Что находится в центре черной дыры. Черные дыры

January 24th, 2013

Из всех гипотетических объектов Вселенной, предсказываемых научными теориями, черные дыры производят самое жуткое впечатление. И, хотя предположения об их существовании начали высказываться почти за полтора столетия до публикации Эйнштейном общей теории относительности, убедительные свидетельства реальности их существования получены совсем недавно.

Давайте начнем с того, как общая теория относительности решает вопрос о природе гравитации. Закон всемирного тяготения Ньютона утверждает, что между двумя любыми массивными телами во Вселенной действует сила взаимного притяжения. По причине такого гравитационного притяжения Земля обращается вокруг Солнца. Общая теория относительности заставляет нас взглянуть на систему Солнце—Земля иначе. Согласно этой теории в присутствии столь массивного небесного тела, как Солнце, пространство-время как бы проминается под его тяжестью, и равномерность его ткани нарушается. Представьте себе эластичный батут, на котором лежит тяжелый шар (например, от боулинга). Натянутая ткань прогибается под его весом, создавая вокруг разрежение. Таким же образом Солнце продавливает пространство-время вокруг себя.



Согласно этой картине Земля просто катается вокруг образовавшейся воронки (за исключением того, что маленький шарик, катающийся вокруг тяжелого на батуте неизбежно будет терять скорость и по спирали приближаться к большому). И то, что мы привычно воспринимаем как силу земного притяжения в нашей повседневной жизни, также есть ни что иное, как изменение геометрии пространства-времени, а не сила в ньютоновском понимании. На сегодня более удачного объяснения природы гравитации, чем дает нам общая теория относительности, не придумано.

А теперь представьте, что произойдет, если мы будем — в рамках предложенной картины — увеличивать и увеличивать массу тяжелого шара, не увеличивая при этом его физических размеров? Будучи абсолютно эластичной, воронка будет углубляться до тех пор, пока ее верхние края не сойдутся где-то высоко над совсем потяжелевшим шаром, и тогда он просто перестанет существовать при взгляде с поверхности. В реальной Вселенной, накопив достаточную массу и плотность материи, объект захлопывает вокруг себя пространственно-временную ловушку, ткань пространства-времени смыкается, и он теряет связь с остальной Вселенной, становясь невидимым для нее. Так возникает черная дыра.

Шварцшильд и его современники полагали, что столь странные космические объекты в природе не существуют. Сам Эйнштейн не только придерживался этой точки зрения, но и ошибочно считал, что ему удалось обосновать свое мнение математически.

В 1930-е годы молодой индийский астрофизик Чандрасекар доказал, что истратившая ядерное топливо звезда сбрасывает оболочку и превращается в медленно остывающий белый карлик лишь в том случае, если ее масса меньше 1,4 масс Солнца. Вскоре американец Фриц Цвикки догадался, что при взрывах сверхновых возникают чрезвычайно плотные тела из нейтронной материи; позднее к этому же выводу пришел и Лев Ландау. После работ Чандрасекара было очевидно, что подобную эволюцию могут претерпеть только звезды с массой больше 1,4 масс Солнца. Поэтому возник естественный вопрос — существует ли верхний предел массы для сверхновых, которые оставляют после себя нейтронные звезды?

В конце 30-х годов будущий отец американской атомной бомбы Роберт Оппенгеймер установил, что такой предел действительно имеется и не превышает нескольких солнечных масс. Дать более точную оценку тогда не было возможности; теперь известно, что массы нейтронных звезд обязаны находиться в интервале 1,5-3 Ms. Но даже из приблизительных вычислений Оппенгеймера и его аспиранта Джорджа Волкова следовало, что самые массивные потомки сверхновых не становятся нейтронными звездами, а переходят в какое-то другое состояние. В 1939 году Оппенгеймер и Хартланд Снайдер на идеализированной модели доказали, что массивная коллапсирующая звезда стягивается к своему гравитационному радиусу. Из их формул фактически следует, что звезда на этом не останавливается, однако соавторы воздержались от столь радикального вывода.


09.07.1911 - 13.04.2008

Окончательный ответ был найден во второй половине XX века усилиями целой плеяды блестящих физиков-теоретиков, в том числе и советских. Оказалось, что подобный коллапс всегда сжимает звезду «до упора», полностью разрушая ее вещество. В результате возникает сингулярность, «суперконцентрат» гравитационного поля, замкнутый в бесконечно малом объеме. У неподвижной дыры это точка, у вращающейся — кольцо. Кривизна пространства-времени и, следовательно, сила тяготения вблизи сингулярности стремятся к бесконечности. В конце 1967 года американский физик Джон Арчибальд Уилер первым назвал такой финал звездного коллапса черной дырой. Новый термин полюбился физикам и привел в восторг журналистов, которые разнесли его по всему миру (хотя французам он сначала не понравился, поскольку выражение trou noir наводило на сомнительные ассоциации).

Важнейшее свойство черной дыры — что бы в нее ни попало, обратно оно не вернется. Это касается даже света, вот почему черные дыры и получили свое название: тело, поглощающее весь свет, падающий на него, и не испускающее собственного кажется абсолютно черным. Согласно общей теории относительности, если объект приближается к центру черной дыры на критическое расстояние — это расстояние называется радиусом Шварцшильда, — он уже никогда не сможет вернуться назад. (Немецкий астроном Карл Шварцшильд (Karl Schwarzschild, 1873-1916) в последние годы своей жизни, используя уравнения общей теории относительности Эйнштейна, рассчитал гравитационное поле вокруг массы нулевого объема.) Для массы Солнца радиус Шварцшильда составляет 3 км, то есть, чтобы превратить наше Солнце в черную дыру, нужно уплотнить всю его массу до размера небольшого городка!


