Научиться составлять ионно молекулярные уравнения. Молекулярные, полные и краткие ионные уравнения

>> Химия: Ионные уравнения

Ионные уравнения

Как вам уже известно из предыдущих уроков химии, большая часть химических реакций происходит в растворах. А так как все растворы электролитов включают ионы, то можно говорить о том, что реакции в растворах электролитов сводятся к реакциям между ионами.

Вот такие реакции, которые происходят между ионами, носят название ионных реакций. А ионные уравнения – это, как раз и есть уравнения этих реакций.

Как правило, ионные уравнения реакций получают из молекулярных уравнений, но это происходит при соблюдении таких правил:

Во-первых, формулы слабых электролитов, а также нерастворимых и малорастворимых веществ, газов, оксидов и т.д. в виде ионов не записывают, исключением из этого правила является ион HSO−4, и то в разбавленном виде.

Во-вторых, в виде ионов, как правило, представляют формулы сильных кислот, щелочей, а также растворимых в воде солей. Так же следует отметить, что такая формула, как Са(ОН)2 представлена в виде ионов, в том случае, если используется известковая вода. Если же используется известковое молоко, которое содержит нерастворимые частицы Ca(OH)2, то формула в виде ионов, также не записывается.

При составлении ионных уравнений, как правило, используют полное ионное и сокращенное, то есть краткое ионное уравнения реакции. Если рассматривать ионное уравнение, которое имеет сокращенный вид, то в нем мы не наблюдаем ионов, то есть они отсутствуют обеих частях полного ионного уравнения.

Давайте рассмотрим на примерах, как записываются молекулярные, полные и сокращенные ионные уравнения:

Поэтому следует помнить, что формулы веществ, которые не распадаются, а также нерастворимые и газообразные, при составлении ионных уравнений принято записывать в молекулярном виде.

Также, следует помнить, что в том случае, если вещество выпадает в осадок, то рядом с такой формулой изображают направленную вниз стрелку (↓). Ну, а в том случае, когда в ходе реакции выделяется газообразное вещество, то рядом с формулой должен стоять такой значок, как стрелка направленная вверх ().

Давайте более подробно рассмотрим на примере. Если у нас есть раствор сульфата натрия Na2SO4, и мы к нему добавим раствор хлорида бария ВаСl2 (рис. 132), то увидим, что у нас образовался белый осадок сульфата бария BaSO4.

Посмотрите внимательно на изображение, на котором показано взаимодействие сульфата натрия и хлорида бария:



Теперь давайте запишем молекулярное уравнение реакции:

Ну, а сейчас давайте перепишем это уравнение, где будут изображены сильные электролиты в виде ионов, а реакции, которые уходят из сферы, представлены в виде молекул:

Перед нами записано полное ионное уравнение реакции.

Теперь попробуем убрать из одной м другой части равенства одинаковые ионы, то есть, те ионы, которые не принимают участия в реакции 2Na+ и 2Сl, то у нас получится сокращённое ионное уравнение реакции, которое будет иметь такой вид:


Из этого уравнения мы видим что вся сущность данной реакции сводится к взаимодействию ионов бария Ва2+ и сульфат-ионов

и что в результате образуется осадок BaSO4, даже не зависимо от того, в состав каких электролитов входили эти ионы до реакции.

Как решать ионные уравнения

И напоследок, давайте подведем итоги нашего урока и определим, как же нужно решать ионные уравнения. Мы с вами уже знаем, что все реакции, которые происходят в растворах электролитов между ионами, являются ионными реакциями. Эти реакции принято решать или описывать с помощью ионных уравнений.

Также, следует помнить, что все те соединения, которые относятся к летучим, трудно растворимым или малодиссоциированным, находят решение в молекулярной форме. Также, следует не забывать, что в том случае, когда при взаимодействии растворов электролитов не образуется ни одного из вышеперечисленных видов соединения, то это означает, что реакции практически не протекают.

