Амитоз прямое деление клетки. Амитоз

К нетипичным формам митоза относятся амитоз, эндомитоз, политения.

Амитоз иногда ещё называют простым делением. Амитоз – прямое деление клетки путём перетяжки или инвагинации. При амитозе не происходит конденсация хромосом и не образуется аппарат деления. Амитоз не обеспечивает равномерного распределения хромосом между дочерними клетками. Обычно амитоз свойствен стареющим клеткам. Во время амитоза ядро клетки сохраняет строение интерфазного ядра, а сложной перестройки всей клетки, спирализации хромосом, как во время митоза, не происходит. Нет никаких доказательств равномерного распределения ДНК между двумя клетками при амитотическом делении, потому считают, что ДНК при таком делении может распределятся между двумя клетками неравномерно. Амитоз встречается в природе достаточно редко, в основном у одноклеточных организмов и у некоторых клеток многоклеточных животных и растений. Различают несколько форм амитоза:

  • равномерный, когда образуются два равных ядра;
  • неравномерный – образуются неодинаковые ядра;
  • фрагментация - ядро распадается на множество мелких ядер, одинаковой или нет величины.

Первые два типа деления вызывают образование двух клеток из одной. В клетках хряща, рыхлой соединительной и некоторых других тканях происходит деление ядрышек с последующим делением ядра путём перетяжки. У двухъядерной клетки появляется кольцевая перетяжка цитоплазмы, которая при углублении вызывает полное деление клетки на две. Пример . В хряще появляются изогенные группы, т. е. группы, происходящие из одной клетки. Такие клетки специализированы для выполнения определённых функций в организме, однако лишены возможности митотически делиться. В процессе амитоза в ядре происходит деление ядрышек с последующим делением ядра перетяжкой, цитоплазма так же делится перетяжкой.

Амитоз-фрагментация вызывает образование многоядерных клеток. В некоторых клетках эпителия, печени наблюдается процесс деления ядрышек в ядре, после чего всё ядро перешнуровывается кольцевой перетяжкой. Процесс этот заканчивается образованием двух ядер. Такая двухъядерная или многоядерная клетка уже не делится митотически, через некоторое время она стареет или гибнет. Таким образом, амитоз – это деление, которое происходит без спирализации хромосом и без образования веретена деления . Так же неизвестно синтезируется ли перед началом амитоза синтез ДНК и как происходит распределение ДНК между дочерними ядрами. Происходит ли предыдущий синтез ДНК перед началом амитоза и как она распределяется между дочерними ядрами – неизвестно. При делении определённых клеток иногда митоз чередуется с амитозом.

Биологическое значение амитоза Некоторые учёные считают этот способ деления клеток примитивным, другие относят его к вторичным явлениям. Амитоз по сравнению с митозом встречается значительно реже у многоклеточных организмов и может быть отнесён к неполноценному способу деления клеток, утративших способность к делению. Биологическое значение процессов амитотического деления:

  • процессы, обеспечивающие равномерное распределение материала каждой хромосомы между двумя клетками, отсутствуют;
  • образование многоядерных клеток или увеличение количества клеток.

Эндомитоз. При этом типе деления после репликации ДНК не происходит разделения хромосом на две дочерние хроматиды. Это приводит к увеличению числа хромосом в клетке иногда в десятки раз по сравнению с диплоидным набором. Так возникают полиплоидные клетки. В норме этот процесс имеет место в интенсивно функционирующих тканях, например, в печени, где полиплоидные клетки встречаются очень часто. Однако с генетической точки зрения эндомитоз представляет собой геномную соматическую мутацию.

Политения. Происходит кратное увеличение содержания ДНК (хромонем) в хромосомах без увеличения содержания самих хромосом. При этом количество хромонем может достигать 1000 и более, хромосомы при этом приобретают гигантские размеры. При политении выпадают все фазы митотического цикла, кроме репродукции первичных нитей ДНК. Такой тип деления наблюдается в некоторых высокоспециализированных тканях (печеночных клетках, клетках слюнных желез двукрылых насекомых). Политенные хромосомы дрозофил используются для построения цитологических карт генов в хромосомах.

Амитоз – прямое деление клеток. Амитоз встречается у эукариот достаточно редко. При амитозе ядро начинает делиться без видимых предварительных изменений. При этом не обеспечивается равномерное распределение генетического материала между дочерними клетками. Иногда при амитозе не происходит цитокинеза, то есть деления цитоплазмы, и тогда образуется двухъядерная клетка.

Рисунок – амитоз в клетках

Если же все-таки произошло деление цитоплазмы, то велика вероятность того, что обе дочерние клетки будут неполноценными. Амитоз чаще встречается в опухолевых или отмеряющих тканях.

При амитозе, в отличие от Митоза, или непрямого деления ядра, ядерная оболочка и ядрышки не разрушаются, веретено деления в ядре не образуется, хромосомы остаются в рабочем (деспирализованном) состоянии, ядро или перешнуровывается или в нём, внешне неизменном, появляется перегородка; деления тела клетки - цитотомии, как правило, не происходит; обычно амитоз не обеспечивает равномерного деления ядра и отдельных его компонентов.

Рисунок – Амитотическое деление ядер соединительнотканных клеток кролика в культуре ткани.

