.), другую же часть составляют травоядные животные. Чтобы подчеркнуть аспект внутрипопуляционной энергетики (первая интерпритация энергетической модели), всю популяцию лис следует изобразить в виде одного прямоугольника, если же нужно распределить метаболизм (метаболизм - обмен веществ, интенсивность обмена веществ) популяции лис на два трофических уровня, то есть отобразить соотношение ролей растительной и животной пищи в обмене веществ, необходимо построить два или несколько прямоугольников.

Зная универвальную модель потока энергии, можно определить отношение величин энергетического потока в разных точках пищевой цепи.Выраженные в процентах, эти отношения называют экологической эффективностью . Существует несколько групп экологических эффективностей. Первая группа энергетических отношений: B/R и P/R . Доля энергии, расходущейся на дыхание, велика в популяциях крупных организмов. При стрессовом воздействии внешней среды R возрастает. Величина P значительна в активных популяциях мелких организмов (например водорослей), а также в системах, получающих энергию извне.

Следующая группа отношений: A/I и P/A . Первое из них называется эффективностью ассимиляции (т.е. эффективностью использования поступившей энергии), второе - эффективностью роста тканей . Эффективность ассимиляции может варьироваться от 10 до 50% и выше. Она может либо достигать малой величины (при ассимиляции энергии света растениями), либо иметь большие значения (при ассимиляции энергии пищи животными). Обычно эффективность ассимиляции у животных зависит от их пищи. У растительноядных животных она достигает 80% при поедании семян, 60% при использовании в пищу молодой листвы, 30-40% - более старых листьев, 10-20% при питании древесиной. У хищных животных эффективность ассимиляции составляет 60-90%, так как животоная пища гораздо легче усваивается организмом, чем растительная.

Эффективность роста тканей также широко варьируется. Наибольших значений она достигает в тех случаях, когда организмы имеют небольшие размеры и условия среды их обитания не требуют больших энергетических затрат на поддержание оптимальной для роста организмов температуры.

Третья группа энергетических отношений: P/B . Если рассматривать P как скорость прироста продукции, P/B представляет собой отношение продукции в конкретный момент времени к биомассе. Если расчитывается продукция за определенный промежуток времени, значение отношения P/B определяется исходя из средней за этот промежуток времени биомассы. В данном случае P/B является безразмерной величиной и показывает, во сколько раз продукция больше или меньше биомассы.

Следует отметить, что на энергетические характеристики экосистемы оказывает влияние размеры организмов, населяющих экосистему. Установлена зависимость между размером организма и его удельным метаболизмом (метаболизмом на 1г. биомассы). Чем мельче организм, тем выше его удельный метаболизм и, следовательно, тем меньше биомасса, которая может поддерживаться на данном трофическом уровне экосистемы. При одинаковом количестве использованной энергии организмы больших размеров накапливают большую биомассу, чем мелкие. Например, при равном значении потребленной энергии, биомасса, накопленная бактериями, будет гораздо ниже биомассы, накопленной крупными организмами (наприемр млекопитающими). Иная картина открывается при рассмотрении продуктивности. Так как продуктивность - это скорость прироста биомассы, то она больше у мелких жвотных, которые имеют более высокие темпы размножения и обновления биомассы.

В связи с потерей энергии внутри пищевых цепей и зависимостью метаболизма от размера особей, каждое биологическое сообщество приобретает определеную трофическую структуру, которая может служить характеристикой экосистемы. Трофическая структура характеризуется или урожаем на корню, или количеством энергии, фиксируемой на единицу площади в единицу времени каждым последующим трофическим уровнем. Трофическую структуру можно изобразить графически в виде пирамид, основанием у которых служит первый трофический уровень (уровень продуцентов), а последующие трофические уровни образуют "этажи" пирамиды. Выделяют три типа экологических пирамид.

