Транспорт газов кровью. Транспорт кислорода и диоксида углерода кровью

Доставка кислорода (DО 2 ) представляет собой скорость транспорта кислорода артериальной кровью, которая зависит от кровотока и содержания О 2 в артериальной крови. Системная доставка кислорода (DО 2), рассчитывается как:

DO 2 = СаО 2 х Q t (мл/мин) или

DO 2 = ([ (Hb) 1,34% насыщения] + составит 25%, т.е.5 мл/20 мл.

Таким образом, в норме организм потребляет только 25% кислорода, переносимого гемоглобином. Когда потребность в О 2 превосходит возможность его доставки, то коэффициент экстракции становится выше 25%. Наоборот, если доставка О 2 превышает потребность, то коэффициент экстракции падает ниже 25%.

Если доставка кислорода снижена умеренно, потребление кислорода не изменяется благодаря увеличению экстракции О 2 (насыщение гемоглобина кислородом в смешанной венозной крови снижается). В этом случае VO 2 не зависит от доставки.

По мере дальнейшего снижения DO 2 достигается критическая точка, в которой VO 2 становится прямо пропорциональна DO 2 . Состояние, при котором потребление кислорода зависит от доставки, характеризуется прогрессирующим лактат-ацидозом, обусловленным клеточной гипоксией. Критический уровень DO 2 наблюдается в различных клинических ситуациях.

Например, его значение 300 мл/ (мин * м 2) отмечено после операций в условиях искусственного кровообращения и у больных с острой дыхательной недостаточностью.

Напряжение углекислого газа в смешанной венозной крови (PvCO 2) в норме составляет примерно 46 мм рт. ст., что является конечным результатом смешивания крови, притекающей из тканей с различными уровнями метаболической активности.

Венозное напряжение углекислого газа в венозной крови меньше в тканях с низкой метаболической активностью (например, в коже) и больше в органах с высокой метаболической активностью (например, в сердце).

Двуокись углерода легко диффундирует. Ее способность к диффузии в 20 раз превышает таковую у кислорода. СО 2 , по мере образования в процессе клеточного метаболизма, диффундирует в капилляры и транспортируется к легким в трех основных формах: в виде растворенной СО 2 , в виде аниона бикарбоната и в виде карбаминовых соединений.

СО 2 очень хорошо растворяется в плазме. Количество растворенной фракции определяется произведением парциального давления СО 2 и коэффициента растворимости (=0,3 мл/л крови /мм рт. ст). Около 5% общей двуокиси углерода в артериальной крови находится в форме растворенного газа.

Анион бикарбоната является преобладающей формой СО 2 (около 90%) в артериальной крови. Бикарбонатный анион является продуктом реакции СО 2 с водой с образованием Н 2 СО 3 и ее диссоциации:

СО 2 + Н 2 О Н 2 СО 3 Н + + НСО 3 - (3.25).

Реакция между СО 2 и Н 2 О протекает медленно в плазме и очень быстро в эритроцитах, где присутствует внутриклеточный фермент карбонгидраза. Она облегчает реакцию между СО 2 и Н 2 О с образованием Н 2 СО 3 . Вторая фаза уравнения протекает быстро без катализатора.

По мере накопления НСО 3 - внутри эритроцита анион диффундирует через клеточную мембрану в плазму. Мембрана эритроцита относительно непроницаема для Н + , как и вообще для катионов, поэтому ионы водорода остаются внутри клетки. Электрическая нейтральность клетки в процессе диффузии СО 2 в плазму обеспечивает приток ионов хлора из плазмы в эритроцит, что формирует так называемый хлоридный сдвиг (сдвига Гамбургера).

Часть Н + , остающихся в эритроцитах, забуферируется, соединяясь с гемоглобином. В периферических тканях, где концентрация СО 2 высока и значительные количества Н + накапливаются эритроцитами, связывание Н + облегчается деоксигенацией гемоглобина.

Восстановленный гемоглобин лучше связывается с протонами, чем оксигенированный. Таким образом, деоксигенация артериальной крови в периферических тканях способствует связыванию Н + посредством образования восстановленного гемоглобина.