Изучение амитоза осложняется ненадёжностью его определения по морфологическим признакам, поскольку не каждая перетяжка ядра означает амитоз; даже выраженные «гантелевидные» перетяжки ядра могут быть преходящими; ядерные перетяжки могут быть и результатом неправильного предшествующего митоза (псевдоамитоз). Обычно амитоз следует за Эндомитозом. В большинстве случаев при амитозе делится только ядро и возникает двуядерная клетка; при повторных амитозах. могут образовываться многоядерные клетки. Очень многие двуядерные и многоядерные клетки - результат амитоза. (некоторое число двуядерных клеток образуется при митотическом делении ядра без деления тела клетки); они содержат (суммарно) полиплоидные хромосомные наборы.

У млекопитающих известны ткани как с одноядерными и двуядерными полиплоидными клетками (клетки печени, поджелудочной и слюнных желёз, нервной системы, эпителия мочевого пузыря, эпидермиса), так и только с двуядерными полиплоидными клетками (клетки мезотелия, соединительные ткани). Дву- и многоядерные клетки отличаются от одноядерных диплоидных большими размерами, более интенсивной синтетической деятельностью, увеличенным количеством различных структурных образований, в том числе хромосом. От одноядерных полиплоидных клеток дву- и многоядерные отличаются главным образом большей поверхностью ядра. На этом основано представление об амитозе как способе нормализации ядерно-плазменных отношений в полиплоидных клетках путём увеличения отношения поверхности ядра к его объёму.

Во время амитоза клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. Во многих случаях амитоз и двуядерность сопутствуют компенсаторным процессам, протекающим в тканях (например, при функциональных перегрузках, голодании, после отравления или денервации). Обычно амитоз наблюдается в тканях со сниженной митотической активностью. Этим, по-видимому, объясняется увеличение по мере старения организма числа двуядерных клеток, образующихся путём амитоза. Представления об амитозе как форме дегенерации клеток не подкрепляются современными исследованиями. Несостоятелен и взгляд на амитоз как на форму деления клеток; имеются лишь единичные наблюдения амитотического деления тела клетки, а не только её ядра. Правильнее рассматривать амитоз как внутриклеточную регулятивную реакцию.

Все случаи, когда происходит редупликация хромосом или репликация ДНК, но не наступает митоз, называются эндорепродукциями . Клетки становятся полиплоидными.

Как постоянный процесс эндорепродукция наблюдается в клетках печени, эпителия мочевыводящих путей млекопитающих. В случае эндомитоза хромосомы после редупликации становятся видны, но ядерная оболочка не разрушается.

Если делящиеся клетки на некоторое время охладить или обработать их каким-либо веществом, разрушающим микротрубочки веретена (например, колхицином), то деление клеток прекратится. При этом исчезнет веретено, а хромосомы без расхождения к полюсам будут продолжать цикл своих превращений: они начнут набухать, одеваться ядерной оболочкой. Так возникают за счет объединения всех неразошедшихся наборов хромосом крупные новые ядра. Они, естественно, будут содержать вначале 4п число хроматид и соответственно 4с количество ДНК. По определению, это уже не диплоидная, а тетраплоидная клетка. Такие полиплоидные клетки могут из стадии G 1 переходить в S-период и, если убрать колхицин, снова делиться митотическим путем, давая уже потомков с 4 n числом хромосом. В результате можно получить полиплоидные клеточные линии разной величины плоидности. Этот прием часто используется для получения полиплоидных растений.

Как оказалось, во многих органах и тканях нормальных диплоидных организмов животных и растений встречаются клетки с крупными ядрами, количество ДНК в которых кратно больше 2 n. При делении таких клеток видно, что количество хромосом у них также кратно увеличено по сравнению с обычными диплоидными клетками. Эти клетки являются результатом соматической полиплоидии. Часто это явление называют эндорепродукцией - появление клеток с увеличенным содержанием ДНК. Появление подобных клеток происходит в результате отсутствия в целом или незавершенности отдельных этапов митоза. Существует несколько точек в процессе митоза, блокада которых приведет к его остановке и к появлению полиплоидных клеток. Блок может наступить при переходе от С2-периода к собственно митозу, остановка может произойти в профазе и метафазе, в последнем случае часто происходит нарушение целостности веретена деления. Наконец, нарушения цитотомии также могут прекратить деление, что приведет к появлению двуядерных и полиплоидных клеток.

При естественной блокаде митоза в самом его начале, при переходе G2 - профазы, клетки приступают к следующему циклу репликации, который приведет к прогрессивному увеличению количества ДНК в ядре. При этом не наблюдается никаких морфологических особенностей таких ядер, кроме их больших размеров. При увеличении ядер в них не выявляются хромосомы митотического типа. Часто такой тип эндорепродукции без митотической конденсации хромосом встречается у беспозвоночных животных, обнаруживается он также и у позвоночных животных, и у растений. У беспозвоночных в результате блока митоза степень полиплоидии может достигать огромных значений. Так, в гигантских нейронах моллюска тритонии, ядра которых достигают величины до 1 мм (!), содержится более 2-105 гаплоидных наборов ДНК. Другим примером гигантской полиплоидной клетки, образовавшейся в результате редупликации ДНК без вступления клеток в митоз, может служить клетка шелкоотделительной железы тутового шелкопряда. Ее ядро имеет причудливую ветвистую форму и может содержать огромные количества ДНК. Гигантские клетки железы пищевода аскариды могут содержать до 100000с ДНК.