Внутри радиуса Шварцшильда теория предсказывает явления еще более странные: всё вещество черной дыры собирается в бесконечно малую точку бесконечной плотности в самом ее центре — математики называют такой объект сингулярным возмущением. При бесконечной плотности любая конечная масса материи, математически говоря, занимает нулевой пространственный объем. Происходит ли это явление реально внутри черной дыры, мы, естественно, экспериментально проверить не можем, поскольку всё попавшее внутрь радиуса Шварцшильда обратно не возвращается.

Не имея, таким образом, возможности «рассмотреть» черную дыру в традиционном смысле слова «смотреть», мы, тем не менее, можем обнаружить ее присутствие по косвенным признакам влияния ее сверхмощного и совершенно необычного гравитационного поля на материю вокруг нее.

Сверхмассивные черные дыры

В центре нашего Млечного Пути и других галактик располагается невероятно массивная черная дыра в миллионы раз тяжелее Солнца. Эти сверхмассивные черные дыры (такое название они получили) были обнаружены по наблюдениям за характером движения межзвездного газа вблизи центров галактик. Газы, судя по наблюдениям, вращаются на близком удалении от сверхмассивного объекта, и простые расчеты с использованием законов механики Ньютона показывают, что объект, притягивающий их, при мизерном диаметре обладает чудовищной массой. Так закрутить межзвездный газ в центре галактики может только черная дыра. Фактически астрофизики нашли уже десятки таких массивных черных дыр в центрах соседних с нашей галактик, и сильно подозревают, что центр любой галактики — суть черная дыра.


Черные дыры со звездной массой

Согласно нашим нынешним представлениям об эволюции звезд, когда звезда с массой, превышающей примерно 30 масс Солнца, гибнет со вспышкой сверхновой, внешняя ее оболочка разлетается, а внутренние слои стремительно обрушиваются к центру и образуют черную дыру на месте израсходовавшей запасы топлива звезды. Изолированную в межзвездном пространстве черную дыру такого происхождения выявить практически невозможно, поскольку она находится в разреженном вакууме и никак не проявляет себя в плане гравитационных взаимодействий. Однако, если такая дыра входила в состав двойной звездной системы (две горячих звезды, обращающихся по орбите вокруг их центра масс), черная дыра будет по-прежнему оказывать гравитационное воздействие на парную ей звезду. Астрономы сегодня имеют более десятка кандидатов на роль звездных систем такого рода, хотя строгих доказательств не получено в отношении ни одной из них.

В двойной системе с черной дырой в ее составе вещество «живой» звезды будет неизбежно «перетекать» в направлении черной дыры. И закручиваться высасываемое черной дырой вещество при падении в черную дыру будет по спирали, исчезая при пересечении радиуса Шварцшильда. При подходе к роковой границе, однако, засасываемое в воронку черной дыры вещество будет неизбежно уплотняться и разогреваться в силу учащения соударений между поглощаемыми дырой частицами, пока не разогреется до энергий излучения волн в рентгеновском диапазоне спектра электромагнитного излучения. Астрономы могут измерить периодичность изменения интенсивности рентгеновского излучения такого рода и вычислить, сопоставив ее с другими доступными данными, примерную массу объекта, «перетягивающего» на себя материю. Если масса объекта превышает предел Чандрасекара (1,4 массы Солнца), этот объект не может являться белым карликом, в которого суждено выродиться нашему светилу. В большинстве выявленных случаев наблюдения подобных двойных рентгеновских звезд массивным объектом является нейтронная звезда. Однако насчитано уже более десятка случаев, когда единственным разумным объяснением является присутствие в двойной звездной системе черной дыры.

Все другие типы черных дыр куда более спекулятивны и основаны исключительно на теоретических изысканиях — экспериментальных подтверждений их существования не имеется вовсе. Во-первых, это черные мини-дыры с массой, сопоставимой с массой горы и сжатой до радиуса протона. Идею об их зарождении на начальной стадии формирования Вселенной непосредственно после Большого взрыва высказал английский космолог Стивен Хокинг (см. Скрытый принцип необратимости времени). Хокинг предположил, что взрывами мини-дыр можно объяснить действительно загадочный феномен точеных вспышек гамма-излучения во Вселенной. Во-вторых, некоторые теории элементарных частиц предсказывают существование во Вселенной — на микро-уровне — настоящего решета из черных дыр, представляющих собой своего рода пену из отбросов мироздания. Диаметр таких микро-дыр предположительно составляет около 10-33 см — они в миллиарды раз мельче протона. На данный момент у нас нет каких-либо надежд на экспериментальную проверку даже самого факта существования таких черных дыр-частиц, не говоря уже о том, чтобы хоть как-то исследовать их свойства.


А что произойдет с наблюдателем, если он вдруг окажется по ту сторону гравитационного радиуса, иначе именуемого горизонтом событий. Здесь начинается самое удивительное свойство черных дыр. Не зря, говоря о черных дырах, мы всегда упоминали время, точнее пространство-время. По теории относительности Эйнштейна, чем быстрее движется тело, тем больше становится его масса, но тем медленнее начинает идти время! На малых скоростях в нормальных условиях этот эффект незаметен, но если тело (космический корабль) движется со скоростью близкой к скорости света, то масса его увеличивается, а время замедляется! При скорости тела равной скорости света, масса обращается в бесконечность, а время останавливается! Об этом говорят строгие математические формулы. Вернемся к черной дыре. Представим себе фантастическую ситуацию, когда звездолет с космонавтами на борту приближается к гравитационному радиусу или горизонту событий. Понятно, что горизонт событий назван так потому, что мы может наблюдать какие-либо события (вообще что-то наблюдать) только до этой границы. Что за этой границей мы наблюдать не в состоянии. Тем не менее, находясь внутри корабля, приближающегося к черной дыре, космонавты будут чувствовать себя, как и раньше, т.к. по их часам время будет идти «нормально». Космический корабль спокойно пересечет горизонт событий, и будет двигаться дальше. Но поскольку скорость его будет близка к скорости света, то до центра черной дыры космический корабль достигнет, буквально, за миг.

