Конечные продукты углеводного обмена. Расшифровка анализа углеводного обмена веществ

Обмен углеводов - это совокупность процессов превращения углеводов в организме. Углеводы являются источниками энергии для не­посредственного использования (глюкоза) или образуют депо энергии (гликоген), являются компонентами ряда сложных соединений (нуклеопротеиды, гликопротеиды), используемых для построения клеточных структур.

Суточная потребность в углеводах взрослого человека в среднем со­ставляет 400-450 г.

Основными этапами углеводного обмена являются:

1) расщепление углеводов пищи в желудочно-кишечном тракте и всасывание моносахаридов в тонком кишечнике;

2) депонирование глюкозы в виде гликогена в печени и мышцах или непосредственное ее использование в энергетических целях;

3) расщепление гликогена в печени и поступление глюкозы в кровь по мере ее убыли в крови (мобилизация гликогена);

4) синтез глюкозы из промежуточных продуктов (пировиноградной и молочной кислот) и неуглеводных предшественников;

5) превращение глюкозы в жирные кислоты;

6) окисление глюкозы с образованием углекислого газа и воды.

Углеводы всасываются в пищеварительном канале в виде глюкозы, фруктозы и галактозы. Они поступают по воротной вене в печень, где фруктоза и галактоза превращаются в глюкозу, накапливающуюся в виде гликогена (полисахарид). Процесс синтеза гликогена в печени из глюкозы называется гликогенезом (в печени содержится в виде гликогена около 150-200 г углеводов). Часть глюкозы попадает в общий кровоток и разно­сится по всему организму, используясь как основной энергетический ма­териал и как компонент сложных соединений (гликопротеиды, нуклеопротеиды и т.д.).

Глюкоза является постоянной составной частью (биологической кон­стантой) крови. Содержание глюкозы в крови человека в норме составляет 4,44-6,67 ммоль/л (80-120 мг%). При увеличении ее содержания в крови (гипергликемии) до 8,34-10 ммоль/л (150-180 мг%) она выводится с мочой в виде следов. При понижении уровня глюкозы в крови (гипогликемии) до 3,89 ммоль/л (70 мг%) появляется чувство голода, до 3,22 ммоль/л (40 мг%) - возникают судороги, бред и потеря сознания (кома).

При окислении глюкозы в клетках для получения энергии она в ко­нечном итоге превращается в углекислый газ и воду. Процесс распада гли­когена в печени до глюкозы называется гликогенолизом . Процесс биосин­теза углеводов из продуктов их распада или продуктов распада жиров и белков называется гликонеогенезом . Процесс расщепления углеводов при отсутствии кислорода с накоплением энергии в АТФ и образованием мо­лочной и пировиноградной кислот называется гликолизом .

Когда поступление глюкозы превышает непосредственную потреб­ность в этом веществе, печень превращает глюкозу в жир, который откла­дывается про запас в жировых депо и может быть использован в будущем как источник энергии.

Нарушение нормального обмена углеводов проявляется прежде всего повышением содержания глюкозы в крови. Постоянная гипергликемия и глюкозурия, связанная с глубоким нарушением углеводного обмена, на­блюдается при сахарном диабете. В основе этой болезни лежит недоста­точность инкреторной функции поджелудочной железы. Вследствие не­достатка или отсутствия инсулина в организме нарушается способность тканей использовать глюкозу, и она выводится с мочой. Более подробно эту патологию мы рассмотрим при изучении эндокринной системы.

Углеводами называются альдегиды или кетоны многоатомных спиртов или их производных.

Углеводы классифицируются на:

1. моносахариды – не подвергаются гидролизу:

Триозы (глицеральдегид, диоксиацетон);

Тетрозы (эритроза);

Пентозы (рибоза, дезоксирибоза, рибулоза, ксилуоза);

Гексозы (глюкоза, фруктоза, галактоза).

2. олигосахариды – состоят из 2–12 моносахаридов, соединенных между собой гликозидными связями (мальтоза – 2 глюкозы, лактоза – галактоза и глюкоза, сахароза – глюкоза и фруктоза);

3. полисахариды:

Гомополисахариды (крахмал, гликоген, клетчатка);

Гетерополисахариды (сиаловая кислота, нейраминовая кислота, гиалуроновая кислота, хондроитинсерная кислота, гепарин).

Углеводы входят в состав клеток животных (до 2%) и растений (до 80%).

Биологическая роль:

1. энергитическая. На долю углеводов приходится около 70% всей калорийности. Суточная потребность для взрослого человека – 400-500 г. При окислении 1 г углеводов до воды и углекислого газа выделяется 4,1 ккал энергии;

2. структурная. Углеводы используются как пластический материал для образования структурно-функциональных компонентов клеток. К ним относятся пентозы нуклеиновых кислот, углеводы гликопротеинов, гетерополисахариды межклеточного вещества;

3. резервная. Могут откладываться про запас в печени, мышцах в виде гликогена;

4. защитная. Гликопротеины принимают участие в образовании антител. Гетерополисахариды участвуют в образовании вязких секретов (слизи), покрывающих слизистые оболочки ЖКТ, дыхательных и мочеполовых путей. Гиалуроновая кислота играет роль цементирующего вещества соединительной ткани, препятствующего проникновению чужеродных тел;

5. регуляторная. Некоторые гормоны – гликопротеины (гипофиза, щитовидной железы);

6. участвуют в процессах узнавания клеток (сиаловая и нейраминовая кислоты);

7. определяют группу крови, входя в состав оболочек эритроцитов;

8. участвуют в процессах свертываемости крови, входя в состав гликопротеинов крови, фибриногена и протромбина. Так же предупреждает свёртываемость крови, входя в состав гепарина.

Основным источником углеводов для организма служат углеводы пищи, главным образом крахмал, сахароза и лактоза.

Крахмал – это смесь двух гомополисахаридов: линейного (амилоза от 10% до 30%) и разветвленного (амилопектин от70% до 90%) строения. Крахмал содержится в основных продуктах питания: картофель до 10%, крупы – 70-80%.

Остатки глюкозы соединяются в амилозе и линейных цепях амилопектина с помощью -1,4-гликозидных связей, а в точках ветвления амилопектина - с помощью -1,6-гликозидных связей.

Крахмал, поступая с пищей в ротовую полость, после механической обработки будет подвергаться гидролизу с помощью -амилазы слюны. Этот фермент является эндоамилазой, расщепляющей -1,4-гликозидные связи. Оптимальный рН фермента находится в слабощелочной среде (рН=7-8). Поскольку пища в ротовой полости долго не находится, крахмал здесь подвергается лишь частичному гидролизу с образованием амилодекстринов.

Далее пища идёт в желудок. Слизистая оболочки желудка гликозидазы (ферменты, расщепляющие углеводы) не вырабатываются. В желудке среда резко кислая (рН=1,2-2,5) ,поэтому действие -амилазы слюны прекращается, но в более глубоких слоях пищевого комка, куда не сразу проникает желудочный сок, действие фермента слюны продолжается и крахмал успевает пройти стадию гидролиза - эритродекстринов.

Основным местом переваривания крахмала служит тонкий кишечник. Здесь происходят наиболее важные стадии гидролиза крахмала. В двенадцатиперсной кишке, куда открывается проток поджелудочной железы, под действием ферментов ПЖЖ (-амилазы, амило-1,6-гликозидазы и олиго-1,6-гликозидазы) будет идти гидролиз крахмала. Выделяющийся сок поджелудочной железы содержит бикарбонаты, которые участвуют в нейтрализации кислого желудочного содержимого. Образующийся при этом углекислый газ способствует перемешиванию пищевого комка, создаётся слабощелочная среда (рН=8-9). Образующиеся катионы натрия и калия способствуют активации панкреатических гидролаз (-амилаза, амило-1,6-гликозидаза, олиго-1,6-гликозидаза). Эти ферменты завершают гидролитический разрыв внутри гликозидных связей, начатых -амилазой слюны.

Эритродекстрины превращаются в ахродекстрины. Под влиянием -амилазы панкреатического сока завершается разрыв внутренних -1,4-гликозидных связей в крахмале с образованием мальтозы. -1,6-гликозидные связи в точках ветвления гидролизуются под действием амило-1,6-гликозидазы и олиго-1,6-гликозидазы, которая является терминальной (последней) в этом процессе.

Т.о. три панкреатических фермента завершают гидролиз крахмала в кишечнике с образованием мальтоз. Из тех глюкозных остатков, которые в молекуле крахмала были соединены с помощью -1,6-гликозидных связей, образовались дисахариды – изомальтозы.