1) Пирамида численности (на схеме обозначена цифрой 1) Она отображает количество отдельных организмов на каждом из трофических уровней. Численность особей на разных трофических уровнях зависит от двух основных факторов. Первый из них - более высокий уровень удельного метаболизма у мелких животных по сравнению с крупными, что позволяет им иметь численное превосходство над крупными видами и более высокие темпы размножения. Другой из вышеназванных факторов - существование у хищных животных верхнего и нижнего предела размера их жертв. Если жертва намного крупнее хищника по размерам, то он будет не в состоянии ее одолеть. Добыча же небольшого размера не сможет удовлетворить энергетических потребностей хищника. Поэтому для каждого хищного вида существует оптимальный размер жертв Однако, для данного правила существуют исключения (например, змеи с помощью яда убивают животных, превышающих их по размерам). Пирамиды чисел могут быть обращены "острием" вниз в том случае, если продуценты намного превосходят первичных консументов по своим размерам (примером может служить экосистема леса, где продуцентами являются деревья, а первичными консументами - насекомые).

2) Пирамида биомассы (на схеме - 2). С ее помощью можно наглядно показать соотношения биомасс на каждом из трофических уровней. Она может быть прямой, если размер и срок жизни продуцентов достигает относительно больших величин (наземные и мелководные экосистемы), и обращенной, когда продуценты невелики по размеру и имеют короткий жизненный цикл (открытые и глубокие водоемы).

3) Пирамида энергии (на схеме - 3). Отражает величину потока энергии и продуктивность на каждом из трофических уровней. В отличии от пирамид численности и биомассы, пирамида энергии не может быть обращенной, так как переход энергии пищи на вышестоящие трофические уровни происходит с большими энергопотерями. Следовательно, суммарная энергия каждого предыдущего трофического уровня не может быть выше энергии последующего. Вышеприведеное рассуждение основано на использовании второго закона термодинамики, поэтому пирамида энергии в экосистеме служит его наглядной иллюстрацией.

Из всех названных выше трофических характеристик экосистемы только пирамида энергии дает наиболее полное представление об организации биологических сообществ. В пирамиде численности сильно преувеличена роль мелких организмов, а в пирамиде биомассы завышено значение крупных. В таком случае, данные критерии непригодны для сравнении функциональной роли популяции, сильно различающихся по значению отношения интенсивности метаболизма к размеру особей. По этой причине, именно поток энергии служит наиболее подходящим критерием для сравнения отдельных компонентов экосистемы между собой, а также для сравнения двух экосистем друг с другом.

Знание основных законов превращения энергии в экосистеме способствуют лучшему пониманию процессов функционрования экосистемы. Это особенно важно в связи с тем, что вмешательство человека в ее естественую "работу" может привести экологическую систему к гибели. В связи с этим, он должен уметь заранее предсказывать результаты своей деятельности, и представление об энергетических потоках в экосистеме сможет обеспечить большую точность этих предсказаний.

Любому живому существу на нашей планете для нормального развития необходимо питание. Питание — это процесс поступления энергии и необходимых химических элементов в живой организм. Источником питания для одних животных служат другие растения и животные. Процесс перехода энергии и питательных веществ от одного живого организма к другому происходит путем поедания одних другими. Одни животные и растения служат пищей для других. Таким образом, энергия может передаваться через несколько звеньев.

Совокупность всех звеньев в этом процессе называется цепью питания . Пример пищевой цепочки можно увидеть в лесу, когда птица съест червяка, а потом сама станет пищей для рыси.

Все виды живых организмов, в зависимости от того, какое место они занимают, делятся на три вида:

  • продуценты;
  • консументы;
  • редуценты.

Продуцентами являются живые организмы , которые самостоятельно вырабатывают питательные вещества. Например, растения или водоросли. Для выработки органических веществ продуценты могут использовать солнечный свет или простые неорганические соединения, такие как углекислый газ или сероводород. Такие организмы ещё называются автотрофными. Автотрофы являются первым звеном любой пищевой цепочки и составляют её основу, а энергия, полученная этими организмами, поддерживает каждое следующее звено.

Консументы

Консументы это следующее звено . Роль консументов выполняют гетеротрофные организмы, то есть те, которые не вырабатывают самостоятельно органические вещества, а используют в пищу другие организмы. Консументов можно разделить на несколько уровней. Например, к первому уровню относятся все травоядные животные, некоторые виды микроорганизмов, а также планктон. Грызуны, зайцы, лоси, кабаны, антилопы и даже бегемоты — все относятся к первому уровню.