Правила решения ионных уравнений

Для наглядного примера возьмем такое образование труднорастворимого соединения, как:

Nа2SО4 + ВаСl2 = ВаSО4 + 2NаСl

В ионном виде это выражение будет иметь вид:

2Nа+ +SО42- + Ва2+ + 2Сl- = BаSО4 + 2Nа+ + 2Сl-

Так как мы с вами наблюдаем, что в реакцию вступили лишь ионы бария и сульфат-ионы, а остальные ионы не прореагировали и их состояние осталось прежним. Из этого следует, что мы можем это уравнение упростить и записать в сокращенном виде:

Ва2+ + SО42- = ВаSО4

Теперь вспомним, что нам следует предпринять при решении ионных уравнений:

Во-первых, необходимо исключить из обеих частей уравнения одинаковые ионы;

Во-вторых, не следует забывать о том, что сумма электрических зарядов уравнения должна быть одинаковой, и в его правой части, и также в левой.

Достаточно часто школьникам и студентам приходится составлять т. н. ионные уравнения реакций. В частности, именно этой теме посвящена задача 31, предлагаемая на ЕГЭ по химии. В данной статье мы подробно обсудим алгоритм написания кратких и полных ионных уравнений, разберем много примеров разного уровня сложности.

Зачем нужны ионные уравнения

Напомню, что при растворении многих веществ в воде (и не только в воде!) происходит процесс диссоциации - вещества распадаются на ионы. Например, молекулы HCl в водной среде диссоциируют на катионы водорода (H + , точнее, H 3 O +) и анионы хлора (Cl -). Бромид натрия (NaBr) находится в водном растворе не в виде молекул, а в виде гидратированных ионов Na + и Br - (кстати, в твердом бромиде натрия тоже присутствуют ионы).

Записывая "обычные" (молекулярные) уравнения, мы не учитываем, что в реакцию вступают не молекулы, а ионы. Вот, например, как выглядит уравнение реакции между соляной кислотой и гидроксидом натрия:

HCl + NaOH = NaCl + H 2 O. (1)

Разумеется, эта схема не совсем верно описывает процесс. Как мы уже сказали, в водном растворе практически нет молекул HCl, а есть ионы H + и Cl - . Так же обстоят дела и с NaOH. Правильнее было бы записать следующее:

H + + Cl - + Na + + OH - = Na + + Cl - + H 2 O. (2)

Это и есть полное ионное уравнение . Вместо "виртуальных" молекул мы видим частицы, которые реально присутствуют в растворе (катионы и анионы). Не будем пока останавливаться на вопросе, почему H 2 O мы записали в молекулярной форме. Чуть позже это будет объяснено. Как видите, нет ничего сложного: мы заменили молекулы ионами, которые образуются при их диссоциации.

Впрочем, даже полное ионное уравнение не является безупречным. Действительно, присмотритесь повнимательнее: и в левой, и в правой частях уравнения (2) присутствуют одинаковые частицы - катионы Na + и анионы Cl - . В процессе реакции эти ионы не изменяются. Зачем тогда они вообще нужны? Уберем их и получим краткое ионное уравнение:

H + + OH - = H 2 O. (3)

Как видите, все сводится к взаимодействию ионов H + и OH - c образованием воды (реакция нейтрализации).

Все, полное и краткое ионные уравнения записаны. Если бы мы решали задачу 31 на ЕГЭ по химии, то получили бы за нее максимальную оценку - 2 балла.


Итак, еще раз о терминологии:

  • HCl + NaOH = NaCl + H 2 O - молекулярное уравнение ("обычное" уравнения, схематично отражающее суть реакции);
  • H + + Cl - + Na + + OH - = Na + + Cl - + H 2 O - полное ионное уравнение (видны реальные частицы, находящиеся в растворе);
  • H + + OH - = H 2 O - краткое ионное уравнение (мы убрали весь "мусор" - частицы, которые не участвуют в процессе).