СО 2 + Н 2 О + HbО 2 > HbHHCO 3 + О 2

Это увеличение связывания СО 2 с гемоглобином известно как эффект Холдейна. В легких процесс имеет противоположное направление. Оксигенация гемоглобина усиливает его кислотные свойства, и высвобождение ионов водорода смещает равновесие преимущественно в сторону образования СО 2:

О 2 + НСО 3 - + HbН + > СО 2 + Н 2 О + HbО 2

Наиболее широко для обеспечения достаточного газообмена при ОДН используют ингаляцию О 2 . С этой целью применяют различные устройства, такие как: носовые канюли, негерметичные маски, маски Вентури и др. Недостаток носовых катетеров и обычных лицевых масок в том, что точное значение FiO 2 остается неизвестным.

Для приблизительной оценки концентрации О 2 при использовании носового катетера можно пользоваться следующим правилом: при скорости потока 1 л/мин FiO 2 составляет 24%; увеличение скорости на 1 л/мин повышает FiO 2 на 4%. Скорость потока не должна превышать 5 л/мин. Маска Вентури обеспечивает точные значения FiO 2 (обычно 24, 28, 31, 35, 40 или 50%).

Маску Вентури часто используют при гиперкапнии: она позволяет подобрать РaO 2 таким образом, чтобы максимально снизить задержку CO 2 . Маски без возвратного дыхания имеют клапаны, препятствующие смешиванию вдыхаемого и выдыхаемого воздуха. Такие маски позволяют создать FiO 2 до 90%.

Для начала восстановим в памяти несколько положений и понятий из области физики, без них изучение газообмена и транспорта газа в легких, невозможно. Итак, атмосферный воздух имеет довольно постоянный процентный состав газов. Это завидное постоянство характерно и для альвеолярного воздуха, то есть для того, который не просто заполняет легкие, а контактирует непосредственно с пневмоцитами, выстилающими альвеолы. Правда, О2 в альвеолярном воздухе меньше, чем его содержание в атмосферном (14 и 21%, соответственно), а СО2 значительно больше (5,5 против 0,03% в атмосферном), но значения эти (14 и 5,5%) постоянные (разница между альвеолярным и атмосферным воздухом - результат постоянно происходящего газообмена, находящегося вне зависимости от времени суток, а также от того вдох сейчас или выход, хочет того человек или нет).


А теперь вводим первое физическое понятие - парциальное давление газа . В воздухе, представленном в виде газовой смеси оно пропорционально процентному содержанию этого газа в общем давлении смеси. Атмосферное давление, как известно, равняется 760 мм рт.ст. Давление же газовой смеси в альвеолярном воздухе несколько меньше, так как часть его пришлась на возрастающее в дыхательной системе количество водяных паров, и составляет 713 мм рт.ст. Теперь не составит труда простыми пропорциями рассчитать парциальное давление в альвеолярном воздухе кислорода и углекислого газа. Если давление газовой смеси 713 мм рт.ст., а кислорода содержится 14%, значит парциальное давление О2 равно 100 мм рт.ст. Так же находим это значение и для углекислоты - оно будет равно 40 мм рт.ст. Стоит запомнить, что парциальное давление обоих газов в альвеолярном воздухе являет собой ту силу, с которой молекулы этих газов пытаются проникнуть через аэрогематинеский барьер в кровь из альвеол легких.


Что же мешает такому переходу? Оказывается, в плазме крови этих газов и без того достаточно. Они находятся там в растворенном виде, и, мало того, сами не прочь выйти из раствора в альвеолярный воздух. Здесь влияние оказывает напряжение газа , находящегося в жидкости. Напряжение газа - это величина, характеризующая силу стремления молекул растворенного газа выйти из водной среды в газовую. В физическом отношении понятия «парциальное давление» и «напряжение» очень близки, только относятся к разным средам: первое - к газовой смеси, а второе - к жидкости. Но самое главное в том, что они противостоят друг другу. Если бы парциальное давление, скажем, СО2 было равно напряжению СО2 в крови, то передвижение двуокиси углерода не наблюдалось бы ни в том, ни в другом направлении.