Слизистая оболочка тонкой кишки (энтероциты) синтезирует мальтазы (изомальтазы), лактазы и сахаразы. Образующиеся в результате гидролиза мальтоза, изомальтоза являются временным продуктом гидролиза, и в клетках кишечника они быстро гидролизуются под влиянием кишечных мальтазы, изомальтазы на две молекулы глюкозы. Т.о. в результате гидролиза крахмала в органах пищеварения образуется конечный продукт – глюкоза.

В составе пищи кроме полисахаридов поступают и дисахариды (лактоза и сахароза), которые подвергаются гидролизу только в тонком кишечнике. В энтероцитах синтезируются специфические ферменты: лактаза и сахараза, которые осуществляют гидролиз этих дисахаридов с образованием глюкоз, галактоз и фруктоз. Продукты полностью перевариваются. Углеводы - моносахариды всасываются в кровь и на этом завершается начальный этап обмена углеводов в организме человека - пищеварение.

Было установлено, что для всасывания моносахаридов (глюкозы) в кровь необходимо наличие в энтероцитах:

В цитоплазме - ионов калия, натрия, АТФ и воды.

В биомембранах - специфических белков–переносчиков и фермента - АТФ-азы.

90% образовавшейся в результате гидролиза крахмала глюкозы всасывается в кровь и через систему воротной вены поступает в печень, где депонируется в виде резервного полисахарида - гликогена. Около 10% всасывающихся в кровь моносахаридов попадает в большой круг кровообращения, разносится к органам и тканям, которые используют их в метаболических реакциях.

С пищей в организм человека поступает клетчатка – полисахарид, состоящий из остатков -D- глюкопиранозы. В ЖКТ человека она гидролизу не подвергается, поскольку не вырабатываются -гликозидазы, которые расщепляют её до глюкозы.

Биологическая роль клетчатки:

1. формирует пищевой комок;

2. продвигаясь по ЖКТ она раздражает слизистую оболочку, усиливая секрецию пищеварительных желез;

3. усиливает перистальтику кишечника;

4. нормализует кишечную микрофлору.

Достигая толстого отдела кишки, она под действием ферментов микрофлоры подвергается частичному сбраживанию с образованием глюкозы, малата, газообразных веществ. Глюкозы образуется мало, но она всасывается в кровь.

Биологический синтез гликогена

Установлено, что гликоген образуется почти во всех клетках организма, однако наибольшее содержание гликогена обнаружено в печени (2-6%) и в мышцах (0,5-2%). Т.к. общая мышечная масса организма человека велика, то большая часть всего гликогена содержится в мышцах.

Глюкоза из крови легко поступает в клетки организма и в ткани, легко проникая через биологические мембраны. Инсулин обеспечивает проницаемость мембран, это единственный гормон, обеспечивающий транспорт глюкозы в клетки органов и тканей. Как только глюкоза поступает в клетку, она сразу же как бы запирается в ней. В результате первой метаболической реакции, катализируемой ферментом гексакиназой в присутствии АТФ, глюкоза превращается в фосфорный эфир – глюкозо-6-фосфат, для которого клеточная мембрана не проницаема. Глюкозо-6-фосфат теперь будет использоваться клеткой в метаболических реакциях (анаболизм, катаболизм). Из клетки глюкоза может обратно выйти в кровь только после гидролиза под действием фосфатазы (глюкозо-6-фосфатазы). Этот фермент есть в печени, почках, в эпителии кишечника, в других органах и тканях его нет, следовательно, проникновение глюкозы в клетки этих органов и тканей необратимо.

Процесс биосинтеза гликогена можно записать в виде 4-х стадий:

глюкоза (гексакиназа, АТФАДФ) глюкозо-6-фосфат (фосфоглюкомутаза) глюкозо-1-фосфат (глюкозо-1-фосфат-уридин трансфераза) УДФ-глюкоза (гликоген-синтетаза, + n) n+1 (это наращенный гликоген) +УДФ



Затем УДФ+АТФ(нуклеозиддифосфаткиназа) УТФ+АДФ. Т.о. на присоединение 1 молекулы глюкозы тратмтся 2 молекулы АТФ.

Гликогенсинтаза является трансферазой, которая переносит остатки глюкозы, входящие в УДФ-глюкозу на гликозидную связь остаточного в клетке гликогена. При этом образуются -1,4- гликозидные связи. Образование -1,6-гликозидных связей в точках ветвления гликогена катализирует специальный фермент гликогенветвящий.

Гликоген в клетках печени накапливается во время пищеварения, и рассматривается как резервная форма глюкозы, которая используется в промежутках между приёмами пищи.

Распад гликогена

Он может идти двумя путями:

1. Основной – фосфоролитический - протекает в печени, почках, эпителии кишечника.

Схематически его можно записать в виде 3-х стадий:

а) n (это гликоген) (фосфорилаза А, +Н 3 РО 4) глюкозо-1-фосфат + n-1

б) глюкозо-1-фосфат (фосфоглюкомутаза) глюкозо-6-фосфат

в) глюкозо-6-фосфат (глюкозо-6-фосфатаза, +Н 2 О) глюкоза + Н 3 РО 4

2. Не основной – амилолитический. его доля мала и незначительна. Протекает в клетках печени при участии:

- -амилазы слюны, расщепляющей -1,4-гликозидные связи;

Амило-1,6-гликозидазы, расщепляющей -1,6-гликозидные связи в точках ветвления гликогена;

- -амилазы, которая последовательно отрывает концевые остатки глюкозы от боковых цепей гликогена.

Гликогеновые болезни

Гликогеновые болезни - наследственные нарушения обмена гликогена, которые связаны с недостаточностью какого–либо фермента, участвующего в синтезе или распаде гликогена. Как правило, эта недостаточность выражена в снижении активности или полном отсутствии фермента.

Различают гликогенозы – болезни, связанные с нарушением процесса распада гликогена. При этом клетки печени, мышц, почек накапливают большое количество гликогена, что ведет к разрушению клеток. У больных наблюдается увеличение печени, гипоглюкоземия натощак, мышечная слабость. Обычно такие больные умирают в раннем возрасте. Наиболее часто встречаются следующие гликогенозы:

Болезнь Герса, связанная с недостаточной активностью или отсутствием фосфорилазы печени;

Болезнь Мак-Ардля, -//- фосфорилазы мышц;

Болезнь Помпе, -//- -1,4-гликозидазы;

Болезнь Гори, -//- амило-1,6-гликозидазы;

Болезнь Гирке, -//- глюкозо-6-фосфатазы.

Агликогенозы – заболевания, которые характеризуются нарушением синтеза гликогена. У больных: гипогликемия натощак, судороги, рвота, потеря сознания, постоянное углеводное голодание мозга приводит к отставанию умственного развития. Больные погибают в раннем возрасте. Наиболее часто встречаются следующие агликогенозы:

Болезнь Льюиса, связанная с нарушением выработки или полным отсутствием гликогенсинтазы;

Болезнь Андерсена, -//- гликогенветвящего фермента.

Пути катаболизма глюкозы

В зависимости от функционального состояния клеток органов и тканей, они могут находиться в условиях достаточного снабжения кислородом или испытывать его недостаток, находиться в условиях гипоксии.

Следовательно, катаболизм глюкозы в организме можно рассматривать с двух позиций: в аэробных и анаэробных условиях.

Анаэробный путь распада глюкозы в тканях называется гликолизом, если в анаэробных условиях распадается глюкозный остаток гликогена, то этот процесс называется гликогенолизом. Оба эти процесса протекают в цитоплазме клеток. Конечным продуктом окисления будет являться молочная кислота. В процессе окисления будет выделяться энергия за счет реакций субстратного фосфорилирования. Основная биологическая роль – энергетическая. Окисление глюкозы и глюкозного остатка гликогена в тканях отличается только в начальных стадиях превращения, до образования глюкозо-6-фосфата. Схематически это можно представить как:

глюкоза (гексакиназа, АТФАДФ) глюкозо-6-фосфат;

N (это гликоген) (фосфорилаза А, +Н 3 РО 4) глюкозо-1-фосфат + n-1

глюкозо-1-фосфат  (фосфоглюкомутаза) глюкозо-6-фосфат

Основные стадии гликолиза и гликогенолиза:

Процесс гликолиза сложный и многоступенчатый. Условно его можно разделить на 2 стадии.