Особый случай эндорепродукции представляет собой увеличение плоидности путем политении. При политении в S-периоде при репликации ДИК новые дочерние хромосомы продолжают оставаться в деспирализованном состоянии, но располагаются друг около друга, не расходятся и не претерпевают митотическую конденсацию. В таком истинно интерфазном виде хромосомы снова вступают в следующий цикл репликации, снова удваиваются и не расходятся. Постепенно в результате репликации и нерасхождения хромосомных нитей образуется многонитчатая, политенная структура хромосомы интерфазного ядра. Последнее обстоятельство необходимо подчеркнуть, так как такие гигантские политенные хромосомы никогда не участвуют в митозе, более того - это истинно интерфазные хромосомы, участвующие в синтезе ДНК и РНК. От митотических хромосом они резко отличаются и по размерам: в несколько раз толще митотических хромосом из-за того, что состоят из пучка множественных неразошедшихся хроматид - по объему политенные хромосомы дрозофилы в 1000 раз "больше митотических. Они в 70-250 раз длиннее митотических из-за того, что в интерфазном состоянии хромосомы менее конденсированы (спирализованы), чем митотические хромосомы. Кроме того, у двукрылых их общее число в клетках равно гаплоидному из-за того, что при политенизации происходит объединение, конъюгация гомологичных хромосом. Так, у дрозофилы в диплоидной соматической клетке 8 хромосом, а в гигантской клетке слюнной железы - 4. Встречаются гигантские полиплоидные ядра с политенными хромосомами у некоторых личинок двукрылых насекомых в клетках слюнных желез, кишечника, мальпигиевых сосудов, жирового тела и т.д. Описаны политенные хромосомы в макронуклеусе инфузории стилонихии. Лучше всего этот тип эндорепродукции изучен у насекомых. Было подсчитано, что у дрозофилы в клетках слюнных желез может произойти до 6-8 циклов редупликации, что приведет к общей плоидности клетки, равной 1024. У некоторых хирономид (их личинку называют мотылем) плоидность в этих клетках достигает 8000-32000. В клетках политенные хромосомы начинают быть видны после достижения политении в 64-128 п, до этого такие ядра ничем, кроме размера, не отличаются от окружающих диплоидных ядер.

Отличаются политенные хромосомы и своим строением: они структурно неоднородны по длине, состоят из дисков, междисковых участков и пуфов. Рисунок расположения дисков строго характерен для каждой хромосомы и отличается даже у близких видов животных. Диски представляют собой участки конденсированного хроматина. Диски могут отличаться друг от друга по толщине. Общее их число у политенных хромосом хирономид достигает 1,5-2,5 тыс. У дрозофилы имеется около 5 тыс. дисков. Диски разделены междисковыми пространствами, состоящими, так же как и диски, из фибрилл хроматина, только более рыхла упакованных. На политенных хромосомах двукрылых часто видны вздутия, пуфы. Оказалось, что пуфы возникают на местах некоторых дисков за счет их деконденсации и разрыхления. В пуфах выявляется РНК, которая там же и синтезируется. Рисунок расположения и чередования дисков на политенных хромосомах постоянен и не зависит ни от органа, ни от возраста животного. Это является хорошей иллюстрацией одинаковости качества генетической информации в каждой клетке организма. Пуфы являются временными образованиями на хромосомах, и в процессе развития организма существует определенная последовательность в их появлении и исчезновении на генетически различных участках хромосомы. Эта последовательность различна для разных тканей. Сейчас доказано, что образование пуфов на политенных хромосомах - это выражение генной активности: в пуфах синтезируются РНК, необходимые для проведения белковых синтезов на разных этапах развития насекомого. В естественных условиях у двукрылых особенно активны в отношении синтеза РНК два самых крупных пуфа, так называемые кольца Бальбиани, который описал их 100 лет тому назад.

В других случаях эндорепродукции полиплоидные клетки возникают в результате нарушений аппарата деления - веретена: при этом происходит митотическая конденсация хромосом. Такое явление носит название эндомитоз, потому что конденсация хромосом и их изменения происходят внутри ядра, без исчезновения ядерной оболочки. Впервые явление эндомитоза было хорошо изучено в клетках: различных тканей водяного клопа - геррии. В начале эндомитоза хромосомы конденсируются, благодаря чему становятся хорошо различимы внутри ядра, затем хроматиды обособляются, вытягиваются. Эти стадии по состоянию хромосом могут соответствовать профазе и метафазе обычного митоза. Затем хромосомы в таких ядрах исчезают, и ядро принимает вид обычного интерфазного ядра, но размер его увеличивается в соответствии с увеличением плоидности. После очередной редупликации ДНК такой цикл эндомитоза повторяется. В результате могут возникнуть полиплоидные (32 п) и даже гигантские ядра. Сходный тип эндомитоза описан при развитии макронуклеусов у некоторых инфузорий, у целого ряда растений.

Результат эндорепродукции : полиплоидия и увеличение размеров клетки.

Значение эндорепродукции : не прерывается деятельность клетки. Так, например, деление нервных клеток привело бы к временному выключению их функций; эндорепродукция позволяет без перерыва в функционировании нарастить клеточную массу и тем самым увеличить объем работы, выполняемый одной клеткой.