Алгоритм написания ионных уравнений

  1. Составляем молекулярное уравнение реакции.
  2. Все частицы, диссоциирующие в растворе в ощутимой степени, записываем в виде ионов; вещества, не склонные к диссоциации, оставляем "в виде молекул".
  3. Убираем из двух частей уравнения т. н. ионы-наблюдатели, т. е. частицы, которые не участвуют в процессе.
  4. Проверяем коэффициенты и получаем окончательный ответ - краткое ионное уравнение.

Пример 1 . Составьте полное и краткое ионные уравнения, описывающие взаимодействие водных растворов хлорида бария и сульфата натрия.

Решение . Будем действовать в соответствии с предложенным алгоритмом. Составим сначала молекулярное уравнение. Хлорид бария и сульфат натрия - это две соли. Заглянем в раздел справочника "Свойства неорганических соединений" . Видим, что соли могут взаимодействовать друг с другом, если в ходе реакции образуется осадок. Проверим:

Упражнение 2 . Дополните уравнения следующих реакций:

  1. KOH + H 2 SO 4 =
  2. H 3 PO 4 + Na 2 O=
  3. Ba(OH) 2 + CO 2 =
  4. NaOH + CuBr 2 =
  5. K 2 S + Hg(NO 3) 2 =
  6. Zn + FeCl 2 =

Упражнение 3 . Напишите молекулярные уравнения реакций (в водном растворе) между: а) карбонатом натрия и азотной кислотой, б) хлоридом никеля (II) и гидроксидом натрия, в) ортофосфорной кислотой и гидроксидом кальция, г) нитратом серебра и хлоридом калия, д) оксидом фосфора (V) и гидроксидом калия.

Искренне надеюсь, что у вас не возникло проблем с выполнением этих трех заданий. Если это не так, необходимо вернуться к теме "Химические свойства основных классов неорганических соединений".

Как превратить молекулярное уравнение в полное ионное уравнение

Начинается самое интересное. Мы должны понять, какие вещества следует записывать в виде ионов, а какие - оставить в "молекулярной форме". Придется запомнить следующее.

В виде ионов записывают:

  • растворимые соли (подчеркиваю, только соли хорошо растворимые в воде);
  • щелочи (напомню, что щелочами называют растворимые в воде основания, но не NH 4 OH);
  • сильные кислоты (H 2 SO 4 , HNO 3 , HCl, HBr, HI, HClO 4 , HClO 3 , H 2 SeO 4 , ...).

Как видите, запомнить этот список совсем несложно: в него входят сильные кислоты и основания и все растворимые соли. Кстати, особо бдительным юным химикам, которых может возмутить тот факт, что сильные электролиты (нерастворимые соли) не вошли в этот перечень, могу сообщить следующее: НЕвключение нерастворимых солей в данный список вовсе не отвергает того, что они являются сильными электролитами.

Все остальные вещества должны присутствовать в ионных уравнениях в виде молекул. Тем требовательным читателям, которых не устраивает расплывчатый термин "все остальные вещества", и которые, следуя примеру героя известного фильма, требуют "огласить полный список" даю следующую информацию.

В виде молекул записывают:

  • все нерастворимые соли;
  • все слабые основания (включая нерастворимые гидроксиды, NH 4 OH и сходные с ним вещества);
  • все слабые кислоты (H 2 СO 3 , HNO 2 , H 2 S, H 2 SiO 3 , HCN, HClO, практически все органические кислоты...);
  • вообще, все слабые электролиты (включая воду!!!);
  • оксиды (всех типов);
  • все газообразные соединения (в частности, H 2 , CO 2 , SO 2 , H 2 S, CO);
  • простые вещества (металлы и неметаллы);
  • практически все органические соединения (исключение - растворимые в воде соли органических кислот).

Уф-ф, кажется, я ничего не забыл! Хотя проще, по-моему, все же запомнить список N 1. Из принципиально важного в списке N 2 еще раз отмечу воду.


Давайте тренироваться!