И все же газообмен происходит. И происходит он благодаря разнице характеристик парциального давления газов, находящихся в альвеолярном воздухе с напряжением тех же самых газов, находящихся в плазме крови. Взгляните на рисунок справа. Начнем с кислорода. К легким по системе легочной артерии притекает кровь, бедная О2, напряжение которого в ней равно 40 мм рт.ст. Кровь бежит по капиллярам, расположенным в межальвеолярных стенках, то есть через аэрогематический барьер соседствует с воздухом альвеол, в котором парциальное давление О2 равно 100 мм рт.ст. То есть мы наблюдаем разницу 40 и 100! Конечно, О2 устремляется в кровь и он будет растворятся в крови до тех самых пор, пока напряжение этого газа не увеличится хотя бы до 96 мм рт.ст. Когда артериальная кровь насыщается кислородом, то собирается в легочных венах, чтобы через них покинуть легкие.


Другая ситуация складывается с CO2. Кровь, поступает к легким от всего организма через сосуды малого круга, она содержит много СО2 (46 мм рт.ст.), однако парциальное давление СО2 в альвеолах только 40 мм. Это и определяет движение двуокиси углерода из плазмы через барьер для последующего высвобождения в альвеолярный воздух, что приводит к снижению напряжения СО2 до 39 мм рт.ст.


За транспорт кислорода от легких к тканям в основном отвечают эритроциты. Когда в легочных капиллярах начинает нарастать напряжение кислорода, гемоглобин эритроцитов начинает выхватывать из плазмы молекулы О2, постепенно превращаясь в оксигемоглобин. Именно в такой форме кислород приносится к органам и тканям. Оксигемоглобин «отсоединяет» от себя О2, отдавая его снова в плазму, и начинается как бы вторая серия - газообмен осуществляется уже между кровью и тканями.


Всем клеткам организма нужен кислород, т.к. именно этот газ является универсальным окислителем в процессах. Используя кислород в биохимических реакциях, клетки получают необходимую им энергию и углекислый газ, требующий удаления за пределы клетки. Так как не все клетки оказываются в непосредственном контакте с капиллярами, то надежным посредником между ними является тканевая жидкость, о которой подробнее будет рассказано в параграфах о внутренней среде организма и о лимфе. Из тканевой жидкости клетка забирает кислород, поступающий из капилляра, в нее же «выбрасывает» двуокись углерода. Другими словами, тканевой газообмен осуществляется главным образом между плазмой крови и жидкостью тканей организма. А там уже все проходит по известному механизму. Еще раз обратитесь к таблице на рис. 66. Напряжение О2 в тканевой жидкости невелико (40 мм рт.ст.), чего не скажешь о крови артерий (96 мм рт.ст.). Исходя из этого столь необходимый клеткам кислород перемещается из плазмы в тканевую жидкость до тех пор, пока напряжение этого газа в крови не достигнет 40 мм рт.ст. СО2 же газ из места большего своего напряжения (46 мм рт.ст. в жидкости тканей) устремляется в плазму крови, где его напряжение составляет 39 мм рт.ст., доводя его до отметки 46. Кровь с такими показателями О2 и СО2 (40 мм и 46 мм рт.ст.) будет венозной и по венам большого круга притекает к правым отделам сердца, откуда отправляется для осуществления газообмена в легкие человека.


Транспорт углекислого газа в организме человека способен осушествлятся кровью 3-мя путями. Незначительная часть газа растворяется в плазме, определяя тем самым напряжение СО2 в крови. Большая часть СО2 тем временем контактирует с гемоглобином красных кровяных телец, соединяется с ним, превращая в карбоксигемоглобин. Ну а весь оставшийся СО2 транспортируется в качестве кислых солей угольной кислоты (чаще всего NaHCO3). Тем ни менее, какой бы способ транспортировки углекислоты не использовался, он приводит газ к легких, для последующего его выведения из человеческого организма.