Ко второму уровню относят мелких хищников, таких как: дикие кошки, норки, хорьки, рыбы, питающиеся планктоном, совы, змеи. Эти животные служат пищей для консументов третьего уровня — более крупных хищников. Это такие животные, как: лиса, рысь, лев, ястреб, щука и др. Таких хищников называют ещё высшими. Высшие хищники необязательно поедают только тех, кто находится на предыдущем уровне. Например, мелкая лиса может стать добычей ястреба, а рысь может охотиться и на грызунов, и на сов.

Редуценты

Это такие организмы, которые перерабатывают продукты жизнедеятельности животных и их мертвую плоть в неорганические соединения. К ним относятся некоторые виды грибов, бактерии гниения . Роль редуцентов в том, чтобы замкнуть круговорот веществ в природе. Они возвращают в почву и воздух воду и простейшие неорганические соединения, которые используют продуценты для своей жизнедеятельности. Редуценты перерабатывают не только умерших животных, но и например, опавшие листья, которые начинают гнить в лесу или сухую траву в степи.

Трофические сети

Все пищевые цепочки существуют в постоянной взаимосвязи друг с другом. Совокупность нескольких пищевых цепей составляет трофическую сеть . Это своеобразная пирамида, состоящая из нескольких уровней.Каждый уровень образуют определенные звенья цепи питания. Например, в цепочках:

  • муха — лягушка — цапля;
  • кузнечик — змея — сокол;

Муха и кузнечик будут относиться к первому трофическому уровню, змея и лягушка ко второму, а цапля и сокол к третьему.

Виды пищевых цепей: примеры в природе

Они разделяются на пастбищные и детритные. Пастбищные цепи питания распространены в степях и в мировом океане. Началом этих цепей служат продуценты. Например,трава или водоросли. Дальше идут консументы первого порядка, например, травоядные животные или малюски и мелкие ракообразные, питающиеся водорослями. Далее в цепи идут мелкие хищники, такие как, лисы, норки, хорьки, окуни, совы. Замыкают цепь суперхищники, такие как, львы, медведи, крокодилы. Суперхищники не являются добычей для других животных, но после своей гибели служат пищевым материалом для редуцентов. Редуценты участвуют в процессе разложения останков этих животных.

Детритные цепи питания берут свое начало от гниющих органических веществ. Например, от разлагающейся листвы и оставшейся травы или от опавших ягод. Такие цепи распространены в лиственных и смешанных лесах. Опавшие гниющие листья — мокрица — ворон. Вот пример такой пищевой цепи. Большинство животных и микроорганизмов могут одновременно являться звеньями обоих видов пищевых цепочек. Примером этого может служит дятел, питающийся жучками, которые разлагают мертвое дерево. Это представители детритной цепи питания А сам дятел может стать добычей уже для мелкого хищника, например, для рыси. Рысь может охотиться ещё и на грызунов — представителей пастбищной цепи питания.

Любая пищевая цепь не может быть очень длинной. Это связано с тем, что на каждый последующий уровень передается только 10% энергии предыдущего уровня. Большинство из них состоит от 3 до 6 звеньев.

В экосистемах продуценты, консументы и редуценты объединены сложными процессами переноса веществ и энергии, которая заключена в пище, созданной преимущественно растениями.

Перенос потенциальной энергии пищи, созданной растениями, через ряд организмов путем поедания одних видов другими называется трофической (пищевой) цепью, а каждое ее звено называется трофическим уровнем.

Все организмы, пользующиеся одним типом пищи, принадлежат к одному трофическому уровню.

На рис.4. представлена схема трофической цепи.

Рис.4. Схема пищевой цепи.

Рис.4. Схема пищевой цепи.

Первый трофический уровень образуют продуценты (зеленые растения), которые аккумулируют солнечную энергию и создают органические вещества в процессе фотосинтеза.

При этом более половины энергии, запасенной в органических веществах, расходуется в процессах жизнедеятельности растений, превращаясь при этом в тепло и рассеиваясь в пространстве, а остальная часть поступает в пищевые цепи и может быть использована гетеротрофными организмами последующих трофических уровней при питании.

Второй трофический уровень образуют консументы 1-го порядка - это растительноядные организмы (фитофаги), которые питаются продуцентами.