А для внешнего наблюдателя космический корабль просто остановится на горизонте событий, и будет находиться там практически вечно! Таков парадокс колоссального тяготения черных дыр. Закономерен вопрос, а останутся ли живы космонавты, уходящие в бесконечность по часам внешнего наблюдателя. Нет. И дело вовсе не в громадном тяготении, а в приливных силах, которые у столь малого и массивного тела сильно меняются на малых расстояниях. При росте космонавта 1 м 70 см приливные силы у его головы будут гораздо меньше, чем у ног и его просто разорвет уже на горизонте событий. Итак, мы в общих чертах выяснили, что такое черные дыры, но речь пока шла о черных дырах звездной массы. В настоящее время астрономам удалось обнаружить сверхмассивные черные дыры, масса которых может составлять миллиард солнц! Сверхмассивные черные дыры по свойствам не отличаются от своих меньших собратьев. Они лишь гораздо массивнее и, как правило, находятся в центрах галактик - звездных островов Вселенной. В центре Нашей Галактики (Млечный Путь) тоже имеется сверхмассивная черная дыра. Колоссальная масса таких черных дыр позволят вести их поиск не только в Нашей Галактике, но и в центрах далеких галактик, находящихся на расстоянии миллионы и миллиарды световых лет от Земли и Солнца. Европейские и американские ученые провели глобальный поиск сверхмассивных черных дыр, которые, согласно современным теоретическим выкладкам, должны находиться в центре каждой галактики.

Современные технологии позволяют выявить наличие этих коллапсаров в соседних галактиках, но обнаружить их удалось совсем немного. Значит, либо черные дыры просто скрываются в плотных газопылевых облаках в центральной части галактик, либо они находятся в более отдаленных уголках Вселенной. Итак, черные дыры можно обнаружить по рентгеновскому излучению, испускаемому во время аккреции вещества на них, и чтобы произвести перепись подобных источников, в околоземное комическое пространство были запущены спутники с рентгеновскими телескопами на борту. Занимаясь поиском источников Х-лучей, космические обсерватории «Чандра» (Chandra) и «Росси» (Rossi) обнаружили, что небо заполнено фоновым рентгеновским излучением, и является в миллионы раз более ярким, чем в видимых лучах. Значительная часть этого фонового рентгеновского излучения неба должна исходить от черных дыр. Обычно в астрономии говорят о трех типах черных дыр. Первый — черные дыры звездных масс (примерно 10 масс Солнца). Они образуются из массивных звезд, когда в тех заканчивается термоядерное горючее. Второй — сверхмассивные черные дыры в центрах галактик (массы от миллиона до миллиардов солнечных). И наконец, первичные черные дыры, образовавшиеся в начале жизни Вселенной, массы которых невелики (порядка массы крупного астероида). Таким образом, большой диапазон возможных масс черных дыр остается незаполненным. Но где эти дыры? Заполняя пространство рентгеновскими лучами, они, тем не менее, не желают показывать свое истинное «лицо». Но чтобы построить четкую теорию связи фонового рентгеновского излучения с черными дырами, необходимо знать их количество. На данный момент космическим телескопам удалось обнаружить лишь небольшое количество сверхмассивных черных дыр, существование которых можно считать доказанным. Косвенные признаки позволяют довести количество наблюдаемых черных дыр, ответственных за фоновое излучение, до 15%. Приходится предполагать, что остальные сверхмассивные черные дыры просто прячутся за толстым слоем пылевых облаков, которые пропускают только рентгеновские лучи высокой энергии или же находятся слишком далеко для обнаружения современными средствами наблюдений.


Сверхмассивная черная дыра (окрестности) в центре галактики M87 (рентгеновское изображение). Виден выброс (джет) от горизонта событий. Изображение с сайта www.college.ru/astronomy

Поиск скрытых черных дыр — одна из главных задач современной рентгеновской астрономии. Последние прорывы в этой области, связанные с исследованиями при помощи телескопов «Чандра» и «Росси», тем не менее охватывают лишь низкоэнергетический диапазон рентгеновского излучения — приблизительно 2000-20 000 электрон-вольт (для сравнения, энергия оптического излучения — около 2 электрон-вольт). Существенные поправки в эти исследования может внести европейский космический телескоп «Интеграл» (Integral), который способен проникнуть в еще недостаточно изученную область рентгеновского излучения с энергией 20 000-300 000 электрон-вольт. Важность изучения этого типа рентгеновских лучей состоит в том, что хотя рентгеновский фон неба имеет низкую энергетику, но на этом фоне проявляются множественные пики (точки) излучения с энергией около 30 000 электрон-вольт. Ученые еще только приоткрывают завесу тайны того, что порождает эти пики, а «Интеграл» — первый достаточно чувствительный телескоп, способный найти подобные источники рентгеновских лучей. По предположению астрономов, лучи высокой энергии порождают так называемые Комптон-объекты (Compton-thick), то есть сверхмассивные черные дыры, окутанные пылевой оболочкой. Именно Комптон-объекты ответственны за пики рентгеновского излучения в 30 000 электрон-вольт на поле фонового излучения.