Митоз –mitos (греч. - нити) – непрямое деление клетки, универсальный способ деления эукариотических клеток.

Главные события митотического цикла заключаются в редупликации (самоудвоении) наследственного материала материнской клетки и в равномерном распределении этого материала между дочерними клетками. Указанным событиям сопутствуют закономерные изменения химической и морфологической организации хромосом - ядерных структур, в которых сосредоточено более 90% генетического материала эукариотической клетки (основная часть внеядерной ДНК животной клетки находится в митохондриях).

Хромосомы во взаимодействии с внехромосомными механизмами обеспечивают: а) хранение генетической информации; б) использование этой информации для создания и поддержания клеточной организации; в) регуляцию считывания наследственной информации; г) удвоение генетического материала; д) передачу его от материнской клетки дочерним.

Митоз – непрерывный процесс, который делится на фазы.

В митозе можно выделить четыре фазы . Главные события по отдельным фазам представлены ниже.

Фаза митоза Содержание изменений
Профаза (0,60 времени от всего митоза, 2n4c) Увеличивается объем ядра. Хромосомы спирализуются, становятся видимыми, укорачиваются, утолщаются, приобретают вид нитей. В цитоплазме уменьшается количество структур шероховатой сети. Резко сокращается число полисом. Центриоли клеточного центра расходятся к полюсам клетки, между ними микротрубочки образуют веретено деления. Ядрышко разрушается. Ядерная оболочка растворяется, хромосомы оказываются в цитоплазме
Метафаза (0,05 времени) Спирализация достигает максимума. Хромосомы выстраиваются в экваториальной плоскости клетки (метафазная пластинка). Микротрубочки веретена деления связаны с кинетохорами хромосом. Митотическое веретено полностью сформировано и состоит из нетей, соединяющих полюса с центромерами хромосом. Каждая хромосома продольно расщепляется на две хроматиды (дочерние хромосомы), соединенные в области кинетохора.
Анафаза (0,05 времени) Центромеры разъединяются, связь между хроматидами нарушается, и они в качестве самостоятельных хромосом перемещаются к полюсам клетки со скоростью 0,2-5 мкм/мин. Движение хромосом обеспечивается взаимодействием центромерных участков хромосом с микротрубочками веретена деления. По завершении движения на полюсах собирается два равноценных полных набора хромосом.
Телофаза (0,3 времени) Реконструируются интерфазные ядра дочерних клеток. Хромосомы, состоящие из одной хроматиды, находятся у полюсов клетки. Они деспирализуются и становятся невидимы. Образуется ядерная оболочка, нити ахроматинового веретена распадаются. В ядре формируется ядрышко. Происходит деление цитоплазмы (цитотомия и цитокинез) и образование двух дочерних клеток. В клетках животных цитоплазма делится путем перетяжки, впячиванием цитоплазматической мембраны от краев к центру. В клетках растений - в центре образуется мембранная перегородка, которая растет по направлению к стенкам клетки. После образования поперечной цитоплазматической мембраны у растений образуется целлюлярная стенка.

Биологическое значение митоза: образование клеток с наследственной информацией, которая качественно и количественно идентична информации материнской клетки. Обеспечение постоянства кариотипа в ряду поколений клеток. Митоз служит клеточным механизмом процессов роста и развития организма, его регенерации и бесполого размножения. Таким образом, митоз является всеобщим механизмом воспроизведения клеточной организации эукариотического типа в индивидуальном развитии.



Патология митоза

Нарушения той или иной фазы митоза приводят к патологическим изменениям клеток. Отклонение от нормального течения процесса спирализации может привести к набуханию и слипанию хромосом. Иногда наблюдается отрыв участка хромосомы, который, если он лишен центромеры, не участвует в анафазном перемещении к полюсам и теряется. Отставать при движении могут отдельные хроматиды, что приводит к образованию дочерних ядер с несбалансированными хромосомными наборами. Повреждения со стороны веретена деления приводят к задержке митоза в метафазе, рассеиванию хромосом. При изменении количества центриолей возникают многополюсные или асимметричные митозы. Нарушение цитотомии приводит к появлению дву- и многоядерных клеток.

На основе митотического цикла возник ряд механизмов, с помощью которых в том или ином органе количество генетического материала и, следовательно, интенсивность обмена могут быть увеличены при сохранении постоянства числа клеток.

Эндомитоз. Удвоение ДНК клетки не всегда сопровождается ее разделением на две. Поскольку механизм такого удвоения совпадает с предмитотической редупликацией ДНК и оно сопровождается кратным увеличением количества хромосом, это явление получило название эндомитоза. При воздействии на клетки веществами разрушающими микротрубочки веретена, деление прекращается, а хромосомы будут продолжать цикл своих превращений: реплицироваться, что приведет к поэтапному образованию полиплоидных клеток – 4n, 8n и т.д. Такой процесс преобразований иначе называется эндорепродукцией. С генетической точки зрения, эндомитоз - геномная соматическая мутация. Способность клеток к эндомитозу используют в селекции растений для получения клеток с кратным набором хромосом. Для этого применяют колхицин, винбластин, разрушающие нити ахроматинового веретена. Полиплоидные клетки (а затем и взрослые растения) отличаются большими размерами, вегетативные органы из таких клеток крупные, с большим запасом питательных веществ. У человека эндорепродукция имеет место в некоторых гепатоцитах и кардиомиоцитах.