Консументы первого порядка большую часть энергии, которая содержится в пище, расходуют на обеспечение своих жизненных процессов, а остальную часть энергии используют на построение собственного тела, преобразуя тем самым растительные ткани в животные.

Таким образом, консументы 1-го порядка осуществляют первый, принципиальный этап трансформации органического вещества, синтезированного продуцентами.

Первичные консументы могут служить источником питания для консументов 2-го порядка.

Третий трофический уровень образуют консументы 2-го порядка - это плотоядные организмы (зоофаги), которые питаются исключительно растительноядными организмами (фитофагами).

Консументы 2-го порядка осуществляют второй этап трансформации органического вещества в цепях питания.

Однако, химические вещества, из которых строятся ткани животных организмов, довольно однородны и поэтому трансформация органического вещества при переходе со второго трофического уровня консументов на третий не имеет столь принципиального характера, как при переходе с первого трофического уровня на второй, где происходит преобразование растительных тканей в животные.

Вторичные консументы могут служить источником питания для консументов 3-го порядка.

Четвертый трофический уровень образуют консументы 3-го порядка - это плотоядные животные, питающиеся только плотоядными организмами.

Последний уровень трофической цепи занимают редуценты (деструкторы и детритофаги).

Редуценты-деструкторы (бактерии, грибы, простейшие) в процессе своей жизнедеятельности разлагают органические остатки всех трофических уровней продуцентов и консументов до минеральных веществ, которые вновь возвращаются к продуцентам.

Все звенья трофической цепи взаимосвязаны и взаимозависимы.

Между ними от первого к последнему звену осуществляется передача веществ и энергии. Однако, необходимо отметить, что при передаче энергии с одного трофического уровня на другой происходит ее потеря. В результате цепь питания не может быть длинной и чаще всего состоит из 4-6 звеньев.

Однако, такие пищевые цепи в чистом виде в природе обычно не встречаются, поскольку каждый организм имеет несколько источников питания, т.е. пользуется несколькими типами пищи, и сам используется как продукт питания другими многочисленными организмами из одной и той же трофической цепи или даже из разных цепей питания.

Например:

    всеядные организмы потребляют в пищу как продуцентов, так и консументов, т.е. являются одновременно консументами первого, второго, а иногда и третьего порядка;

    комар, питающийся кровью человека и хищных животных, находится на очень высоком трофическом уровне. Но комарами питается болотное растение росянка, которая, таким образом, является и продуцентом и консументом высокого порядка.

Поэтому, практически любой организм, входящий в состав одной трофической цепи, одновременно может входить и в состав других трофических цепей.

Таким образом, трофические цепи могут многократно разветвляться и переплетаться, образуя сложные сети питания или трофические (пищевые) сети , в которых многочисленность и разнообразие пищевых связей выступает как важный механизм поддержания целостности и функциональной устойчивости экосистем.

На рис.5. показана упрощенная схема сети питания для наземной экосистемы.

Вмешательство человека в природные сообщества организмов путем намеренного или ненамеренного устранения какого-либо вида часто имеет непредсказуемые негативные последствия и приводит к нарушению устойчивости экосистем.

Рис.5. Схема трофической сети.

Существует два основных типа трофических цепей:

    пастбищные цепи (цепи выедания или или цепи потребления);

    детритные цепи (цепи разложения).

Пастбищные цепи (цепи выедания или цепи потребления) - это процессы синтеза и трансформации органических веществ в трофических цепях.

Пастбищные цепи начинаются с продуцентов. Живые растения поедаются фитофагами (консументами первого порядка), а сами фитофаги являются пищей для плотоядных животных (консументов второго порядка), которыми могут питаться консументы третьего порядка и т.д.

Примеры пастбищных цепей для наземных экосистем:

3 звена: осина → заяц → лиса; растение → овца → человек.

4 звена: растения → кузнечики → ящерицы → ястреб ;

нектар цветка растения → муха → насекомоядная птица →

хищная птица .

5 звеньев: растения → кузнечики → лягушки → змеи → орел.

Примеры пастбищных цепей для водных экосистем:→

3 звена: фитопланктон → зоопланктон → рыбы;

5 звеньев: фитопланктон → зоопланктон → рыбы → хищные рыбы →

хищные птицы.

Детритные цепи (цепи разложения) - это процессы поэтапной деструкции и минерализации органических веществ в трофических цепях.