Но, продолжая исследования, ученые пришли к выводу, что Комптон-объекты составляют лишь 10% от того числа черных дыр, которые должны создавать пики высоких энергий. Это — серьезное препятствие для дальнейшего развития теории. Значит, недостающие рентгеновские лучи поставляют не Compton-thick, а обычные сверхмассивные черные дыры? Тогда как быть с пылевыми завесами для рентгеновских лучей низкой энергии.? Ответ, похоже, кроется в том, что многие черные дыры (Комптон-объекты) имели достаточно времени, чтобы поглотить весь газ и пыль, которые окутывали их, но до этого имели возможность заявить о себе рентгеновским излучением высокой энергии. После поглощения всего вещества такие черные дыры уже оказались неспособными генерировать рентгеновское излучение на горизонте событий. Становится понятно, почему эти черные дыры нельзя обнаружить, и появляется возможность отнести недостающие источники фонового излучения на их счет, так как хотя черная дыра уже не излучает, но ранее созданное ей излучение продолжает путешествие по Вселенной. Тем не менее, вполне возможно, что недостающие черные дыры более скрыты, чем предполагают астрономы, то есть то, что мы не их видим, вовсе не значит, что их нет. Просто пока у нас не хватает мощности средств наблюдений, чтобы увидеть их. Тем временем ученые из NASA планируют расширить диапазон поиска скрытых черных дыр еще дальше во Вселенную. Именно там находится подводная часть айсберга, считают они. В течение нескольких месяцев исследования будут проводиться в рамках миссии «Свифт» (Swift). Проникновение в глубокую Вселенную позволит обнаружить прячущиеся черные дыры, найти недостающее звено для фонового излучения и пролить свет на их активность в раннюю эпоху Вселенной.

Некоторые черные дыры считаются более активными, чем их спокойные соседи. Активные черные дыры поглощают окружающее вещество, а если в полет тяготения попадет «зазевавшаяся» звезда, пролетающая мимо, то она непременно будет «съедена» самым варварским способом (разорванная в клочья). Поглощаемое вещество, падая на черную дыру, нагревается до огромных температур, и испытывает вспышку в гамма, рентгеновском и ультрафиолетовом диапазоне. В центре Млечного Пути так же находится сверхмассивная черная дыра, но ее труднее изучать, чем дыры в соседних или даже далеких галактиках. Это связано с плотной стеной газа и пыли, встающей на пути центру Нашей Галактики, ведь Солнечная система находится почти на краю галактического диска. Поэтому наблюдения активности черных дыр гораздо эффективней у тех галактик, ядро которых хорошо просматривается. При наблюдении одной из далеких галактик, расположенной в созвездии Волопаса на расстоянии 4-х миллиардов световых лет, астрономам впервые удалось отследить от начала и почти до конца процесс поглощения звезды супермассивной черной дырой. В течение тысяч лет этот гигантский коллапсар тихо-мирно покоился в центре безымянной эллиптической галактики, пока одна из звезд не осмелилась приблизиться к ней достаточно близко.

Мощная гравитация черной дыры разорвала звезду на части. Сгустки вещества начали падать на черную дыру и при достижении горизонта событий, ярко вспыхивать в ультрафиолетовом диапазоне. Эти вспышки и зафиксировал новый космический телескоп NASA Galaxy Evolution Explorer, изучающий небо в ультрафиолете. Телескоп и сегодня продолжает наблюдать за поведением отличившегося объекта, т.к. трапеза черной дыры еще не закончилась, а остатки звезды продолжают падать в бездну времени и пространства. Наблюдения таких процессов, в конце концов, помогут лучше понять, как черные дыры развиваются вместе с их родительскими галактиками (или, наоборот, галактики развиваются с родительской черной дырой). Более ранние наблюдения показывают, что подобные эксцессы не редкость во Вселенной. Ученые подсчитали, что в среднем звезда поглощается сверхмассивной черной дырой типичной галактики один раз в 10000 лет, но поскольку галактик большое количество, то наблюдать поглощения звезд можно гораздо чаще.


источник

На днях Стивен Хокинг всколыхнул научную общественность, заявив, что чёрных дыр не существует. Вернее, они представляют собой совсем не то, что считалось ранее.

По мнению исследователя (которое изложено в работе «Сохранение информации и прогнозы погоды для черных дыр»), то, что мы называем чёрными дырами, может существовать без так называемого «горизонта событий», за который вырваться уже ничто не может. Хокинг считает, что чёрные дыры удерживают свет и информацию только какое-то время, а потом «выплёвывают» обратно в космос, правда, в изрядно искажённом виде.

Пока научное сообщество переваривает новую теорию, мы решили напомнить нашему читателю то, что считалось «фактами о чёрных дырах» до сих пор. Итак, до сих пор считалось, что:

Свое название чёрные дыры получили потому, что всасывают свет, который касается ее границ, и не отражают его

Формируясь в момент, когда достаточно сжатая масса вещества деформирует пространство и время, черная дыра имеет определенную поверхность, называемую «горизонтом событий», знаменующую собой точку невозврата.

Близко к уровню моря часы идут медленнее, чем на космической станции, а вблизи черных дыр и того медленнее. Это каким-то образом связано с силой тяжести.

Ближайшая черная дыра находится примерно в 1600 световых лет от нас

Наша галактика усеяна черными дырами, однако ближайшая из тех, что теоретически способны уничтожить нашу скромную планету, находится далеко за пределами нашей Солнечной системы.

Огромная черная дыра находится в центре галактики Млечный Путь

Она расположена на расстоянии 30 тысяч световых лет от Земли, а её размеры более чем в 30 миллионов раз превышают размеры нашего Солнца.

Черные дыры, в конце концов, испаряются

Считается, что ничто не может вырваться из черной дыры. Единственное исключение из этого правила – радиация. По мнению некоторых ученых, по мере того, как черные дыры излучают радиацию, они теряют массу. В результате этого процесса черная дыра может и вовсе исчезнуть.

Черные дыры имеют форму не воронки, а сферы

В большинстве учебников вы увидите черные дыры, которые выглядят, как воронки. Это происходит потому, что они проиллюстрированы с точки зрения гравитационного колодца. В действительности они больше похожи на сферу.

Вблизи черной дыры всё искажается

Черные дыры обладают способностью искажать пространство, и, поскольку они вращаются, то искажение усиливается по мере вращения.