Политения. При политении в S-периоде в результате репликации и нерасхождения хромосомных нитей образуется многонитчатая, политенная структура. От митотических хромосом они отличаются большими размерами (длиннее в – 200 раз). Встречаются такие клетки в слюнных железах двукрылых насекомых, в макронуклеусах инфузорий. На политенных хромосомах видны вздутия, пуфы (места транскрипции) – выражение генной активности. Эти хромосомы – важнейший объект генетических исследований. Эндомитоз и политения приводят к образованию полиплоидных клеток, отличающихся кратным увеличением объема наследственного материала. В таких клетках в отличие от диплоидных гены повторены более чем два раза. Пропорционально увеличению числа генов растет масса клетки, что повышает ее функциональные возможности. В организме млекопитающих полиплоидизация с возрастом свойственна печеночным клеткам.

Аномалии митотического цикла . Митотический ритм, обычно адекватный потребности восстановления стареющих, погибших клеток, в условиях патологии может быть изменен. Замедление ритма наблюдается в стареющих или маловаскуляризированных тканях, увеличение ритма - в тканях при разных видах воспаления, гормональных воздействиях, в опухолях и др.

Аномалии развития митозов . Некоторые агрессивные агенты, действуя на фазу S, замедляют синтез и дупликацию ДНК. К ним относятся ионизирующая радиация, различные антиметаболиты (метатрексат, меркапто-6-пурин, флюоро-5-урацил, прокарбозин и др.). Их используют для противоопухолевой химиотерапии. Другие агрессивные агенты действуют на фазы митоза и препятствуют образованию ахроматического веретена. Они изменяют вязкость плазмы, не расщепляя нити хромосом. Такое цитофизиологическое изменение может повлечь за собой блокаду митоза в метафазу, а затем - острую смерть клетки, или митонекроз. Митонекрозы часто наблюдаются, в частности, в опухолевой ткани, в очагах некоторых воспалений с некрозом. Их можно вызвать при помощи подофиллина, который применяется при лечении злокачественных новообразований.

Аномалии морфологии митозов . При воспалении, действии ионизирующей радиации, химических агентов и особенно в злокачественных опухолях обнаруживаются морфологические аномалии митозов. Они связаны с тяжелыми метаболическими изменениями клеток и могут быть обозначены как «абортивные митозы». Примером такой аномалии служит митоз с анормальным числом и формой хромосом; трех-, четырех- и мультиполярные митозы.

Многоядерные клетки . Клетки, содержащие множество ядер, встречаются и в нормальном состоянии, например: остеокласты, мегакариоциты, синцитиотрофобласты. Но они поручаются часто и в условиях патологии - например: клетки Ланганса при туберкулезе, гигантские клетки инородных тел, множество опухолевых клеток. Цитоплазма таких клеток содержит гранулы или вакуоли, число ядер может колебаться от нескольких единиц до нескольких сотен, а объем отражён в названии - гигантские клетки. Происхождение их вариабельно: эпителиальные, мезенхимальные, гистиоцитарные. Механизм формирования гигантских многоядерных клеток различен. В одних случаях их образование обусловлено слиянием мононуклеарных клеток, в других оно осуществляется благодаря делению ядер без деления цитоплазмы. Считают также, что их образование может быть следствием некоторых аномалий митоза после облучения или введения цитостатиков, а также при злокачественном росте.

Амитоз

Прямое деление или амитоз – это деление клетки, у которой ядро находится в интерфазном состоянии. При этом не происходит конденсации хромосом и образования веретена деления. Формально амитоз должен приводить к появлению двух клеток, однако чаще всего он приводит к разделению ядра и появлению двух- или многоядерных клеток.

Начинается амитотическое деление с фрагментации ядрышек, вслед за этим делится перетяжкой ядро (или инвагинацией). Может быть множественное деление ядра, как правило, неравной величины (при патологических процессах). Многочисленные наблюдения показали, что амитоз встречается почти всегда в клетках отживающих, дегенерирующих и не способных дать в дальнейшем полноценные элементы. В норме амитотическое деление встречается в зародышевых оболочках животных, в фолликулярных клетках яичника, в гигантских клетках трофобластов. Положительное значение амитоз имеет в процессе регенерации тканей или органа (регенеративный амитоз). Амитоз в стареющих клетках сопровождается нарушениями биосинтетических процессов, включая репликацию, репарацию ДНК, а также транскрипцию и трансляцию. Изменяются физико-химические свойства белков хроматина ядер клеток, состав цитоплазмы, структура и функции органоидов, что влечет за собой функциональные нарушения на всех последующих уровнях – клеточном, тканевом, органном и организменном. По мере нарастания деструкции и угасания восстановления наступает естественная смерть клетки. Нередко амитоз встречается при воспалительных процессах и злокачественных новообразованиях (индуцированный амитоз).