Итак, если постараться кратко резюмировать, то можно сказать, что существует 2 стадии газообмена : легочная и тканевая. В легочной стадии основой считается разница парциального давления газа в альвеолярном воздухе с напряжением газа в крови. Для тканевой стадии основой будет разница напряжения газа в крови и жидкости тканей. Сам транспорт газов обязательно происходит, если газы находятся в растворенном виде, либо в связанном, если молекулы газов соединяются с ионами или молекулой гемоглобина.


Переносчиком кислорода от легких к тканям и углекислого газа от тканей к легким является кровь. В свободном (растворенном) состоянии переносится лишь небольшое количество этих газов. Основное количество кислорода и углекислого газа переносится в связанном состоянии.

Транспорт кислорода. Кислород, растворяющийся в плазме крови капилляров малого круга кровообращения, диффундирует в эритроциты, сразу связывается с гемоглобином, образуя оксигемоглобин. Скорость связывания кислорода велика: время полунасыщения гемоглобина кислородом около 3 мс. Один грамм гемоглобина связывает 1,34 мл кислорода, в 100 мл крови 16 г гемоглобина и, следовательно, 19,0 мл кислорода. Эта величина называется кислородной емкостью крови (КЕК).

Превращение гемоглобина в оксигемоглобин определяется напряжением растворенного кислорода. Графически эта зависимость выражается кривой диссоциации оксигемоглобина (рис. 6.3).

На рисунке видно, что даже при небольшом парциальном давлении кислорода (40 мм рт. ст.) с ним связывается 75-80% гемоглобина.

При давлении 80-90 мм рт. ст. гемоглобин почти полностью насыщается кислородом.

Рис. 6.3.

Кривая диссоциации имеет 5-образную форму и состоит из двух частей - крутой и отлогой. Отлогая часть кривой, соответствующая высоким (более 60 мм рт. ст.) напряжениям кислорода, свидетельствует о том, что в этих условиях содержание оксигемоглобина лишь слабо зависит от напряжения кислорода и его парциального давления во вдыхаемом и альвеолярном воздухе. Верхняя отлогая часть кривой диссоциации отражает способность гемоглобина связывать большие количества кислорода, несмотря на умеренное снижение его парциального давления во вдыхаемом воздухе. В этих условиях ткани достаточно снабжаются кислородом (точка насыщения).

Крутая часть кривой диссоциации соответствует напряжению кислорода, обычному для тканей организма (35 мм рт. ст. и ниже). В тканях, поглощающих много кислорода (работающие мышцы, печень, почки), оксигемоглобин диссоциирует в большей степени, иногда почти полностью. В тканях, в которых интенсивность окислительных процессов мала, большая часть оксигемоглобина не диссоциирует.

Свойство гемоглобина - легко насыщаться кислородом даже при небольших давлениях и легко его отдавать - очень важно. Благодаря легкой отдаче гемоглобином кислорода при снижении его парциального давления обеспечивается бесперебойное снабжение тканей кислородом, в которых вследствие постоянного потребления кислорода его парциальное давление равно нулю.

Распад оксигемоглобина на гемоглобин и кислород увеличивается с повышением температуры тела (рис. 6.4 ).

Рис. 6.4.

А - в зависимости от реакции среды (pH); Б - от температуры; В - от содержания солей; Г - от содержания углекислого газа. По оси абцисс - парциальное давление кислорода (в мм рт. ст.), по оси ординат - степень насыщения (в %)

Диссоциация оксигемоглобина зависит от реакции среды плазмы крови. С увеличением кислотности крови возрастает диссоциация оксигемоглобина (рис. 6.4, А).

Связывание гемоглобина с кислородом в воде осуществляется быстро, но полного его насыщения не достигается, как и не происходит полной отдачи кислорода при снижении его парциального давления. Более полное насыщение гемоглобина кислородом и полная его отдача при понижении напряжения кислорода происходят в растворах солей и в плазме крови (см. рис. 6.4, В).

Особое значение в связывании гемоглобина с кислородом имеет содержание углекислого газа в крови: чем больше его содержание в крови, тем меньше связывается гемоглобина с кислородом и тем быстрее происходит диссоциация оксигемоглобина. На рис. 6.4, Г показаны кривые диссоциации оксигемоглобина при разном содержании углекислого газа в крови. Особенно резко понижается способность гемоглобина соединяться с кислородом при давлении углекислого газа, равном 46 мм рт. ст., т.е. при величине, соответствующей напряжению углекислого газа в венозной крови. Влияние углекислого газа на диссоциацию оксигемоглобина очень важно для переноса газов в легких и тканях.