Черная дыра может убить ужасным образом

Хотя это кажется очевидным, что черная дыра несовместима с жизнью, большинство людей думают, что там их бы просто раздавило. Не обязательно. Вас, скорее всего, растянуло бы до смерти, потому что часть вашего тела, первой достигшая «горизонта событий» оказалась бы под значительно большим влиянием силы тяжести.

Черные дыры не всегда черные

Хотя они известны своей чернотой, как мы уже говорили ранее, они на самом деле излучают электромагнитные волны.

Черные дыры способны не только разрушать

Конечно, в большинстве случаев, так и есть. Однако существуют многочисленные теории, исследования и предположения о том, что черные дыры действительно могут быть приспособлены для получения энергии и для космических путешествий.

Открытие черных дыр принадлежит не Альберту Эйнштейну

Альберт Эйнштейн только возродил теорию черных дыр в 1916 году. Задолго до того, в 1783 году, ученый по имени Джон Митчелл первым разработал эту теорию. Это произошло после того, как он задался вопросом, может ли гравитация стать настолько сильной, что даже легкие частицы не могли бы избежать ее.

Черные дыры гудят

Хотя вакуум в космосе на самом деле не передает звуковых волн, если слушать с помощью специальных инструментов, то можно услышать звуки атмосферных помех. Когда черная дыра затягивает что-то внутрь, ее горизонт событий ускоряет частицы, вплоть до скорости света, и они производят гул.

Черные дыры могут генерировать элементы, необходимые для зарождения жизни

Исследователи считают, что черные дыры создают элементы по мере своего распада на субатомные частицы. Эти частицы способны создавать элементы тяжелее гелия, такие как железо и углерод, а также многие другие, необходимые для формирования жизни.

Черные дыры не только «проглатывают», но и «выплевывают»

Черные дыры известны тем, что всасывают все, что оказывается вблизи их горизонта событий. После того, как что-то попадает в черную дыру, оно сдавливается с такой чудовищной силой, что отдельные компоненты сжимаются и в конечном счете распадаются на субатомные частицы. Некоторые ученые предполагают, что эта материя затем выбрасывается из того, что называют «белой дырой».

Любая материя может стать черной дырой

С технической точки зрения, черными дырами могут становиться не только звезды. Если бы ключи от вашей машины уменьшились до бесконечно малой точки, сохранив при этом свою массу, то их плотность достигла бы астрономического уровня, и сила их тяжести увеличилась бы до невероятности.

Законы физики теряют силу в центре черной дыры

Согласно теориям, вещество внутри черной дыры сжимается до бесконечной плотности, а пространство и время перестают существовать. Когда это происходит, законы физики перестают действовать, просто потому, что человеческий разум не способен вообразить предмет, имеющий нулевой объем и бесконечную плотность.

Черные дыры определяют количество звезд

По мнению некоторых ученых, число звезд во Вселенной ограничено количеством черных дыр. Это связано с тем, как они влияют на газовые облака и образование элементов в тех частях Вселенной, где рождаются новые звезды.



ЧЕРНАЯ ДЫРА
область в пространстве, возникшая в результате полного гравитационного коллапса вещества, в которой гравитационное притяжение так велико, что ни вещество, ни свет, ни другие носители информации не могут ее покинуть. Поэтому внутренняя часть черной дыры причинно не связана с остальной Вселенной; происходящие внутри черной дыры физические процессы не могут влиять на процессы вне ее. Черная дыра окружена поверхностью со свойством однонаправленной мембраны: вещество и излучение свободно падает сквозь нее в черную дыру, но оттуда ничто не может выйти. Эту поверхность называют "горизонтом событий". Поскольку до сих пор имеются лишь косвенные указания на существование черных дыр на расстояниях в тысячи световых лет от Земли, наше дальнейшее изложение основывается главным образом на теоретических результатах. Черные дыры, предсказанные общей теорией относительности (теорией гравитации, предложенной Эйнштейном в 1915) и другими, более современными теориями тяготения, были математически обоснованы Р.Оппенгеймером и Х. Снайдером в 1939. Но свойства пространства и времени в окрестности этих объектов оказались столь необычными, что астрономы и физики в течение 25 лет не относились к ним серьезно. Однако астрономические открытия в середине 1960-х годов заставили взглянуть на черные дыры как на возможную физическую реальность. Их открытие и изучение может принципиально изменить наши представления о пространстве и времени.
Образование черных дыр. Пока в недрах звезды происходят термоядерные реакции, они поддерживают высокую температуру и давление, препятствуя сжатию звезды под действием собственной гравитации. Однако со временем ядерное топливо истощается, и звезда начинает сжиматься. Расчеты показывают, что если масса звезды не превосходит трех масс Солнца, то она выиграет "битву с гравитацией": ее гравитационный коллапс будет остановлен давлением "вырожденного" вещества, и звезда навсегда превратится в белый карлик или нейтронную звезду. Но если масса звезды более трех солнечных, то уже ничто не сможет остановить ее катастрофического коллапса и она быстро уйдет под горизонт событий, став черной дырой. У сферической черной дыры массы M горизонт событий образует сферу с окружностью по экватору в 2p раз большей "гравитационного радиуса" черной дыры RG = 2GM/c2, где c - скорость света, а G - постоянная тяготения. Черная дыра с массой 3 солнечных имеет гравитационный радиус 8,8 км.