Митоз (от греч. митос – нить), или кариокинез (греч. карион – ядро, кинезис – движение), или непрямое деление. Это процесс, в ходе которого происходит конденсация хромосом и равномерное распределение дочерних хромосом между дочерними клетками. Митоз включает в себя пять фаз: профаза, прометафаза, метафаза, анафаза и телофаза. В профазе хромосомы конденсируются (скручиваются), становятся заметными и располагаются в виде клубка. Центриоли делятся на две и начинают двигаться к клеточным полюсам. Между центриолями появляются нити, состоящие из белка тубулина. Происходит образование митотического веретена. В прометафазе ядерная оболочка распадается на мелкие фрагменты, а погруженные в цитоплазму хромосомы начинают двигаться к экватору клетки. В метафазе хромосомы устанавливаются на экваторе веретена и становятся максимально компактизированными. Каждая хромосома состоит из двух хроматид, связанных друг с другом центромерами, а концы хроматид расходятся, и хромосомы принимают Х-образную форму. В анафазе дочерние хромосомы (бывшие сестринские хроматиды) расходятся к противоположным полюсам. Предположение о том, что это обеспечивается сокращением нитей веретена, не подтвердилось.

Многие исследователи поддерживают гипотезу скользящих нитей, согласно которой соседние микротрубочки веретена деления, взаимодействуя друг с другом и сократительными белками, тянут хромосомы к полюсам. В телофазе дочерние хромосомы достигают полюсов, деспирализуются, образуется ядерная оболочка, восстанавливается интерфазная структура ядер. Затем наступает разделение цитоплазмы – цитокинез. В животных клетках этот процесс проявляется в перетяжке цитоплазмы за счет втягивания плазмолеммы между двумя дочерними ядрами, а в растительных клетках мелкие пузырьки ЭПС, сливаясь, образуют изнутри цитоплазмы клеточную мембрану. Целлюлозная клеточная стенка образуется за счет секрета, накапливающегося в диктиосомах.

Продолжительность каждой из фаз митоза различна – от нескольких минут до сотен часов, что зависит как от внешних, так и внутренних факторов и типа тканей.

Нарушение цитотомии приводит к образованию многоядерных клеток. При нарушении репродукции центриолей могут возникнуть многополюсные митозы.

АМИТОЗ

Это прямое деление ядра клетки, сохраняющего интерфазную структуру. При этом хромосомы не выявляются, не происходит образования веретена деления и их равномерного распределения. Ядро делится путем перетяжки на относительно равные части. Цитоплазма может делиться перетяжкой, и тогда образуются две дочерние клетки, но может и не делиться, и тогда образуются двуядерные или многоядерные клетки.

Амитоз как способ деления клеток может встречаться в дифференцированных тканях, например, скелетных мышцах, клетках кожи, а также в патологических изменениях тканях. Однако он никогда не встречается в клетках, нуждающихся в сохранении полноценной генетической информации.

11. Мейоз. Стадии, биологическое значение.

Мейоз (греч. мейозис – уменьшение) – способ деления диплоидных клеток с образованием из одной материнской диплоидной клетки четырех дочерних гаплоидных клеток. Мейоз состоит из двух последовательных делений ядра и короткой интерфазы между ними.Первое деление состоит из профазы I, метафазы I, анафазы I и телофазы I.

В профазе I парные хромосомы, каждая из которых состоит из двух хроматид, подходят друг к другу (этот процесс называется конъюгацией гомологичных хромосом), перекрещиваются (кроссинговер), образуя мостики (хиазмы), затем обмениваются участками. При кроссинговере осуществляется перекомбинация генов. После кроссинговера хромосомы разъединяются.

В метафазе I парные хромосомы располагаются по экватору клетки; к каждой из хромосом прикрепляются нити веретена деления.

В анафазе I к полюсам клетки расходятся двухроматидные хромосомы; при этом число хромосом у каждого полюса становится вдвое меньше, чем в материнской клетке.

Затем наступает телофаза I – образуются две клетки с гаплоидным числом двухроматидных хромосом; поэтому первое деление мейоза называют редукционным.

После телофазы I следует короткая интерфаза (в некоторых случаях телофаза I и интерфаза отсутствуют). В интерфазе между двумя делениями мейоза удвоения хромосом не происходит, т.к. каждая хромосома уже состоит из двух хроматид.

Второе деление мейоза отличается от митоза только тем, что его проходят клетки с гаплоидным набором хромосом; во втором делении иногда отсутствует профаза II.

В метафазе II двухроматидные хромосомы располагаются по экватору; процесс идет сразу в двух дочерних клетках.

В анафазе II к полюсам отходят уже однохроматидные хромосомы.

В телофазе II в четырех дочерних клетках формируются ядра и перегородки (в растительных клетках) или перетяжки (в животных клетках). В результате второго деления мейоза образуются четыре клетки с гаплоидным набором хромосом (1n1c); второе деление называют эквационным (уравнительным) (рис. 18). Это – гаметы у животных и человека или споры у растений.

Значение мейоза состоит в том, что создается гаплоидный набор хромосом и условия для наследственной изменчивости за счет кроссинговера и вероятностного расхождения хромосом

12.Гаметогенез: ово - и сперматогенез.

Гаметогенез- процесс образования яйцеклеток и сперматозоидов.

Сперматогенез - от греч. sperma, род. п. spermatos - семя и...генез), образование дифференцированных мужских половых клеток -сперматозоидов; у человека и животных - в семенниках, у низших растений - в антеридиях.