Пример 2 . Составьте полное ионное уравнение, описывающие взаимодействие гидроксида меди (II) и соляной кислоты.

Решение . Начнем, естественно, с молекулярного уравнения. Гидроксид меди (II) - нерастворимое основание. Все нерастворимые основания реагируют с сильными кислотами с образованием соли и воды:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O.

А теперь выясняем, какие вещества записывать в виде ионов, а какие - в виде молекул. Нам помогут приведенные выше списки. Гидроксид меди (II) - нерастворимое основание (см. таблицу растворимости), слабый электролит. Нерастворимые основания записывают в молекулярной форме. HCl - сильная кислота, в растворе практически полностью диссоциирует на ионы. CuCl 2 - растворимая соль. Записываем в ионной форме. Вода - только в виде молекул! Получаем полное ионное уравнение:

Сu(OH) 2 + 2H + + 2Cl - = Cu 2+ + 2Cl - + 2H 2 O.

Пример 3 . Составьте полное ионное уравнение реакции диоксида углерода с водным раствором NaOH.

Решение . Диоксид углерода - типичный кислотный оксид, NaOH - щелочь. При взаимодействии кислотных оксидов с водными растворами щелочей образуются соль и вода. Составляем молекулярное уравнение реакции (не забывайте, кстати, о коэффициентах):

CO 2 + 2NaOH = Na 2 CO 3 + H 2 O.

CO 2 - оксид, газообразное соединение; сохраняем молекулярную форму. NaOH - сильное основание (щелочь); записываем в виде ионов. Na 2 CO 3 - растворимая соль; пишем в виде ионов. Вода - слабый электролит, практически не диссоциирует; оставляем в молекулярной форме. Получаем следующее:

СO 2 + 2Na + + 2OH - = Na 2+ + CO 3 2- + H 2 O.

Пример 4 . Сульфид натрия в водном растворе реагирует с хлоридом цинка с образованием осадка. Составьте полное ионное уравнение данной реакции.

Решение . Сульфид натрия и хлорид цинка - это соли. При взаимодействии этих солей выпадает осадок сульфида цинка:

Na 2 S + ZnCl 2 = ZnS↓ + 2NaCl.

Я сразу запишу полное ионное уравнение, а вы самостоятельно проанализируете его:

2Na + + S 2- + Zn 2+ + 2Cl - = ZnS↓ + 2Na + + 2Cl - .

Предлагаю вам несколько заданий для самостоятельной работы и небольшой тест.

Упражнение 4 . Составьте молекулярные и полные ионные уравнения следующих реакций:

  1. NaOH + HNO 3 =
  2. H 2 SO 4 + MgO =
  3. Ca(NO 3) 2 + Na 3 PO 4 =
  4. CoBr 2 + Ca(OH) 2 =

Упражнение 5 . Напишите полные ионные уравнения, описывающие взаимодействие: а) оксида азота (V) с водным раствором гидроксида бария, б) раствора гидроксида цезия с иодоводородной кислотой, в) водных растворов сульфата меди и сульфида калия, г) гидроксида кальция и водного раствора нитрата железа (III).

Тема: Химическая связь. Электролитическая диссоциация

Урок: Составление уравнений реакций ионного обмена

Составим уравнение реакции между гидроксидом железа (III) и азотной кислотой.

Fe(OH) 3 + 3HNO 3 = Fe(NO 3) 3 + 3H 2 O

(Гидроксид железа (III) является нерастворимым снованием, поэтому не подвергается . Вода - малодиссоциируемое вещество, на ионы в растворе практически недиссоциировано.)

Fe(OH) 3 + 3H + + 3NO 3 - = Fe 3+ + 3NO 3 - + 3H 2 O

Зачеркнем одинаковое количество нитрат-анионов слева и справа, запишем сокращенное ионное уравнение:

Fe(OH) 3 + 3H + = Fe 3+ + 3H 2 O

Данная реакция протекает до конца, т.к. образуется малодиссоциируемое вещество - вода.