1 стадия – завершается образованием глицеральдегид-3-фосфата. 2 стадия – называется стадией гликолитической оксидоредукцией. Она сопряжена с образованием АТФ за счет реакций субстратного фосфорилирования, окислением глицеральдегид-3-фосфата и восстановлением пирувата в лактат.

гексакиназа ↓ АТФАДФ

глюкозо-6-фосфатизомераза ↓

фосфофруктокиназа ↓ АТФАДФ

альдолаза ↓


Фосфодиоксиацетон под действием изомеразы может превращаться в глицеральдегид-3-фосфат.

2 стадия. На ней перед всеми формулами ставим 2, т.к. фосфодиоксиацетон изомеризовался и получилось 2 молекулы глицеральдегид-3-фосфата:

дегидрогеназа, +Н 3 РО 4 ↓ НАДНАДН 2

дифосфоглицераткиназа ↓ АДФАТФ

фосфоглицеромутаза ↓

енолаза ↓

фосфоенолпируваткиназа ↓ АДФАТФ

ЛДГ ↓ НАДН 2 НАД

Т.о. анаэробные превращения глюкозы в тканях завершается образование молочной кислоты. В процессе превращения глюкозы было израсходовано 2 молекулы АТФ для фосфорилирования глюкозы и фруктоза-6–фосфата (гексакиназная реакция и фосфофруктокиназная реакция).

С этапа образования триоз (альдолазная реакция) идет одновременная их окисление, в результате этих реакций образуется энергия в виде АТФ за счет реакций субстратного фосфорилирования (фосфоглицераткиназная и пируваткиназная реакции).

На этапе гликолитической оксидоредукции идет окисление гицеральдегид-3-фосфата в присутствии Н 3 РО 4 и НАД-зависимой дегидрогеназы, которая при этом восстанавливается до НАДН 2 .

Митохондрии в анаэробных условиях блокированы, поэтому выделяемый в процессе окисления НАДН 2 находиться в среде до тех пор, пока не образуется субстрат, способный принять его. ПВК принимает НАДН 2 и восстанавливается с образованием лактата, завершая тем самым внутренний окислительно-восстановительный цикл гликолиза. НАД-окисленный выделяется и вновь может принимать участие в окислительном процессе, выполняя роль переносчика водорода.

Три реакции гликолиза являются необратимыми:

Гексакиназная реакция;

Фосфофруктокиназная реакция;

Пируваткиназная реакция.

Энергетический эффект гликолиза (гликогенолиза):

АТФ(глюкоза)=(2*2)–2=2

АТФ(гликоген)=(2*2)–1=3

Биологическая роль гликолиза – энергетическая. Гликолиз является единственным процессом в клетке, способным поставлять энергию в форме АТФ в бескислородных условиях. В кризисных ситуациях, когда клетки органов и тканей по каким то причинам находятся в анаэробных условиях, гликолиз является единственным источником скорой энергетической помощи для сохранения жизнедеятельности клеток, а в эритроцитах, где митохондрии отсутствуют, гликолиз вообще является единственным процессом, продуцирующим АТФ и поддерживающим их функции и целостность.

Гексозодифосфатный путь превращения углеводов в тканях

В аэробных условиях, когда в ткани в достаточном количестве поступает кислород, происходит подавление гликолиза. При этом уменьшается потребление глюкозы, блокируется образование лактата. Эффект подавления гликолиза дыханием получил название эффекта Пастера.

Глюкоза в аэробных условиях сгорает в клетках с образованием конечных продуктов - воды и углекислого газа. При окислении 1 моль глюкозы будет выделено 38 молекул АТФ, а при окислении 1 глюкозного остатка гликогена – 39 молекул.

Химизм реакций превращения глюкозы такой же, как и в аэробных условиях, но только до стадии образования пирувата.

Превращение глюкозы до пирувата протекает в цитоплазме, затем пируват поступает в митохондрии, где подвергается окислительному декарбоксилированию. Образовавшийся при этом АцКоА в дальнейшем окисляется в митохондриях с участием ферментов ЦТК и сопряженных с ними ферментов дыхательной цепи (ЦПЭ).

Реакция окислительного декарбоксилирования ПВК осуществляется при участии ряда ферментов и кофакторов:

1. дегидрогеназ (НАД, ФАД);

3. ацилтрансфераз (HS-KoA);

4. липоевой кислоты (ЛК), участвующей в переносе углекислого газа.

СН 3 -СО-СООН (это ПВК) (пируватдегидрогеназа, НАД, ФАД, HS-KoA, ТПФ, ЛК) СО 2 +НАДН 2 +Н 2 О +3АТФ +СН 3 -С(О)-SKoA (это АцКоА, он поступает в ЦТК).

При окислении глюкозы в аэробных условиях энергия выделяется за счет реакций :

1. субстратного фосфорилирования на этапах превращения 1,3-дифосфоглицериновой кислоты, фосфоенол-ПВК, сукцинил-КоА;

2. за счет реакций окислительного фосфорилирования на этапах превращения глицеральдегид-3-фосфата, ПВК, изоцитрата, -кетоглутаровой кислоты, сукцината, малата.

Энергетический эффект окисления:

АТФ (глюкозы)=2*(3+1+1+3+12)-2=38

АТФ (гликогена)=2*(3+1+1+3+12)-1=39

Конечные продукты образуются:

Углекислый газ на этапах превращения пирувата, оксалосукцината, -кетоглутаровой;

Вода образуется на этапах превращения: глицеральдегид-3-фосфата, 2-фосфоглицериновой кислоты, пирувата, изоцитрата, -кетоглутаровой кислоты, сукцината, малата.

Т.о. в отличие от анаэробного пути, аэробный путь окисления глюкозы является энергитически более эффективным и является основным путем обеспечения клеток энергией. При этом окисление идет с образованием конечных продуктов – углекислого газа и воды.

Гексозомонофосфатный путь превращения углеводов в тканях

Гексозомонофосфатный путь превращения углеводов в тканях (пентозофосфатный путь, апотолический путь) протекает в цитоплазме клеток органов и тканей и представлен двумя последовательными ветвями: окислительной и неокислительной.

Активность этого пути превращения глюкозы зависит от типа ткани и ее функционального состояния. Особенно активно глюкоза окисляется по этому пути в тканях и органах, где синтезируется много липидов: печень, кора надпочечников, жировая ткань, молочные железы. Биологическая роль этого пути связана, прежде всего, с производством 2-х веществ:

1. рибозо-5-фосфата и его производных, которые используется в клетках для биосинтеза важнейших биологических молекул: АТФ, ГТФ, HSKoA, НАД, ФАД и нуклеиновых кислот (ДНК, РНК);

2. НАДФ·Н 2 , которые в отличие от НАД·Н 2 не окисляется в дыхательной цепи митохондрии, а используется как источник протонов и электронов для синтеза веществ, включающего реакции восстановления (ВЖК, холестерина, желчных кислот, стероидных гормонов, витамина D 3). НАДФН 2 используется для обезвреживания ядов и токсических веществ (в реакции связывания аммиака при восстановительном аминировании -кетокислот).

Этот путь является единственным поставщиком пентоз для работающих клеток тканей и органов, и на 50% покрывает потребность в НАДФН 2 , следовательно основная биологическая роль этого пути – анаболическая.

Окислительная стадия пентозного пути превращения глюкоза отличается от классического гексозодифосфатного пути с этапа превращения глюкозы-6-фосфата и включает 5 реакций:

глюкозо-6-фосфат (глюкозо-6-фосфатдегидрогеназа, НАДФНАДФН 2) 6-фосфоглюкозолактон  (лактоназа, +Н 2 О) 6-фосфоглюконовая кислота (дегидрогеназа 6-фосфоглюконовой кислоты, НАДФНАДФН 2) 3-кето-6-фосфоглюконовая кислота (декарбоксилаза, -СО 2) рибулозо-5-фосфат (изомераза) рибозо-5-фосфат (эпимераза) ксилуозо-5-фосфат

При определённых условиях на этом заканчивается окислительная стадия пентозного цикла. Между пентозами устанавливается подвижное равновесие: рибулозо-5-фосфат (изомераза) рибозо-5-фосфат (эпимераза) ксилуозо-5-фосфат

Однако в ряде случаев, когда в клетках отмечается дефицит кислорода, может протекать неокислительная стадия пентозного цикла. Основными реакциями этого этапа являются 2 транскетолазные реакции и одна трансальдолазная. Все они обратимы. В результате этих реакций образуются субстраты для гликолиза (фруктозо-6-фосфат и глицеральдегид-3-фосфат), а также вещества, характерные для пентозного пути превращения глюкозы. Схематически неокислительную стадию пентозного цикла можно записать так:

1. транскетолазные реакции:

а) ксилуозо-5-фосфат+рибозо-5-фосфа(ТПФ) седогептулозо-7-фосфат+ глицеральдегид-3-фосфат;

б) ксилуозо-5-фосфат+эритрозо-4-фосфат(ТПФ) фруктозо-6-фосфат+ глицеральдегид-3-фосфат;

2. трансальдолазная реакция:

судогептулозо-7-фосфат+ глицеральдегид-3-фосфат фруктозо-6-фосфат+ эритрозо-4-фосфат

Баланс окислительной и неокислительной стадий гексозомонофосфатного пути превращения глюкозы в тканях можно записать в виде суммарного уравнения реакции:

6 глюкозо-6-фосфат+ 7Н 2 О+ 12НАДФ 5 глюкозо-6-фосфат+ 6СО 2 +12НАДФН 2 +Фн

Глюконеогенез и другие источники глюкозы для организма человека

Глюкоза является основным углеводом крови. Её концентрация в течение суток колеблется в зависимости от энергозатрат и частоты приемов пищи, содержания углеводов в пище. Для взрослого человека содержание глюкозы в крови составляет от 3,3 до 5,5 ммоль/л. Поддерживается концентрация глюкозы в крови за счет процесса биосинтеза и распада гликогена, глюконеогенеза и за счет углеводов пищи.

Глюконеогенез - это процесс образования глюкозы из неуглеводных предшественников, которыми являются продукты распада белков, липидов и углеводов. Основными являются пируват, лактат. Промежуточными могут быть метаболиты ЦТК, а так же глицерин и АК. Ряд АК (АСП, ТИР, ФЕН, ТРЕ, ВАЛ, МЕТ, ИЛЕ, ГИС, ПРО, АРГ) тем или иным путем превращаются в метаболиты ЦТК – фумаровую кислоту, которая в дальнейшем превращается в ЩУК. Другие АК (ГЛИ, АЛА, ЦИС, СЕР) превращаются в пируват.

Глюконеогенез возможен не во всех тканях. Главным местом синтеза глюкозы является печень, в меньшей степени почки и слизистая оболочка кишечника.

Биологическая роль глюконеогенеза заключается не только в синтезе глюкозы, но и в возвращении лактата в клеточный фонд углеводов. За счет этого процесса поддерживается уровень глюкозы в крови при углеводном голодании и сахарном диабете. Этот путь является единственным, который поддерживает биоэнергетику жизненно важных тканей в кризисных ситуациях.

Большинство реакций глюконеогенеза представляют собой обратимые реакции гликолиза, за исключением 3-х, которые являются термодинамически необратимыми.:

1. гексакиназной;

2. фосфофруктокиназной;

3. пируваткиназной.

Эти реакции гликолиза имеют при глюконеогенезе обходные пути, которые связаны с образованием фосфоенолпирувата, фруктозо-6-фосфата и глюкозы.

Обходные реакции гликолиза:

Первая обходная реакция глюконеогенеза связана с образованием фосфоенолпирувата. Она протекает в 2 стадии. Сначала в результате реакции карбоксилирования пируват превращается в ЩУК. Эта реакция протекает в митохондриях, куда ПВК поступает из цитозоля. ЩУК в митохондриях восстанавливается в малат под действием МДГ (НАДН 2). Мембраны митохондрий не проницаемы для ЩУК, малат же легко выходит в цитозоль, где окисляясь снова превращается в ЩУК. ЩУК в дальнейшем принимает участие в глюконеогенезе, вступая в реакции декарбоксилирования и фосфорилирования. Донором фосфатного остатка служит ГТФ, но может быть и АТФ.

а) CH 3 -CO-COOH (это ПВК) (пируваткарбоксилаза (биотин), +СО 2 , +АТФ, +Н 2 О) СООН-СО-СН 2 -СООН (это ЩУК) +АДФ +Фн;

б) СООН-СО-СН 2 -СООН (это ЩУК)(фосфоеноилпируваткарбоксикиназа, +ГТФ, +Н 2 О) СООН-С(О~РО 3 Н 2)=СН 2 + СО2 +ГДФ.

Вторая реакция связана с образованием фруктозо-6-фосфата:

фруктоза-1,6-дифосфат (фосфатаза, +Н 2 О) фруктоза-6-фосфат+ Фн

Третья реакция связана с образованием глюкозы:

глюкозо-6-фосфат (фосфатаза, +Н 2 О) глюкоза+ Фн

Образовавшаяся в процессе глюконеогенеза глюкоза может вновь поступать в клетки органов и тканей и принимать участие в метаболизме (использоваться в тканях как энергетический субстрат, откладываться про запас в виде гликогена, участвовать в анаболических реакциях).

В организме взрослого человека массой 70 кг, главным образом в печени, за сутки образуется около 80 гр. глюкозы.

Патология углеводного обмена

Нарушения углеводного обмена могут быть на различных этапах обмена веществ. Основными показателями нарушения является изменение концентрации глюкозы в крови (гипер-, гипоглюкоземия) и появление глюкозы в моче (глюкозурия). Концентрация глюкозы в крови взрослого здорового человека в норме составляет 3,3-5,5 ммоль/л. Появление глюкозы в моче возможно в случае превышения величины почечного порога, который для глюкозы составляет 10 ммоль/л.

Основными причинами развития нарушения углеводного обмена являются:

1. алиментарные. Употребление пищи, богатой углеводами, ведет к быстрому переполнению гликогенного резерва печени, мышц, развитию гиперглюкоземии, глюкозурии. При снижении двигательной активности происходит снижение окислительных процессов и усиление биосинтеза жиров в тканях, что ведет к развитию алиментарного ожирения;

2. при поражении слизистых оболочек ЖКТ. При этом в желудке нарушается образование HCl (гипохлоргидрия или ахлоргидрия), поступающие углеводы сбраживаются под влиянием ферментов микрофлоры с образованием лактата, а белки подвергаются гниению. Это создает благоприятные условия для развития микрофлоры и приводит к расстройству пищеварения в целом. При поражении слизистой тонкого кишечника нарушается гидролиз дисахаридов или всасывание продуктов гидролиза;

3. при поражении печени нарушается биосинтез и распад гликогена, глюконеогенез;

4. при поражении поджелудочной железы нарушается секреция ферментов (-амилаз, олиго-1,6-гликозидаз), участвующих в гидролизе крахмала и гликогена.

Наиболее грозным заболеванием ПЖЖ является сахарный диабет. При этом поражаются В-клетки, они перестают вырабатывать гормон инсулин. Инсулин – единственный гормон, обеспечивающий транспорт глюкозы в клетки органов и тканей. В случае недостаточной его выработки или отсутствия вообще происходит нарушение биоэнергетики клеток, органов и тканей. В этом случае интенсивному окислению подвергаются белки и липиды, что сопровождается избыточной продукцией аммиака и Ац-КоА.

Для связывания токсичного аммиака отвлекаются кетокислоты (ЩУК и -кетоглутаровая) из ЦТК, их концентрация резко падает, что приводит к снижению интенсивности окислительных процессов. ЦТК не в состоянии окислить все молекулы ацетил-КоА, образование которых увеличивается с усилением окисления белков и липидов. Создаются условия для их конденсации с образованием кетоновых тел. При сахарном диабете в крови наблюдается гиперкетонемия (норма - до 0,1 г/л) и кетонурия.

2СН 3 -СОSKoA (это ацетил-КоА) (Ац-КоА-трансфераза) ацетоацетил-КоА  (деацилаза, +Н 2 О, -HS-KoA) ацетоуксусная кислота.

Ацетоуксусная кислота может превращаться в -гидроксимасляную кислоту, при этом НАДН 2 НАД. Также она может превращаться в ацетон с отщеплением СО 2 .


Наследственные заболевания, как правило, связаны с нарушением синтеза ферментов, участвующих в метаболизме углеводов. Например, алактазия - неусвояемость углеводов молока (лактозы). Это связано с отсутствием фермента – лактазы, поэтому поступающие с молоком дисахариды не усваиваются. У детей проявляется в виде рвоты, тошноты, поноса, вздутия живота, происходит обезвоживание организма. Лечение: исключение лактозы из пищи и замещение на мальтозу, сахарозу, глюкозу.