Если астроном будет наблюдать звезду в момент ее превращения в черную дыру, то сначала он увидит, как звезда все быстрее и быстрее сжимается, но по мере приближения ее поверхности к гравитационному радиусу сжатие начнет замедляться, пока не остановится совсем. При этом приходящий от звезды свет будет слабеть и краснеть, пока не потухнет совсем. Это происходит потому, что в борьбе с гигантской силой тяжести свет теряет энергию и ему требуется все больше времени, чтобы достичь наблюдателя. Когда поверхность звезды достигнет гравитационного радиуса, покинувшему ее свету потребуется бесконечное время, чтобы достичь наблюдателя (и при этом фотоны полностью потеряют свою энергию). Следовательно, астроном никогда не дождется этого момента и тем более не увидит того, что происходит со звездой под горизонтом событий. Но теоретически этот процесс исследовать можно. Расчет идеализированного сферического коллапса показывает, что за короткое время звезда сжимается в точку, где достигаются бесконечно большие значения плотности и тяготения. Такую точку называют "сингулярностью". Более того, общий математический анализ показывает, что если возник горизонт событий, то даже несферический коллапс приводит к сингулярности. Однако все это верно лишь в том случае, если общая теория относительности применима вплоть до очень маленьких пространственных масштабов, в чем мы пока не уверены. В микромире действуют квантовые законы, а квантовая теория гравитации пока не создана. Ясно, что квантовые эффекты не могут остановить сжатие звезды в черную дыру, а вот предотвратить появление сингулярности они могли бы. Современная теория звездной эволюции и наши знания о звездном населении Галактики указывают, что среди 100 млрд. ее звезд должно быть порядка 100 млн. черных дыр, образовавшихся при коллапсе самых массивных звезд. К тому же черные дыры очень большой массы могут находиться в ядрах крупных галактик, в том числе и нашей. Как уже отмечалось, в нашу эпоху черной дырой может стать лишь масса, более чем втрое превышающая солнечную. Однако сразу после Большого взрыва, с которого ок. 15 млрд. лет назад началось расширение Вселенной, могли рождаться черные дыры любой массы. Самые маленькие из них в силу квантовых эффектов должны были испариться, потеряв свою массу в виде излучения и потоков частиц. Но "первичные черные дыры" с массой более 1015 г могли сохраниться до наших дней. Все расчеты коллапса звезд делаются в предположении слабого отклонения от сферической симметрии и показывают, что горизонт событий формируется всегда. Однако при сильном отклонении от сферической симметрии коллапс звезды может привести к образованию области с бесконечно сильной гравитацией, но не окруженной горизонтом событий; ее называют "голой сингулярностью". Это уже не черная дыра в том смысле, как мы обсуждали выше. Физические законы вблизи голой сингулярности могут иметь весьма неожиданный вид. В настоящее время голая сингулярность рассматривается как маловероятный объект, тогда как в существование черных дыр верит большинство астрофизиков.
Свойства черных дыр. Для стороннего наблюдателя структура черной дыры выглядит чрезвычайно простой. В процессе коллапса звезды в черную дыру за малую долю секунды (по часам удаленного наблюдателя) все ее внешние особенности, связанные с неоднородностью исходной звезды, излучаются в виде гравитационных и электромагнитных волн. Образовавшаяся стационарная черная дыра "забывает" всю информацию об исходной звезде, кроме трех величин: полной массы, момента импульса (связанного с вращением) и электрического заряда. Изучая черную дыру, уже невозможно узнать, состояла ли исходная звезда из вещества или антивещества, имела ли она форму сигары или блина и т.п. В реальных астрофизических условиях заряженная черная дыра будет притягивать к себе из межзвездной среды частицы противоположного знака, и ее заряд быстро станет нулевым. Оставшийся стационарный объект либо будет невращающейся "шварцшильдовой черной дырой", которая характеризуется только массой, либо вращающейся "керровской черной дырой", которая характеризуется массой и моментом импульса. Единственность указанных выше типов стационарных черных дыр была доказана в рамках общей теории относительности В. Израэлем, Б. Картером, С. Хокингом и Д. Робинсоном. Согласно общей теории относительности, пространство и время искривляются гравитационным полем массивных тел, причем наибольшее искривление происходит вблизи черных дыр. Когда физики говорят об интервалах времени и пространства, они имеют в виду числа, считанные с каких-либо физических часов и линеек. Например, роль часов может играть молекула с определенной частотой колебаний, количество которых между двумя событиями можно назвать "интервалом времени". Замечательно, что гравитация действует на все физические системы одинаково: все часы показывают, что время замедляется, а все линейки - что пространство растягивается вблизи черной дыры. Это означает, что черная дыра искривляет вокруг себя геометрию пространства и времени. Вдали от черной дыры это искривление мало, а вблизи так велико, что лучи света могут двигаться вокруг нее по окружности. Вдали от черной дыры ее поле тяготения в точности описывается теорией Ньютона для тела такой же массы, но вблизи гравитация становится значительно сильнее, чем предсказывает ньютонова теория. Любое тело, падающее на черную дыру, задолго до пересечения горизонта событий будет разорвано на части мощными приливными гравитационными силами, возникающими из-за разницы притяжения на разных расстояниях от центра. Черная дыра всегда готова поглотить вещество или излучение, увеличив этим свою массу. Ее взаимодействие с окружающим миром определяется простым принципом Хокинга: площадь горизонта событий черной дыры никогда не уменьшается, если не учитывать квантового рождения частиц. Дж. Бекенстейн в 1973 предположил, что черные дыры подчиняются тем же физическим законам, что и физические тела, испускающие и поглощающие излучение (модель "абсолютно черного тела"). Под влиянием этой идеи Хокинг в 1974 показал, что черные дыры могут испускать вещество и излучение, но заметно это будет лишь в том случае, если масса самой черной дыры относительно невелика. Такие черные дыры могли рождаться сразу после Большого взрыва, с которого началось расширение Вселенной. Массы этих первичных черных дыр должны быть не более 1015 г (как у небольшого астероида), а размер 10-15 м (как у протона или нейтрона). Мощное гравитационное поле вблизи черной дыры рождает пары частица-античастица; одна из частиц каждой пары поглощается дырой, а вторая испускается наружу. Черная дыра с массой 1015 г должно вести себя как тело с температурой 1011 К. Идея об "испарении" черных дыр полностью противоречит классическому представлению о них как о телах, не способных излучать.
Поиск черных дыр. Расчеты в рамках общей теории относительности Эйнштейна указывают лишь на возможность существования черных дыр, но отнюдь не доказывают их наличия в реальном мире; открытие настоящей черной дыры стало бы важным шагом в развитии физики. Поиск изолированных черных дыр в космосе безнадежно труден: мы не сможем заметить маленький темный объект на фоне космической черноты. Но есть надежда обнаружить черную дыру по ее взаимодействию с окружающими астрономическими телами, по ее характерному влиянию на них. Сверхмассивные черные дыры могут находиться в центрах галактик, непрерывно пожирая там звезды. Сконцентрировавшись вокруг черной дыры, звезды должны образовать центральные пики яркости в ядрах галактик; их поиски сейчас активно ведутся. Другой метод поиска состоит в измерении скорости движения звезд и газа вокруг центрального объекта в галактике. Если известно их расстояние от центрального объекта, то можно вычислить его массу и среднюю плотность. Если она существенно превосходит плотность, возможную для звездных скоплений, то полагают, что это черная дыра. Этим способом в 1996 Дж.Моран с коллегами определили, что в центре галактики NGC 4258, вероятно, находится черная дыра с массой 40 млн. солнечных. Наиболее перспективным является поиск черной дыры в двойных системах, где она в паре с нормальной звездой может обращаться вокруг общего центра масс. По периодическому доплеровскому смещению линий в спектре звезды можно понять, что она обращается в паре с неким телом и даже оценить массу последнего. Если эта масса превышает 3 массы Солнца, а заметить излучение самого тела не удается, то очень возможно, что это черная дыра. В компактной двойной системе черная дыра может захватывать газ с поверхности нормальной звезды. Двигаясь по орбите вокруг черной дыры, этот газ образует диск и, приближаясь по спирали к черной дыре, сильно нагревается и становится источником мощного рентгеновского излучения. Быстрые флуктуации этого излучения должны указывать, что газ стремительно движется по орбите небольшого радиуса вокруг крохотного массивного объекта. С 1970-х годов обнаружено несколько рентгеновских источников в двойных системах с явными признаками присутствия черных дыр. Самой перспективной считается рентгеновская двойная V 404 Лебедя, масса невидимого компонента которой оценивается не менее чем в 6 масс Солнца. Другие замечательные кандидаты в черные дыры находятся в двойных рентгеновских системах Лебедь X-1, LMCX-3, V 616 Единорога, QZ Лисички, а также в рентгеновских новых Змееносец 1977, Муха 1981 и Скорпион 1994. За исключением LMCX-3, расположенной в Большом Магеллановом Облаке, все они находятся в нашей Галактике на расстояниях порядка 8000 св. лет от Земли.
См. также
КОСМОЛОГИЯ ;
ТЯГОТЕНИЕ ;
ГРАВИТАЦИОННЫЙ КОЛЛАПС ;
ОТНОСИТЕЛЬНОСТЬ ;
ВНЕАТМОСФЕРНАЯ АСТРОНОМИЯ .
ЛИТЕРАТУРА
Черепащук А.М. Массы черных дыр в двойных системах. Успехи физических наук, т. 166, с. 809, 1996