В тканях содержится большое количество углекислого газа и других кислых продуктов распада, образующихся в результате обмена веществ. Переходя в артериальную кровь тканевых капилляров, они способствуют более быстрому распаду оксигемоглобина и отдаче кислорода тканям.

В легких же по мере выделения углекислого газа из венозной крови в альвеолярный воздух с уменьшением содержания углекислого газа в крови увеличивается способность гемоглобина соединяться с кислородом. Тем самым обеспечивается превращение венозной крови в артериальную.

Транспорт углекислого газа. Известны три формы транспорта двуокиси углерода:

  • физически растворенный газ - 5-10%, или 2,5 мл/100 мл крови;
  • химически связанный в бикарбонатах: в плазме NaHC0 3 , в эритроцитах КНС0 3 - 80-90%, т.е. 51 мл/100 мл крови;
  • химически связанный в карбаминовых соединениях гемоглобина - 5-15%, или 4,5 мл/100 мл крови.

Углекислый газ непрерывно образуется в клетках и диффундирует в кровь тканевых капилляров. В эритроцитах он соединяется с водой и образует угольную кислоту. Этот процесс катализируется (ускоряется в 20 000 раз) ферментом карбоангидразой. Карбоангидраза содержится в эритроцитах, в плазме крови ее нет. Поэтому гидратация углекислого газа происходит практически только в эритроцитах. В зависимости от напряжения углекислого газа карбоангидраза катализируется с образованием угольной кислоты, так и расщеплением ее на углекислый газ и воду (в капиллярах легких).

Часть молекул углекислого газа соединяется в эритроцитах с гемоглобином, образуя карбогемоглобин.

Благодаря указанным процессам связывания напряжение углекислого газа в эритроцитах оказывается невысоким. Поэтому все новые количества углекислого газа диффундируют внутрь эритроцитов. Концентрация ионов НС0 3 - , образующихся при диссоциации солей угольной кислоты, в эритроцитах возрастает. Мембрана эритроцитов обладает высокой проницаемостью для анионов. Поэтому часть ионов НС0 3 - переходит в плазму крови. Взамен ионов НС0 3 - в эритроциты из плазмы входят ионы С1 _ , отрицательные заряды которых уравновешиваются ионами К + . В плазме крови увеличивается количество бикарбоната натрия (NaHC0 3 -).

Накопление ионов внутри эритроцитов сопровождается повышением в них осмотического давления. Поэтому объем эритроцитов в капиллярах большого круга кровообращения несколько увеличивается.

Для связывания большей части углекислого газа исключительно большое значение имеют свойства гемоглобина как кислоты. Окси- гемоглобин имеет константу диссоциации в 70 раз большую, чем дезоксигемоглобин. Оксигемоглобин - более сильная кислота, чем угольная, а дезоксигемоглобин - более слабая. Поэтому в артериальной крови оксигемоглобин, вытеснивший ионы К + из бикарбонатов, переносится в виде соли КНЬ0 2 . В тканевых капиллярах КНЬ0 2 отдает кислород и превращается в КНЬ. Из него угольная кислота как более сильная вытесняет ионы К + :

Таким образом, превращение оксигемоглобина в гемоглобин сопровождается увеличением способности крови связывать углекислый газ. Это явление носит название эффекта Холдейна. Гемоглобин служит источником катионов (К +), необходимых для связывания угольной кислоты в форме бикарбонатов.

Итак, в эритроцитах тканевых капилляров образуется дополнительное количество бикарбоната калия, а также карбогемоглобин, а в плазме крови увеличивается количество бикарбоната натрия. В таком виде углекислый газ переносится к легким.