Другая группа заболеваний может быть связана с наследственными нарушениями обмена гликогена:

1. гликогенозы, связанные с недостаточным количеством ферментов, участвующих в распаде гликогена (болезнь Гирке, Кори);

2. агликогенозы – заболевания, связанные с нарушением синтеза гликогена (болезнь Льюиса. Андерсона и т.д.).

Липиды

Липиды – это сложные органические вещества биологической природы, не растворимые в воде, но растворимые в органических растворителях .

Все липиды делятся на простые и сложные . Простые: триглицериды, стерины, стериды и воски. Сложные: фосфолипиды, гликолипиды. Фосфолипиды делятся на сфинголипиды и глицерофосфолипиды. К глицерофосфолипидам относятся: фосфатидилхолин, фосфатидилсерин, фосфатидилэтаноламин, фосфатидилинозит и плазмогены (ацетальфосфатиды). К гликолипидам: цереброзиды, ганглиозиды, сульфатиды.

Наряду с белками и углеводами, липиды являются основными продуктами питания. В организме человека они поступают с продуктами растительного и животного происхождения. Суточная потребность взрослого человека составляет 80-100 г. Липиды составляют 10-20% от массы тела. В среднем в теле взрослого человека содержится 10-12 кг. липидов. Из них 25% приходится на структурные липиды, остальные относятся к резервным. Установлено, что 98% резервных липидов находится в жировой ткани.

Резервные липиды (жиры) представлены триглицеридами (ТГ). Они используются для энергетических нужд организма. Важнейшими ТГ являются эфиры глицерина и ВЖК. ВЖК могут быть как предельными (пальмитиновая С 15 Н 31 СООН, стеариновая С 17 Н 35 СООН), так и непредельными (олеиновая С 17 Н 33 СООН, линолевая С 17 Н 31 СООН, линоленовая С 17 Н 29 СООН, арахидоновая С 19 Н 31 СООН).

Фосфолипиды (ФЛ), гликолипиды являются структурными компонентами биологических мембран клеток, они не имеют такой энергетической ценности, как ТГ. Они, как и стерины (холестерин - ХС) относятся к структурным липидам.

ХС является предшественником ряда биологически активных веществ (БАВ), например стероидных гормонов (эстрогенов, андрогенов, минерало- и глюкокортикоидов), витаминов группы D и желчных кислот. Арахидоновая кислота (С 19 Н 31 СООН), входя в состав ФЛ, может принимать участие в образовании гормоноподобных веществ (простагландинов, лейкотриенов).

Биологическая роль липидов:

1. структурная – входят в состав биомембран клеток (ФЛ, ГЛ, холестерин);

2. резервная – нейтральные жиры могут откладываться про запас в жировое депо;

3. энергетическая – при окислении 1 г липидов до воды и углекислого газа выделяется 9,3 ккал энергии. На долю липидов приходится примерно 50% всей калорийности;

4. механическая – входя в состав соединительной ткани, подкожной жировой клетчатки, липиды предохраняют внутренние органы от повреждения при механических травмах;

5. теплоизолирующая роль – входя в состав подкожной жировой клетчатки, липиды предохраняют органы от перегревания и переохлаждения;

6. транспортная – входя в состав биомембран клеток, липиды участвуют в транспорте веществ (катионов);

7. регуляторная – все стероидные гармоны являются липидами. Гармоноподобные вещества (простагландины и лейкотриены) образуются из липидов;

8. выполняет роль смазочного материала для кожи, предохраняют её от сухости и растрескивания;

9. участвуют в передаче нервных импульсов;

10. липиды являются основным источником эндогенной воды - при окислении 100 г липидов образуется 107 мл эндогенной воды (из 100 г углеводов 57 мл воды, а из 100 г белков – 41 мл воды);

11. растворяющая – желчные кислоты, являясь стеринами, участвуют в растворении жирорастворимых витаминов А, Д, Е и К;

12. питательная роль – с пищей в организм поступают незаменимые ВЖК, которые имеют 2 и более двойных связей.

Незаменимые ВЖК в организме не синтезируются, но их роль велика:

1. они являются обязательным структурным компонентом биомембран;

2. препятствуют всасыванию холестерина в кишечнике;

3. стимулируют синтез желчных кислот в печени;

4. тормозят образование ЛПОНП, предупреждая развитие атеросклероза;

5. понижают свёртывание крови и понижают возможность тромбообразования;

6. повышают защитные силы организма;

7. предупреждают развитие кожных заболеваний;

8. являются источником гормоноподобных веществ.

Богаты ненасыщенными ВЖК растительные масла, в которых их содержание составляет 50-55%. Для полного удовлетворения суточной потребности взрослому человеку достаточно получать 15-20 г этих масел.

Углеводы или глюциды, также как и жиры и белки, являются основными органическими соединениями нашего тела. Поэтому, если вы хотите изучить вопрос углеводного обмена в организме человека, рекомендуем сначала ознакомиться с химией органических соединений. Если же вы хотите знать, что такое углеводный обмен, и как он происходит в организме человека, не внедряясь в подробности, то наша статья для вас. Мы постараемся в более простой форме рассказать об углеводном обмене в нашем организме.

Углеводы это обширная группа веществ, которая в основном состоит из водорода, кислорода и углерода. Некоторые сложные углеводы также имеют в своем составе серу и азот.

Все живые организме на нашей планете состоят из углеводов. Растения состоят из них практически на 80 %, животные и человек содержат в себе намного меньше углеводов. Углеводы, главным образом, содержаться в печени (5-10%), мышцах (1-3%), головном мозге (меньше 0,2%).

Углеводы нам нужны в качестве источника энергии. При окислении всего 1 грамма углеводов, мы получаем 4,1 ккал энергии. Кроме того, некоторые сложные углеводы являются запасными питательными веществами, а клетчатка, хитин и гиалуроновая кислота придают тканям прочность. Углеводы также являются одним из строительных материалов более сложных молекул, таких как , нуклеиновая кислота, гликолипиды и т.д. Без участия углеводов невозможно окисление белков и жиров.

Виды углеводов

В зависимости от того, насколько углевод способен разлагаться на более простые углеводы с помощью гидролиза (т.е. расщепление с участием воды), их классифицируют на моносахариды, олигосахариды и полисахариды. Моносахариды не гидролизуются и считаются простыми углеводами, состоящими из 1 частицы сахара. Это, например, глюкоза или фруктоза. Олигосахариды гидролизуются с образованием небольшого числа моносахаридов, а полисахариды гидролизуются на множество (сотни, тысячи) моносахаридов.

Глюкоза не переваривается и в неизменном виде всасывается в кровь из кишечника.

Из класса олигосахаридов выделяют дисахариды – это, например, тростниковый или свекличный сахар (сахароза), молочный сахар (лактоза).

К полисахаридам относятся углеводы, которые состоят из множества моносахаридов. Это, например, крахмал, гликоген, клетчатка. В отличие от моно и дисахаридов, которые усваиваются в кишечнике практически сразу, полисахариды перевариваются продолжительное время, поэтому их называют тяжелыми или сложными. Их расщепление занимает продолжительное время, что позволяет поддерживать уровень сахара в крови в стабильном положении, без инсулиновых скачков, которые вызывают простые углеводы.

Основное переваривание углеводов происходит в соке тонких кишок.

Запас углеводов в виде гликогена в мышцах совсем маленький – около 0,1% от веса самой мышцы. А так как мышцы не могут работать без углеводов, они нуждаются в регулярной их доставке через кровь. В крови углеводы находятся в виде глюкозы, содержание которой составляет от 0,07 до 0,1%. Основные запасы углеводов в виде гликогена содержатся в печени. У человека весом в 70 кг где-то 200 гр(!) углеводов в печени. И когда мышцы «съедают» всю глюкозу из крови, в нее снова поступает глюкоза из печени (предварительно гликоген в печени расщепляется на глюкозу). Запасы в печени не вечные, поэтому необходимо восполнять ее с пищей. Если с пищей не поступают углеводы, то печень образует гликоген из жиров и белков.

Когда человек занимается физической работой, мышцы истощают все запасы глюкозы и возникает состояние, которое называется гипогликемией – в результате нарушается работа и самих мышц и еще нервных клеток. Именно поэтому важно соблюдать правильный рацион питания, в особенно питания до и после тренировки.

Регуляция углеводного обмена в организме

Как следует из вышесказанного, весь углеводный обмен сводится к уровню сахар в крови. Уровень сахара в крови зависит от того, сколько глюкозы поступает в кровь и сколько глюкозы удаляется из нее. От этого соотношения зависит весь углеводный обмен. Сахар в кровь поступает из печени и кишечника. Печень расщепляет гликоген до глюкозы только в том случае, если уровень сахара в крови падает. Эти процессы регулируются гормонами.