Детритные цепи начинаются с поэтапного разрушения мертвого органического вещества детритофагами, которые последовательно сменяют друг друга в соответствии со специфичным типом питания.

На последних стадиях деструкционных процессов функционируют редуценты-деструкторы, минерализующие остатки органических соединений до простых неорганических веществ, которые вновь используются продуцентами.

Например, при разложении мертвой древесины последовательно сменяют друг друга: жуки → дятлы → муравьи и термиты → грибы-деструкторы.

Детритные цепи наиболее распространены в лесах, где большая часть (около 90%) ежегодного прироста биомассы растений не потребляется непосредственно растительноядными животными, а отмирает и попадает в эти цепи в виде листового опада, подвергаясь затем разложению и минерализации.

В водных экосистемах большая часть вещества и энергии включается в пастбищные цепи, а в наземных экосистемах наибольшее значение имеют детритные цепи.

Таким образом, на уровне консументов происходит разделение потока органического вещества по разным группам потребителей:

    живое органическое вещество следует по пастбищным цепям;

    мертвое органическое вещество идет по детритным цепям.

Кто что ест

Составь цепь питания, рассказывающую о героях песенки "В траве сидел кузнечик"

Животные, которые питаются растительной пищей, называются растительноядными. Те животные, которые едят насекомых, называются насекомоядными. На более крупную добычу охотятся хищные животные, или хищники. Насекомых, которые поедают других насекомых, тоже считают хищниками. Существуют, наконец, и всеядные животные (они едят и растительную, и животную пищу).

На какие группы можно разделить животных по способам питания? Заполни схему.


Цепи питания

Живые существа связаны между собой в цепи питания. Например: В лесу растут осины. Их корой питаются зайцы. Зайца может поймать и съесть волк. Получается такая цепь питания: осина - заяц - волк.

Составь и запиши цепи питания.
а) паук, скворец, муха
Ответ: муха - паук - скворец
б) аист, муха, лягушка
Ответ: муха - лягушка - аист
в) мышь, зерно, сова
Ответ: зерно - мышь - сова
г) слизень, гриб, лягушка
Ответ: гриб - слизень - лягушка
д) ястреб, бурундук, шишка
Ответ: шишка - бурундук - ястреб

Прочитай короткие тексты о животных из книги "С любовью к природе". Определи и запиши тип питания животных.

Осенью барсук начинает готовиться к зиме. Он отъедается и сильно жиреет. Пищей ему служит всё, что попадается: жуки, слизни, ящерицы, лягушки, мыши, а иногда даже маленькие зайчата. Ест он и лесные ягоды, и плоды.
Ответ: барсук всеядный

Зимой лисица ловит под снегом мышей, иногда куропаток. Иногда она охотится за зайцами. Но зайцы бегают быстрее лисицы и могут убежать от неё. Зимой лисицы близко подходят к селениям людей и нападают на домашнюю птицу.
Ответ: лисица плотоядная

В конце лета и осенью белка собирает грибы. Она накалывает их на ветки деревьев, чтобы грибы засохли. А ещё белочка рассовывает по дуплам и щёлкам орехи и жёлуди. Всё это пригодиться ей в зимнюю бескормицу.
Ответ: белка растительноядная

Волк - опасный зверь. Летом он нападает на разных зверей. Ест также мышей, лягушек, ящериц. Разоряет птичьи гнёзда на земле, поедает яйца, птенцов, птиц.
Ответ: волк плотоядный

Медведь разламывает гнилые пни и выискивает в них жирных личинок жуков-дровосеков и других насекомых, питающихся древесиной. Он ест всё: ловит лягушек, ящериц, одним словом, что только попадётся. Выкапывает из земли луковицы и клубни растений. Часто можно встретить медведя на ягодниках, на которых он с жадностью поедает ягоды. Иногда голодный медведь нападает на лосей, оленей.
Ответ: медведь всеядный

По текстам из предыдущего задания составь и запиши несколько цепей питания.

1. земляника - слизень - барсук
2. кора деревьев - заяц - лисица
3. зерно - птица - волк
4. древесина - личинки жука - дровосека - медведь
5. молодые побеги деревьев - олень - медведь

Составь цепь питания, используя рисунки.