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "ЧЕРНАЯ ДЫРА" в других словарях:

    ЧЕРНАЯ ДЫРА, локализованный участок космического пространства, из которого не может вырваться ни вещество, ни излучение, иными словами, первая космическая скорость превосходит скорость света. Граница этого участка называется горизонтом событий.… … Научно-технический энциклопедический словарь

    Космич. объект, возникающий в результате сжатия тела гравитац. силами до размеров, меньших его гравитационного радиуса rg=2g/c2 (где М масса тела, G гравитац. постоянная, с численное значение скорости света). Предсказание о существовании во… … Физическая энциклопедия

    Сущ., кол во синонимов: 2 звезда (503) неизвестность (11) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

Черные дыры — единственные космические тела, способные притягивать силой гравитации свет. Они же являются самыми большими объектами Вселенной. Мы вряд ли в ближайшее время узнаем, что происходит возле их горизонта событий (известного как «точка невозврата»). Это самые таинственные места нашего мира, о которых, несмотря на десятилетия исследований, до сих пор известно очень мало. В этой статье собраны 10 фактов, которые можно назвать наиболее интригующими.

Черные дыры не втягивают в себя материю

Многие представляют черную дыру своеобразным «космическим пылесосом», втягивающим в себя окружающее пространство. На самом деле, черные дыры — это обычные космические объекты, обладающие исключительно сильным гравитационным полем.

Если бы на месте Солнца возникла черная дыра таких же размеров, Земля не была бы втянута внутрь, она вращалась бы по той же орбите, что и сегодня. Расположенные рядом с черными дырами звезды теряют часть массы в виде звездного ветра (это происходит в процессе существования любой звезды) и черные дыры поглощают только эту материю.

Существования черных дыр было предсказано Карлом Шварцшильдом

Карл Шварцшильд был первым, кто применил общую теорию относительности Эйнштейна, для того, чтобы обосновать существование «точки невозврата». Сам Эйнштейн не задумывался о черных дырах, хотя его теория позволяет предсказать их существование.

Шварцшильд сделал свое предположение в 1915 году, сразу вслед за тем, как Эйнштейн опубликовал общую теорию относительности. Тогда же возник термин «радиус Шварцшильда» - это величина, которая показывает, как сильно вам придется сжать объект, чтобы он стал черной дырой.

Теоретически, черной дырой может стать все, что угодно, при достаточной степени сжатия. Чем плотнее объект, тем более сильное гравитационное поле он создает. Например, Земля стала бы черной дырой, если бы ее массой обладал объект величиной с арахис.