Уменьшение уровня сахара в крови сопровождается выделение гормона адреналина – он активизирует ферменты печени, которые отвечают за поступление глюкозы в кровь.

Углеводный обмен регулируется также двумя гормонами поджелудочной железы – инсулином и глюкагоном. Инсулин отвечает за транспорт глюкозы из крови в ткани. А глюкагон отвечает за расщепление глюкагона в печени на глюкозу. Т.е. глюкагон повышает уровень сахара в крови, а инсулин снижает. Их действие взаимосвязано.

Разумеется, если уровень сахара в крови завышен, а печень и мышцы насыщены гликогеном, то «ненужный» материал инсулин отправляет в жировое депо – т.е. откладывает глюкозу в виде жира.

Всасывание углеводов нарушается при недостаточности амилолитических ферментов желудочно-кишечного тракта (диастаза панкреатического сока и др.). При этом углеводы не расщепляются до моносахаридов и не всасываются. Развивается углеводное голодание.

Всасывание углеводов также страдает при нарушении фосфорилирования глюкозы в кишечной стенке . Этот процесс нарушается при воспалении кишечной стенки, отравлении флоридзином, монойодацетатом, блокирующими фермент гексокиназу. Глюкоза не превращается в глюкозофосфат, не проходит через стенку кишечника и не поступает в кровь.

Нарушение синтеза и расщепления гликогена

Синтез гликогена может изменяться в сторону понижения или патологического усиления.



Снижение синтеза гликогена . Синтез гликогена снижается при усиленном его распаде, при недостаточном образовании либо при сочетании этих факторов.

Усиление распада гликогена происходит при возбуждении центральной нервной системы; импульсы по симпатическим путям идут к депо гликогена и активируют его распад. В результате возбуждения центральной нервной системы повышается функция мозгового слоя надпочечников, гипофиза, щитовидной железы, гормоны которых стимулируют гликогенолиз.

Повышение распада гликогена и потребления мышцами глюкозы происходит при тяжелой мышечной работе.

Снижение синтеза гликогена наблюдается при гипоксии, когда уменьшаются запасы АТФ, необходимой для образования гликогена.

Сочетанное уменьшение синтеза гликогена и усиление его распада происходит при гепатитах, в ходе которых нарушается гликогенообразовательная функция печени.

При недостатке гликогена тканевая энергетика переключается на жировой и белковый обмен. Образование энергии за счет окисления жира требует много кислорода; при недостатке его накапливаются в избытке кетоновые тела и наступает интоксикация. Образование энергии за счет белков ведет к потере пластического материала.

Гликогеноз - патологическое накопление гликогена в органах при недостаточности ферментов гликогенолиза. Приводим наиболее часто встречающиеся виды гликогенозов.

Гликогеноз, обусловленный недостатком глюкозо-6-фосфатазы (болезнь Гирке). Это врожденное заболевание, в основе которого лежит недостаточность вплоть до полного отсутствия этого фермента в почках и печени. Активность всех остальных ферментов обмена гликогена нормальная. Глюкозо-6-фосфатаза вызывает отщепление свободной глюкозы из глюкозо-6-фосфата, способствуя поддержанию нормального уровня глюкозы в крови. Поэтому при недостаточности глюкозо-6-фосфатазы развивается гипогликемия. В печени и почках накапливается гликоген нормальной структуры и эти органы увеличиваются. Происходит перераспределение гликогена внутри клетки и значительное накопление его в ядре. Возрастает содержание молочной кислоты в крови (ацидоз), в которую усиленно переходит глюкозо-6-фос-фат при блокировании перехода его в глюкозу (рис. 53). Организм страдает от углеводного голодания. Больные дети, как правило, рано умирают.

Гликогеноз при врожденном дефиците кислой альфа-глюкозидазы . Этот фермент отщепляет глюкозные остатки от молекул гликогена и расщепляет мальтозу. Он содержится в лизосомах и разобщен с фосфорилазой цитоплазмы. При отсутствии кислой альфа-глюкозидазы в лизосомах накапливается гликоген, который оттесняет цитоплазму, заполняет всю клетку и разрушает ее. Содержание глюкозы в крови нормальное. Гликоген накапливается в печени, почках, сердце. Обмен веществ в миокарде нарушается, сердце увеличивается в размерах. Больные дети обычно рано умирают от сердечной недостаточности.

Гликогеноз при недостатке амило-1,6-глюко-зидазы . Фермент переносит глюкозу на гликоген. При этом расщепление гликогена блокируется на уровне декстринов, образования глюкозо-1-фосфата и глюкозо-6-фосфата не происходит. Развивается гипогликемия, однако она выражена нерезко, так как при наличии глюкозо-6-фосфатазы идет образование глюкозы за счет глюконеогенеза. Под влиянием амило (1,4-1,6)-трансглюкозидазы эта глюкоза используется, происходит удлинение цепей гликогена и дальнейшее их разветвление. Накапливается гликоген необычной структуры с избытком внутренних разветвлений. Постепенно развивается цирроз печени с ее недостаточностью. Появляются желтуха, отеки, кровоточивость. Заболевают дети в конце первого года жизни.

Более редкие формы гликогенозов связаны с недостаточностью амило (1,4-1,6)-трансглюкозидазы (фермент ветвления), мышечной фосфорилазы. Описаны смешанные формы гликогенозов.

Нарушение межуточного обмена углеводов

К нарушению межуточного обмена углеводов могут привести:

  • 1) гипоксические состояния (например, при недостаточности дыхания или кровообращения, при анемиях и др.), когда анаэробная фаза распада углеводов преобладает над аэробной фазой. Происходит избыточное накопление в крови пировиноградной и молочной кислот. Развивается гиперлакцидемия. Содержание молочной кислоты в крови возрастает до 100 мг% вместо 10-15 мг% в норме. Возникает ацидоз. Снижается образование АТФ;
  • 2) расстройства функции печени , где в норме часть молочной кислоты ресинтезируется в глюкозу и гликоген. При поражении печени этот ресинтез нарушается. Развиваются гиперлакцидемия и ацидоз;
  • 3) гиповитаминоз В 1 . Нарушается окисление пировиноградной кислоты, так как витамин В 1 входит в состав кофермента, участвующего в ее декарбоксилировании. Накапливается в избытке пировиноградная кислота, которая частично переходит в молочную кислоту. При нарушении окисления пировиноградной кислоты снижается синтез ацетил-холина и нарушается передача нервных импульсов. Уменьшается образование из пировиноградной кислоты ацетилкоэнзима А. При этом тормозится аэробная фаза гликолиза. Поскольку для ткани мозга глюкоза является основным источником энергии, то в результате нарушений углеводного обмена возникают расстройства функций нервной системы: потеря чувствительности, невриты, параличи и др. Кроме того, токсическое влияние на нервную систему оказывает избыток пировиноградной кислоты.

При гиповитаминозе В 1 нарушается и пентозофосфатный путь обмена углеводов, в частности образование рибозы. Это нарушение связано с недостаточностью фермента транскетолазы, обеспечивающего образование рибозы неокислительным путем, коферментом которого является пирофосфат тиамина.

Гипергликемия

Гипергликемия - повышение уровня сахара крови выше 120 мг%. В зависимости от этиологических факторов различают следующие виды гипергликемий.

  • 1. Алиментарная гипергликемия . Развивается при приеме больших количеств сахара. Этот вид гипергликемии используют для оценки состояния углеводного обмена (так называемая сахарная нагрузка). У здорового человека после одномоментного приема 100-150 г сахара содержание глюкозы в крови нарастает, достигая максимума (150-170 мг%) через 30-45 минут. Затем уровень сахара крови начинает падать и через 2 часа снижается до нормы, а через 3 часа оказывается даже несколько сниженным (рис. 54).
  • 2. Эмоциональная гипергликемия . При действии различных психогенных факторов поток импульсов по симпатическим путям идет к надпочечникам и щитовидной железе. Происходит выброс в кровь больших количеств адреналина и тироксина, стимулирующих гликогенолиз.
  • 3. Гормональные гипергликемии . Возникают при нарушении функции эндокринных желез. Так, гипергликемия развивается при повышенной продукции глюкагона - гормона альфа-клеток островков Лангерганса поджелудочной железы, который, активируя фосфорилазу печени, способствует гликогенолизу. Сходным действием обладают тироксин и адреналин (активирует также фосфорилазу мышц). К гипергликемии ведет избыток глюкокортикоидов (стимулируют глюконеогенез и тормозят гексокиназу) и соматотропного гормона гипофиза (тормозит синтез гликогена, способствует образованию ингибитора гексокиназы и активирует инсулиназу печени).
  • 4. Гипергликемии при некоторых видах наркоза . При эфирном и морфинном наркозе происходит возбуждение симпатических центров и выход адреналина из надпочечников; при хлороформном наркозе к этому присоединяется нарушение гликогенообразовательной функции печени.
  • 5. Гипергликемия при недостаточности инсулина является наиболее стойкой и выраженной. Ее воспроизводят в эксперименте для получения модели сахарного диабета.