У большинства высших растений в пыльцевой трубке образуются сперматозоиды, чаще называются спермиями.Сперматогенез начинается одновременно с деятельностью яичка под влиянием половых гормонов в период полового созревания подростка и далее протекает непрерывно (у большинства мужчин практически до конца жизни), имеет чёткий ритм и равномерную интенсивность. Сперматогонии, содержащие удвоенный набор хромосом, делятся путём митоза, приводя к возникновению последующих клеток - сперматоцитов 1-го порядка. Далее в результате двух последовательных делений (мейотические деления) образуются сперматоциты 2-го порядка, а затем сперматиды (клетки сперматогенеза, непосредственно предшествующие сперматозоиду). При этих делениях происходит уменьшение (редукция) числа хромосом вдвое. Сперматиды не делятся, вступают в заключительный период сперматогенеза (период формирования спермиев) и после длительной фазы дифференцировки превращаются в сперматозоиды. Происходит это путём постепенного вытяжения клетки, изменения, удлинения её формы, в результате чего клеточное ядро сперматида образует головку сперматозоида, а оболочка и цитоплазма - шейку и хвост. В последней фазе развития головки сперматозоидов тесно примыкают к клеткам Сертоли, получая от них питание до полного созревания. После этого сперматозоиды, уже зрелые, попадают в просвет канальца яичка и далее в придаток, где происходит их накопление и выведение из организма во время семяизвержения

Овогенез - процесс развития женских половыхклеток гамет, заканчивающийся формированием яйцеклеток. У женщины в течение менструального цикла созревает лишь одна яйцеклетка. Процесс овогенеза имеет принципиальное сходство со сперматогенезом и также проходит через ряд стадий: размножения, роста и созревания. Яйцеклетки образуются в яичнике, развиваясь из незрелых половых клеток - овогониев, содержащих диплоидное число хромосом. Овогонии, подобно сперматогониям,претерпевают последовательные митотические

деления, которые завершаются к моменту рождения плода.Затем наступает период роста овогониев, когда их называют овоцитами I порядка. Они окружены одним слоем клеток - гранулёзной оболочкой - и образуют так называемые примордиальные фолликулы. Плод женскогопола накануне рождения содержит около 2 млн. этих фолликулов, но лишь примерно 450 из них достигают стадии овоцитов II порядка и выходят из яичника в процессе овуляции. Созревание овоцита сопровождается двумя последовательными делениями, приводящими к

уменьшению числа хромосом в клетке вдвое. В результате первого деления мейоза образуется крупный овоцит II порядка и первое полярноетельце, а после второго деления - зрелая, способная к оплодотворению и дальнейшему

развитию яйцеклетка с гаплоидным набором хромосом и второе полярное тельце. Полярныетельца представляют собой мелкие клетки, не играют роли в овогенезе и в конечном счёте разрушаются.

13.Хромосомы. Их химический состав, надмолекулярная организация (уровни упаковки ДНК).

(или прямое деление клетки), происходит в соматических клетках эукариот реже, чем митоз. Впервые он описан немецким биологом Р. Ремаком в 1841г., термин предложен гистологом В. Флеммингом позднее - в 1882г. В большинстве случаев амитоз наблюдается в клетках со сниженной митотической активностью: это стареющие или патологически измененные клетки, часто обреченные на гибель (клетки зародышевых оболочек млекопитающих, опухолевые клетки и др.). При амитозе морфологически сохраняется интерфазное состояние ядра, хорошо видны ядрышко и ядерная оболочка. Репликация ДНК отсутствует.

Рис. 1

Спирализация хроматина не происходит, хромосомы не выявляются. Клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. При амитозе делится только ядро, причем без образования веретена деления, поэтому наследственный материал распределяется случайным образом. Отсутствие цитокинеза приводит к образованию двуядерных клеток, которые в дальнейшем не способны вступать в нормальный митотический цикл. При повторных амитозах могут образовываться многоядерные клетки.

Это понятие ещё фигурировало в некоторых учебниках до 1980-х гг. В настоящее время считается, что все явления, относимые к амитозу -- результат неверной интерпретации недостаточно качественно приготовленных микроскопических препаратов, или интерпретации как деления клетки явлений, сопровождающих разрушение клеток или иные патологические процессы. В то же время некоторые варианты деления ядер эукариот нельзя назвать митозом или мейозом. Таково, например, деление макронуклеусов многих инфузорий, где без образования веретена происходит сегрегация коротких фрагментов хромосом.

- (от греч. а -- отриц. част, и mitos -- нить; син.: прямое деление, фрагментация) . Так называют особую форму клеточного деления, отличающуюся от обычного митоза (деления с волокнистым метаморфозом ядра) своей простотой. По определению Flemming"a, установившего эту форму (1879 г.), «амитоз есть такая форма деления клетки и ядра, при которой отсутствуют образование веретена и правильно оформленных хромосом и перемещение последних в определенном порядке».