Черные дыры могут порождать новые вселенные


Мысль о том, что черные дыры могут порождать новые вселенные кажется абсурдной (тем более, что мы все еще не уверены в существовании других вселенных). Тем не менее, подобные теории активно разрабатываются учеными.

Очень упрощенная версия одной из этих теорий заключается в следующем. Наш мир обладает исключительно благоприятными условиями для появления в нем жизни. Если бы какие-либо из физических констант изменились хотя бы чуть-чуть, нас бы не было в этом мире. Сингулярность черных дыр отменяет обычные законы физики и может (по крайней мере, в теории) породить новую вселенную, которая будет отличаться от нашей.

Черные дыры могут превратить вас (и все, что угодно) в спагетти


Черные дыры растягивают предметы, которые находятся рядом с ними. Эти предметы начинают напоминать спагетти (есть даже специальный термин - «спагеттификация»).

Это происходит благодаря тому, как работает сила притяжения. В настоящий момент ваши ноги находятся к центру Земли ближе, чем голова, поэтому они притягиваются сильнее. На поверхности черной дыры разница в силе притяжении начинает работать против вас. Ноги притягиваются к центру черной дыры все быстрее, так, что верхняя половина туловища не успевает за ними. Результат: спагеттификация!

Черные дыры испаряются со временем


Черные дыры не только поглощают звездный ветер, но и испаряются. Это явление было открыто в 1974 году и было названо излучением Хокинга (по имени Стивена Хокинга, сделавшего открытие).

Со временем черная дыра может отдать всю свою массу в окружающее пространство вместе с этим излучением и исчезнуть.

Черные дыры замедляют время вблизи себя


По мере приближения к горизонту событий время замедляется. Чтобы понять, почему это происходит, нужно обратиться к «парадоксу близнецов», мысленному эксперименту, часто используемому для иллюстрации основных положений общей теории относительности Эйнштейна.

Один из братьев-близнецов остается на Земле, а второй улетает в космическое путешествие, двигаясь со скоростью света. Вернувшийся на Землю близнец обнаруживает, что его брат постарел больше, чем он, потому что при движении на скорости, близкой к скорости света, время идет медленнее.

Приближаясь к горизонту событий черной дыры, вы будете двигаться с такой высокой скоростью, что время для вас замедлится.

Черные дыры являются самыми совершенными энергетическими установками


Черные дыры генерируют энергию лучше, чем Солнце и другие звезды. Это связано с материей, вращающейся вокруг них. Преодолевая горизонт событий на огромной скорости, материя на орбите черной дыры разогревается до крайне высоких температур. Это называется излучением абсолютно черного тела.

Для сравнения, при ядерном синтезе в энергию превращается 0,7% материи. Вблизи черной дыры энергией становятся 10% материи!

Черные дыры искривляют пространство рядом с собой

Пространство можно представить себе как растянутую резиновую пластинку с нарисованными на ней линиями. Если на пластинку положить какой-нибудь объект, она изменит свою форму. Так же работают и черные дыры. Их экстремальная масса притягивает к себе все, включая свет (лучи которого, продолжая аналогию, можно было бы назвать линиями на пластинке).

Черные дыры ограничивают количество звезд во Вселенной


Звезды возникают из газовых облаков. Для того, чтобы началось формирование звезды, облако должно остыть.

Излучение абсолютно черных тел мешает газовым облакам остывать и предотвращает появление звезд.

Теоретически, любой объект может стать черной дырой


Единственное отличие нашего Солнца от черной дыры — сила гравитации. В центре черной дыры она намного сильнее, чем в центре звезды. Если бы наше Солнце было сжато до примерно пяти километров в диаметре, оно могло бы быть черной дырой.

Теоретически, черной дырой может стать все, что угодно. На практике же мы знаем, что черные дыры возникают только в результате коллапса огромных звезд, превышающих Солнце по массе в 20-30 раз.




Ты, наверное, видел фантастические фильмы, где герои, путешествуя в космосе, попадают в другую вселенную? Чаще всего дверкой в иной мир становятся загадочные космические черные дыры. Оказывается, в этих историях есть доля правды. Так утверждают ученые.

Когда в самом центре звезды - в её ядре, заканчивается топливо, все её частички становятся очень тяжелыми. И тогда, вся планета обрушивается в центр себя. Это вызывает мощную ударную волну, которая разрывает внешнюю, ещё горящую, оболочку звезды и она взрывается ослепительной вспышкой. Одна чайная ложка маленькой потухшей звездочки весит несколько миллиардов тонн. Такая звезда называется нейтронной . А если звезда больше нашего солнца в двадцать-тридцать раз ее разрушение приводит к образованию самого странного явления во вселенной - черной дыры .

Притяжение в Черной дыре настолько сильное, что захватывает в себя планеты, газы и даже свет. Черные дыры невидимы, их можно найти лишь по огромной воронке из космических тел, летящих в неё. Только вокруг некоторых дыр образуется яркое сияние. Ведь скорость вращения очень велика, частички небесных тел нагреваются до миллионов градусов и ярко светятся

Космическая черная дыра притягивает все объекты, закручивая их по спирали. Приближаясь к черной дыре, объекты начинают ускоряться и вытягиваться, словно огромные спагетти. Сила притяжения постепенно растет и в какой-то момент становится настолько чудовищной, что ничто уже не может преодолеть её. Эта-то граница называется горизонтом событий. Любое событие, которое произойдёт за ним - останется невидимым навсегда.

Ученые предполагают, что черные дыры могут создавать в космосе туннели - «кротовые норы». Если в неё попадешь, то сможешь пройти сквозь пространство и очутиться в другой Вселенной, где существует противоположная белая дыра. Может когда-нибудь раскроется эта тайна и на мощных космических кораблях люди будут путешествовать в других измерениях.