Экспериментальные модели инсулиновой недостаточности . В эксперименте инсулиновую недостаточность воспроизводят путем удаления поджелудочной железы. Однако при этом дефицит инсулина сочетается с расстройствами пищеварения. Поэтому более совершенной экспериментальной моделью является инсулиновая недостаточность, вызванная введением аллоксана, который повреждает бета-клетки островков Лангерганса поджелудочной железы.

Экспериментальную недостаточность инсулина можно вызвать дитизоном, который не действует на поджелудочную железу, но связывает цинк, входящий в состав инсулина, и таким образом инактивирует инсулин.

Патогенез сахарного диабета

Сахарный диабет может быть следствием как панкреатической, так и внепанкреатической инсулиновой недостаточности.

Панкреатическая инсулиновая недостаточность развивается при разрушении поджелудочной железы опухолями, туберкулезным или сифилитическим процессом, при острых воспалительно-дегенеративных процессах в поджелудочной железе - панкреатитах. В этих случаях нарушаются все функции поджелудочной железы, в том числе способность вырабатывать инсулин.

К инсулиновой недостаточности ведет местная гипоксия островков Лангерганса (атеросклероз, спазм сосудов), где в норме очень богатое кровообращение. При этом дисульфидные группы в инсулине переходят в сульфгидрильные и он не дает гипогликемического эффекта.

Предполагают, что причиной инсулиновой недостаточности может быть образование в организме вследствие нарушений пуринового обмена аллоксана , близкого по структуре к мочевой кислоте (уреид мезоксалевой кислоты).

Инсулярный аппарат может истощаться после предварительного повышения функции, например при злоупотреблении сладким (особенно у тучных людей, у которых углеводы не переходят в жир).

В развитии панкреатической инсулиновой недостаточности немаловажное значение имеет исходная наследственная неполноценность инсулярного аппарата.

Внепанкреатическая инсулиновая недостаточность может развиться при повышении активности инсулиназы - фермента, расщепляющего инсулин и образующегося в печени к началу полового созревания.

Хронические воспалительные процессы, при которых в кровь поступает много протеолитических ферментов, разрушающих инсулин, могут повести к его недостаточности.

Избыток гидрокортизона, тормозящего гексокиназу, значительно снижает эффект от действия инсулина.

Причиной недостаточности инсулина может послужить чрезмерно прочная связь его с переносящими белками в крови. Наконец, образование в организме антител против инсулина ведет к разрушению этого гормона.

При сахарном диабете нарушаются все виды обмена веществ. Особенно выражены изменения углеводного и жирового обмена.

Нарушения углеводного обмена . Углеводный обмен при сахарном диабете характеризуется следующими особенностями:

  • 1) резко снижен синтез глюкокиназы, которая при диабете почти полностью исчезает из печени, что ведет к уменьшению образования глюкозо-6-фосфата в клетках печени. Этот момент наряду со сниженным синтезом гдикоген-синтетазы обусловливает резкое замедление синтеза гликогена. Гликоген почти полностью исчезает из печени. При недостатке глюкозо-6-фосфата тормозится пентозо-фосфатный цикл;
  • 2) активность глюкозо-6-фосфатазы резко возрастает, поэтому глюкозо-6-фосфат дефосфорилируется и поступает в кровь в виде глюкозы;
  • 3) тормозится переход глюкозы в жир;
  • 4) понижается проницаемость клеток для глюкозы, она плохо усваивается тканями;
  • 5) резко ускоряется глюконеогенез - образование глюкозы из лактата, пирувата, аминокислот, жирных кислот и других продуктов неуглеводного обмена. Ускорение глюконеогенеза при сахарном диабете обусловлено выпадением подавляющего влияния (супрессии) инсулина на ферменты, обеспечивающие глюконеогенез в клетках печени и почек: пируваткарбоксилазу, фосфоэнолпируваткарбоксилазу, фруктозодифосфатазу, глюкозо-6-фосфатазу.

Таким образом, при сахарном диабете наблюдается избыточная продукция и недостаточное использование глюкозы тканями, вследствие чего возникает гипергликемия. Содержание сахара в крови при тяжелых формах может достигать 400-500 мг% и выше. Сахарная кривая по сравнению с таковой у здорового человека характеризуется значительно большей продолжительностью (см. рис. 54). Значение гипергликемии в патогенезе заболевания двояко. Она играет адаптационную роль, так как при ней тормозится распад гликогена и частично усиливается его синтез. При гипергликемии глюкоза.Лучше проникает в ткани и они не испытывают резкого недостатка углеводов. Гипергликемия имеет и отрицательное значение, так как при ней повышается концентрация глюко- и мукопротеидов, которые легко выпадают в соединительной ткани, способствуя образованию гиалина и атеросклерозу. При этом возможно поражение почек (гломерулонефриты), коронарных сосудов. При подъеме уровня сахара крови выше 160-200 мг% он начинает переходить в окончательную мочу - возникает глюкозурия.

Глюкозурия . В норме глюкоза содержится в провизорной моче. В канальцах она реабсорбируется в виде глюкозофосфата, для образования которого необходима гексокиназа, и после дефосфорилирования (с помощью фосфатазы) поступает в кровь. Таким образом, в окончательной моче сахара в нормальных условиях не содержимся. При диабете процессы фосфорилирования и дефосфорилирования глюкозы в канальцах почек отстают в связи с избытком глюкозы и снижением активности гексокиназы. Развивается глюкозурия. Осмотическое давление мочи повышено; в связи с этим в окончательную мочу переходит много воды. Суточный диурез возрастает до 5-10 л и более (полиурия). Развивается обезвоживание организма и как следствие его - усиленная жажда (полидипсия).

Нарушение жирового обмена . При дефиците инсулина снижено образование жира из углеводов, в жировой ткани уменьшен ресинтез триглицеридов из жирных кислот. Усиливается липолитический эффект СТГ и АКТГ, который в норме подавлялся инсулином. При этом повышается выход из жировой ткани неэстерифицированных жирных кислот и снижается отложение в ней жира. Это ведет к исхуданию и повышению содержания в крови неэстерифицированных жирных кислот. Последние ресинтезируются в триглицериды в печени, создавая предпосылку для ее ожирения. Ожирения печени не происходит, если в поджелудочной железе (в клетках эпителия мелких протоков) не нарушена продукция липокаина, который большинство исследователей относит к гормонам. Липокаин стимулирует действие липотропных пищевых веществ, богатых метионином (творог, баранина и др.). Метионин является донатором метильных групп для холина, входящего в состав лецитина. При его посредстве жир выводится из печени. Сахарный диабет, при котором имеется недостаточность инсулина, а продукция липокаина не нарушена, называется островковым; ожирения печени не происходит. Если же инсулиновая недостаточность сочетается с недостаточной продукцией липокаина, развивается тотальный диабет. Он сопровождается ожирением печени. В митохондриях печеночных клеток начинают интенсивно образовываться кетоновые тела (ацетон, ацетоуксусная и бета-оксимасляная кислоты).

Кетоновые тела . В механизме накопления кетоновых тел при сахарном диабете имеют значение следующие факторы:

  • 1) повышенный переход жирных кислот из жировых депо в печень и ускоренное окисление их;
  • 2) задержка ресинтеза жирных кислот из-за дефицита никотинамид-адениндинуклеотидфосфата (НАДФ-Н2);
  • 3) нарушение окисления кетоновых тел, обусловленное подавлением цикла Кребса, от участия в котором в связи с усиленным глюконеогенезом «отвлекаются» щавелевая и альфа-кетоглютаровая кислоты.