Ядро, не изменяя своего характера, прямо или после предварительного разделения ядрышка, распадается на две части путем перешнурования или образования односторонней складки. За делением ядра в некоторых случаях делится и тело клетки, также путем перешнурования и расщепления. Иногда ядро распадается на несколько частей равной или неравной величины. А. был описан во всех органах и тканях как у позвоночных, так и беспозвоночных; одно время думали, что простейшие делятся исключительно прямым путем, но ошибочность этого взгляда вскоре была доказана. Главным признаком для констатирования А. служило нахождение двуядерных клеток, а на ряду с ними--и клеток с большими ядрами, обнаруживающими складки и перехваты; амитотическое деление клеточного тела наблюдалось чрезвычайно редко, о нем приходилось заключать на основании косвенных соображений.--

По вопросу о сущности и значении А. были высказаны различные воззрения:

  • 1. А. есть первичный и простейший способ деления (Strassburger, Waldeyer, Car-поу); он происходит, напр., при заживлении ран, когда клетки «не успевают» делиться митозом (Balbiani, Henneguy), наблюдается иногда у зародышей (Максимов). фрагментация интерфазный амитоз клетка
  • 2. А. есть ненормальный способ деления, происходит при условиях патологических, в отживающих тканях, иногда в клетках при усиленной секреции и ассимиляции и знаменует собой конец делений; клетки после А. не могут уже делиться ми-тотически, поэтому А. не имеет регенеративного значения (Flemming, Ziegler, Rath).
  • 3. А. не представляет собой способа размножения клетки; в одной части случаев А. происходит простое распадение ядра под влиянием физико-механических моментов (давление, пережимание клетки чем-либо, образование и углубление складок вследствие изменения осмотического давления ядра), в других случаях, описанных как А., имеет место абортивный (не дошедший до конца) митоз; смотря по стадии, на к-рой обрывается митоз, получаются клетки с большим перешнурованным ядром или двуядерные (Карпов)."-- За последние два десятилетия вопрос об А. дебатируется реже, при чем высказываются все три взгляда: т. о., единства во взглядах на А. не достигнуто.

При амитозе веретено деления не образуется и хромосомы в световом микроскопе неразличимы. Такое деление встречается у одноклеточных организмов (например, так делятся большие полиплоидные ядра инфузорий), а также в некоторых высокоспециализированных с ослабленной физиологической активностью, дегенерирующих, обреченных на гибель клетках растений и животных либо при различных патологических процессах, таких как злокачественный рост, воспаление и т. п.

Амитоз можно наблюдать в тканях растущего клубня картофеля, эндосперме семян, стенках завязи пестика и паренхиме черешков листьев. У животных и человека такой тип деления характерен для клеток печени, хрящей, роговицы глаза.

При амитозе часто наблюдается только деление ядра: в этом случае могут возникнуть двух- и многоядерные клетки. Если же за делением ядра следует деление цитоплазмы, то распределение клеточных компонентов, как и ДНК, осуществляется произвольно.

Амитоз в отличие от митоза является самым экономичным способом деления, так как энергетические затраты при этом весьма незначительны.

При Амитоз, в отличие от митоза, или непрямого деления ядра, ядерная оболочка и ядрышки не разрушаются, веретено деления в ядре не образуется, хромосомы остаются в рабочем (деспирализованном) состоянии, ядро или перешнуровывается или в нём, внешне неизменном, появляется перегородка; деления тела клетки -- цитотомии, как правило, не происходит (рис.); обычно Амитоз не обеспечивает равномерного деления ядра и отдельных его компонентов.

Рис 2

Изучение Амитоз осложняется ненадёжностью его определения по морфологическим признакам, поскольку не каждая перетяжка ядра означает Амитоз; даже выраженные «гантелевидные» перетяжки ядра могут быть преходящими; ядерные перетяжки могут быть и результатом неправильного предшествующего митоза (псевдоамитоз). Обычно Амитоз следует за эндомитозом. В большинстве случаев при Амитоз делится только ядро и возникает двуядерная клетка; при повторных Амитоз могут образовываться многоядерные клетки. Очень многие двуядерные и многоядерные клетки -- результат Амитоз (некоторое число двуядерных клеток образуется при митотическом делении ядра без деления тела клетки); они содержат (суммарно) полиплоидные хромосомные наборы (см. Полиплоидия).

У млекопитающих известны ткани как с одноядерными и двуядерными полиплоидными клетками (клетки печени, поджелудочной и слюнных желёз, нервной системы, эпителия мочевого пузыря, эпидермиса), так и только с двуядерными полиплоидными клетками (клетки мезотелия, соединительные ткани). Двуи многоядерные клетки отличаются от одноядерных диплоидных (см. Диплоид) большими размерами, более интенсивной синтетической деятельностью, увеличенным количеством различных структурных образований, в том числе хромосом. От одноядерных полиплоидных клеток двуи многоядерные отличаются главным образом большей поверхностью ядра. На этом основано представление об Амитоз как способе нормализации ядерно-плазменных отношений в полиплоидных клетках путём увеличения отношения поверхности ядра к его объёму. Во время Амитоз клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. Во многих случаях Амитоз и двуядерность сопутствуют компенсаторным процессам, протекающим в тканях (например, при функциональных перегрузках, голодании, после отравления или денервации). Обычно Амитоз наблюдается в тканях со сниженной митотической активностью. Этим, по-видимому, объясняется увеличение по мере старения организма числа двуядерных клеток, образующихся путём Амитоз Представления об Амитоз как форме дегенерации клеток не подкрепляются современными исследованиями. Несостоятелен и взгляд на Амитоз как на форму деления клеток; имеются лишь единичные наблюдения амитотического деления тела клетки, а не только её ядра. Правильнее рассматривать Амитоз как внутриклеточную регулятивную реакцию.