В капиллярах малого круга кровообращения напряжение углекислого газа снижается. От карбогемоглобина отщепляется С0 2 . Одновременно происходит образование оксигемоглобина, увеличивается его диссоциация. Оксигемоглобин вытесняет калий из бикарбонатов. Угольная кислота в эритроцитах (в присутствии карбоангидразы) быстро разлагается на воду и углекислый газ. Ионы НС0 3 “ входят в эритроциты, а ионы СГ входят в плазму крови, где уменьшается количество бикарбоната натрия. Углекислый газ диффундирует в альвеолярный воздух. Схематически все эти процессы представлены на рис. 6.5 .

Рис. 6.5.

  • См.: Физиология человека / Под ред. А. Косицкого.
  • См.: Леонтьева Н.Н, Маринова К.В. Указ. соч.

Двуокись углерода, образующаяся в тканях, транспортируется кровью тремя способами.

    в виде гидрокарбоната НСОз - плазмы крови и цитоплазмы эритроцитов, образующегося в результате диссоциации угольной кислоты:

Н 2 О + СО 2 = Н 2 СО 3 = Н + + НСО 3 - Таким способом транспортируется около 4/5 всего углекислого газа.

    в виде химического со­единения с дезоксигенированным гемоглобином - карбогемоглобина (около 15 %).

    так же как и О 2 , СО 2 переносится в фи­зически растворенном состоянии (3-6% общего количества СО 2). Содержание физически растворенной двуокиси углерода в артериальной крови составляет 0,026 мл в 1 мл крови, что в 9 раз превышает количество физически растворенного кислорода.

5. Транспорт кислорода и углекислого газа в тканях.

Кислород проникает из крови в клетки тканей путем диффузии, обуслов­ленной разностью (градиентом) его парциальных давлений по обе стороны, так называемого гематопаренхиматозного барьера . Так, среднее Ро 2 артериальной крови составляет около 100 мм рт. ст., а в клетках, где кислород непрерывно утилизируется, стремится к нулю.

Напряжение кислорода в тканях в среднем составляет 20-40 мм рт. ст. Однако эта величина в различных участках живой ткани отнюдь не одинакова. Наибольшее значение Ро 2 фиксируется вблизи артериального конца кровенос­ного капилляра, наименьшая - в самой удаленной от капилляра точке («мерт­вый угол»).

Функция газотранспортной системы организма в конечном счете направлена на поддержание парциального давления кислорода на клеточной мембране не ниже критического , т. е. минимального, необходимого для работы ферментов дыхательной цепи в митохондриях. Для клеток, интенсивно потребля­ющих кислород, критическое Ро 2 составляет около 1 мм рт. ст.

Вместе с тем следует иметь в виду, что напряжение О 2 в тканях зависит не только от снабжения кислородом, но и от его потребления клетками. Наиболее чувствительны к недостатку кислорода клетки кардиомиоцитов и нейроны мозга, где окислительные про­цессы очень интенсивны (реанимация, инфаркт). В отличие от этих клеток, скелетные мыш­цы относительно устойчивы к кратковременному прекращению кислородного снабжения, т.к. они могут использовать анаэробные процессы получения энергии, а также содержат (особенно красные волокна) миоглобин.

Перенос СО 2 из клеток тканей в кровь тоже происходит главным образом путем диффузии, т. е. в силу разности напряжений СО 2 по обе стороны гематопаренхиматозного барьера. Среднее артериальное значение Рсо 2 в среднем составляет 40 мм рт. ст., а в клетках может достигать 60 мм рт. ст. Локальное парциальное давление углекислого газа и, следовательно, скорости его диффузионного транспорта в значительной мере определяются продукцией СО 2 (т. е. интенсивностью окислительных процессов) в данном органе.

По той же причине Рсо 2 и Ро 2 в различных венах не одинаковы. Так, в крови, оттекающей от работающей мышцы, напряжение О 2 гораздо ниже, а напряжение СО 2 гораздо выше, чем, например, в крови, оттекающей от соеди­нительной ткани.

Кровью

Газообмен в легких совершается между альвеолярным воздухом и кровью легочных капилляров путем диффузии в результате разницы парциального давления дыхательных газов. Парциальным (т.е. частичным) давлением называется та часть общего давления, которая приходится на долю каждого газа в газовой смеси. Эта часть зависит от процентного со­держания газа в смеси. Чем оно больше, тем выше парциальное давление данного газа.