Нормальная концентрация кетоновых тел в крови не превышает 4-6 мг%; начиная с уровня в 12-13 мг% (гиперкетонемия) они оказывают токсическое действие. При сахарном диабете концентрация кетоновых тел в крови может повышаться до 150 мг% и выше. Кетоновые тела инактивируют инсулин, усугубляя явления инсулиновой недостаточности. В высокой концентрации кетоновые тела вызывают отравление клеток, подавление ферментов. Они оказывают токсическое, угнетающее влияние на центральную нервную систему, обусловливая развитие тяжелейшего состояния - диабетической комы , сопровождающейся негазовым ацидозом. Щелочные резервы плазмы крови исчерпываются, ацидоз становится некомпенсированным. рН крови падает до 7,1-7,0 и даже ниже.

Кетоновые тела выводятся с мочой в виде натриевых солей (кетонурия). При этом уменьшается концентрация натрия в крови, повышается осмотическое давление мочи, что способствует полиурии.

При сахарном диабете происходит нарушение холестеринового обмена. Избыток ацетоуксусной кислоты идет на образование холестерина - развивается гипёрхолестеринемия.

Нарушения белкового обмена . Белковый обмен при сахарном диабете изучен менее полно.

Синтез белка при диабете снижается, так как:

  • 1) выпадает или резко ослабляется стимулирующее влияние инсулина на энзиматические системы этого синтеза;
  • 2) снижается уровень энергетического обмена, обеспечивающего белковый синтез в здоровом организме.

При недостатке инсулина происходит образование углеводов из аминокислот и жира (глюконеогенез). При этом аминокислоты теряют аммиак, переходя в альфа-кетокислоты, которые и идут на образованю углеводов. Накапливающийся аммиак обезвреживается за счет образования мочевины, а также связывания его альфа-кетоглютаровой кислотой с образованием глютаминовой кислоты. Идет усиленное потребление альфа-кетоглютаровой кислоты, при недостатке которой снижается интенсивность цикла Кребса. Недостаточность цикла Кребса способствует еще большему накоплению ацетилкоэнзима А и, следовательно, кетоновых тел.

В связи с замедлением тканевого дыхания при диабете уменьшается образование АТФ. При недостатке АТФ снижается способность печени синтезировать белки.

В результате нарушения белкового обмена при диабете подавляются пластические процессы, снижается выработка антител, ухудшается заживление ран, понижается устойчивость организма к инфекциям.

Гипогликемия

Гипогликемия - понижение уровня сахара крови ниже 80 мг%. Нарастание уровня сахара в крови после сахарной нагрузки очень невелико (см. рис. 54).

Причины гипогликемии весьма многообразны. К ним относятся:

  • 1) гиперфункция островкового аппарата поджелудочной железы, например при некоторых ее опухолях (аденома, инсулинома);
  • 2) недостаточная продукция гормонов, оказывающих диссимиляторное влияние на углеводный обмен: тироксина, адреналина, глюкокортикоидов (бронзовая болезнь) и др;
  • 3) недостаточное расщепление гликогена при гликогенозах;
  • 4) мобилизация большого количества гликогена из мышц и печени, не восполняющаяся алиментарно (тяжелая мышечная работа);
  • 5) поражение клеток печени;
  • 6) углеводное голодание;
  • 7) нарушение всасывания углеводов;
  • 8) введение больших доз инсулина с лечебной целью (инсулиновый шок в психиатрической практике);
  • 9) так называемый почечный диабет, возникающий при отравлении флоридзином, монойодацетатом, которые блокируют гексокиназу. В почках нарушается фосфорилирование глюкозы, которая не реабсорбируется в канальцах, а переходит в окончательную мочу (глюкозурия). Развивается гипогликемия.

Особенно чувствительна к недостатку глюкозы центральная нервная система, клетки которой не имеют запасов гликогена. Потребление мозгом кислорода резко понижается. При длительных и часто повторяющихся гипогликемиях в нервных клетках происходят необратимые изменения. Сначала нарушаются функции коры головного мозга, а затем и среднего мозга.

Компенсаторно усиливается инкреция гормонов, способствующих повышению уровня глюкозы в крови - глюкокортикоидов, глюкагона, адреналина.

При уровне сахара в крови 80-50 мг% развивается тахикардия, связанная с гиперпродукцией адреналина, чувство голода (возбуждение вентро-латеральных ядер гипоталамуса низким уровнем глюкозы крови), а также связанные с поражением центральной нервной системы слабость, раздражительность, повышенная возбудимость.

При падении содержания сахара ниже 50 мг% в коре головного мозга развивается торможение, а в нижележащих отделах центральной нервной системы - возбуждение. В результате появляются расстройства зрения, сонливость, парезы, усиленное потоотделение, потеря сознания, периодическое дыхание, сначала клонические, а затем тонические судороги. Развивается коматозное состояние.

Пентозурия, фруктозурия, галактозурия

Пентозурия . Пентозурия - выделение с мочой пентоз, которые образуются в основном в ходе пентозного цикла обмена углеводов.

Минимальные количества рибозы могут определяться в моче здоровых людей. Алиментарная пентозурия наступает после употребления в пищу больших количеств фруктов (сливы, черешни, виноград), причем выделяются в основном альфа-арабиноза и альфа-ксилоза. Значительное выделение рибозы с мочой наблюдается при миопатии. При этом заболевании в мышцах происходит распад нуклеотидов, содержащих в своей молекуле рибозу.

Выделение с мочой альфа-ксилулозы (альфа-ксилулозурия) наблюдается при расстройствах метаболического пути глюкуроновой кислоты. При этом нарушается переход альфа-ксилулозы в ксилитол под влиянием НАДФ-ксилитолдегидрогеназы. Причиной этого расстройства может послужить избыток в организме трийодтиронина, амидопуринов и др.

Наблюдаются наследственные формы пентозурии, передающиеся по рецессивному типу.

Фруктозурия . Фруктозурия - выделение с мочой фруктозы. В больших количествах она содержится во фруктах. С помощью фруктокиназы фруктоза в печени фосфорилируется до фруктозо-6-фосфата, который в результате сложных превращений переходит в глюкозу и затем в гликоген. Порог выделения фруктозы очень низок (15 мг%).

Гиперфруктоземия и фруктозурия - одно из первых проявлений недостаточности печени; неспособность ее усваивать глюкозу присоединяется позднее.

Фруктозурия возникает при заболевании (эссенциальная фруктозурия), в основе которого лежит недостаточность фруктокиназы, активирующей синтез фруктозо-1 -фосфата (рис. 55). Обмен фруктозы при этом может идти только путем фосфорилирования до фруктозо-6-фосфата. Однако эта реакция блокируется глюкозой, поэтому тормозится нормальный обмен фруктозы и возникают гиперфруктоземия (до 40-80мг%) и фруктозурия.



Наследственная непереносимость фруктозы - тяжелое заболевание, которое связано с отсутствием фермента фруктозо-1-фосфаталъдолазы (рис. 55) и понижением активности фруктозо-1,6-дифосфатальдолазы в печени, почках, слизистой оболочке кишечника. Развивается гиперфруктоземия, которая вызывает усиление инкреции инсулина с последующей гипогликемией. Возникает недостаточность функций печени и почек.

Галактозурия . Галактозурия развивается вследствие галактоземии - содержания в крови больших количеств (до 200 мг%) галактозы. Галактоземия наблюдается у грудных детей при недостаточности фермента галактозо-1-фосфатуридилтр ансферазы.

У родителей страдающих галактоземией детей часто выявляется снижение активности этого фермента, что свидетельствует о наследственной природе данного заболевания.

При дефиците галактозо-1-фосфатуридилтрансферазы обмен галактозы задерживается на уровне галактозо-1-фосфата и он не переходит в глюкозу (рис. 56). Нарушается обмен глюкозы, так как галактозо-1-фосфат оказывает тормозящее действие на фосфоглюкомутазу печени. Содержание глюкозы в крови падает.

Галактозо-1-фосфат накапливается в хрусталике, печени и других органах и тканях, чему в норме препятствует наличие в них активной галактозо-1-фосфатуридилтрансферазы. В результате развивается катаракта, увеличивается селезенка и печень с последующим ее циррозом. Наблюдается исхудание, задержка развития. Резко выражена умственная отсталость, так как из-за недостатка глюкозы страдает головной мозг и особенно его кора. Если не исключить галактозу из пищи ребенка, он умирает в течение нескольких месяцев. С возрастом непереносимость галактозы проходит, так как появляется отсутствующий у новорожденных фермент - уридиндифосфатгалактозопирофосфорилаза, при посредстве которого галактоза включается в обычный цикл превращений.