Аэрогематический (воздушно-кровяной) барьер (греч. аёг, aeros - воз­дух + haima - кровь), через который диффундируют дыхательные газы в ходе газообмена, включает (рис. № 236):

1) тонкую пленку фосфолипида - сурфактант, выстилающую внут­реннюю поверхность альвеол;

2) альвеолярный эпителий - однослойный плоский;

3) интерстициальную соединительную ткань, придающую эластич­ность альвеолам;

4) эндотелий капилляра;

5) слой плазмы.

Суммарное диффузионное расстояние этих слоев аэрогематического барьера составляет 0,5-1мкм.

Пониженное давление кислорода (О 2) в тканях организма заставляет этот газ двигаться к ним. Для углекислого газа (СО 2) градиент давления направлен в обратную сторону, и СО 2 переходит в окружающую среду.

Поскольку парциальное давление О 2 в альвеолярном воздухе (106 мм рт. ст.) больше, чем в притекающей венозной крови (40 мм рт. ст.), то О 2 , диффундирует через альвеолы в капилляры. Напротив, напряжение СО 2 в венозной крови (47 мм рт. ст.) больше, чем в альвеолярном воздухе (40 мм рт. ст.), поэтому СО 2 диффундирует в альвеолы. Скорость диффузии для СО 2 в 20-25 раз выше, чем для О 2 . Поэтому обмен СО 2 происходит в лег­ких достаточно полно, несмотря на небольшую разницу парциального дав­ления этого газа (7 мм рт. ст.). Скорость диффузии О 2 через альвеолярную мембрану составляет только 1/20-1/25 скорости диффузии СО 2 . Поэтому полного выравнивания давления О 2 между артериальной кровью и альвео­лярным воздухом не происходит, и оттекающая от легких артериальная кровь имеет напряжение О 2 на 6 мм рт. ст. ниже, чем в альвеолах. Заметим при этом, что весь О 2 должен пройти через стадию растворения в плазме крови.

В целом напряжение дыхательных газов в оттекающей артериальной крови становится практически таким же, как их парциальное давление в альвеолах легких.

Человек в покое потребляет в минуту около 350 мл кислорода и вы­деляет при этом в среднем 200 мл углекислого газа. В крови О 2 и СО 2 мо­гут находиться в двух состояниях: в физически растворенном и в химиче­ски связанном виде.

Транспорт О 2 обеспечивается за счет химической связи его с гемоглобином эритроцитов. Одна молекула гемоглобина присоеди­няет 4 молекулы О 2 , при этом гемоглобин превращается в оксигемоглобин, а кровь из вишневой - венозной становится ярко-алой - артериальной. Насыщение гемоглобина О 2 зависит в первую очередь от парциального давления газа в атмосферном и альвеолярном воздухе.


При низком парциальном давлении О 2 (до 20 мм рт. ст.) скорость об­разования оксигемоглобина невелика. Максимальное количество гемогло­бина (45-80%) связывается с О 2 при его напряжении 26-46 мм рт. ст. Даль­нейшее повышение напряжения О 2 приводит к снижению скорости обра­зования оксигемоглобина.

На диссоциацию (расщепление) оксигемоглобина и переход О 2 из крови в ткани влияют 3 фактора:

1) парциальное давление (напряжение) О 2 в тканях (0-20 мм рт. ст.);

2) кислотность среды, в частности, СО 2 ;

3) температура тела человека.

Действие этих факторов проявляется и в покое, но особенно оно уси­ливается при физической работе.

Образовавшийся в тканях углекислый газ вследствие разности на­пряжения диффундирует в межтканевую жидкость, плазму крови, а из нее - в эритроциты. В эритроцитах около 10% СО 2 соединяется с гемоглоби­ном, образуя карбоксигемоглобин. Остальная часть СО 2 соединяется с водой и превращается в угольную кислоту (в эритроцитах).

В ле­гочных капиллярах, где давление СО 2 сравнительно низкое, он в альвеолярный воздух.