Составим уравнение реакции между карбонатом натрия и нитратом магния.

Na 2 CO 3 + Mg(NO 3) 2 = 2NaNO 3 + MgCO 3 ↓

Запишем данное уравнение в ионной форме:

(Карбонат магния является нерастворимым в воде веществом, следовательно, на ионы не распадается.)

2Na + + CO 3 2- + Mg 2+ + 2NO 3 - = 2Na + + 2NO 3 - + MgCO 3 ↓

Зачеркнем одинаковое количество нитрат-анионов и катионов натрия слева и справа, запишем сокращенное ионное уравнение:

CO 3 2- + Mg 2+ = MgCO 3 ↓

Данная реакция протекает до конца, т.к. образуется осадок - карбонат магния.

Составим уравнение реакции между карбонатом натрия и азотной кислотой.

Na 2 CO 3 + 2HNO 3 = 2NaNO 3 + CO 2 + H 2 O

(Углекислый газ и вода - продукты разложения образующейся слабой угольной кислоты.)

2Na + + CO 3 2- + 2H + + 2NO 3 - = 2Na + + 2NO 3 - + CO 2 + H 2 O

CO 3 2- + 2H + = CO 2 + H 2 O

Данная реакция протекает до конца, т.к. в результате нее выделяется газ и образуется вода.

Составим два молекулярных уравнения реакций, которым соответствует следующее сокращенное ионное уравнение: Ca 2+ + CO 3 2- = CaCO 3 .

Сокращенное ионное уравнение показывает сущность реакции ионного обмена. В данном случае можно сказать, что для получения карбоната кальция необходимо, чтобы в состав первого вещества входили катионы кальция, а в состав второго - карбонат-анионы. Составим молекулярные уравнения реакций, удовлетворяющих этому условию:

CaCl 2 + K 2 CO 3 = CaCO 3 ↓ + 2KCl

Ca(NO 3) 2 + Na 2 CO 3 = CaCO 3 ↓ + 2NaNO 3

1. Оржековский П.А. Химия: 9-й класс: учеб. для общеобраз. учрежд. / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. - М.: АСТ: Астрель, 2007. (§17)

2. Оржековский П.А. Химия: 9-ый класс: учеб для общеобр. учрежд. / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. - М.: Астрель, 2013. (§9)

3. Рудзитис Г.Е. Химия: неорган. химия. Орган. химия: учеб. для 9 кл. / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, ОАО «Московские учебники», 2009.

4. Хомченко И.Д. Сборник задач и упражнений по химии для средней школы. - М.: РИА «Новая волна»: Издатель Умеренков, 2008.

5. Энциклопедия для детей. Том 17. Химия / Глав. ред. В.А. Володин, вед. науч. ред. И. Леенсон. - М.: Аванта+, 2003.

Дополнительные веб-ресурсы

1. Единая коллекция цифровых образовательных ресурсов (видеоопыты по теме): ().

2. Электронная версия журнала «Химия и жизнь»: ().

Домашнее задание

1. Отметьте в таблице знаком «плюс» пары веществ, между которыми возможны реакции ионного обмена, идущие до конца. Составьте уравнения реакций в молекулярном, полном и сокращенном ионном виде.

Реагирующие вещества

K 2 CO 3

AgNO 3

FeCl 3

HNO 3

CuCl 2

2. с. 67 №№ 10,13из учебника П.А. Оржековского «Химия: 9-ый класс» / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. - М.: Астрель, 2013.

При нейтрализации любой сильной кислоты любым сильным основанием на каждый моль образующейся воды выделяется около теплоты:

Это говорит о том, что подобные реакции сводятся к одному процессу. Уравнение этого процесса мы получим, если рассмотрим подробнее одну из приведенных реакций, например, первую. Перепишем ее уравнение, записывая сильные электролиты в ионной форме, поскольку они существуют в растворе в виде ионов, а слабые - в молекулярной, поскольку они находятся в растворе преимущественно в виде молекул (вода - очень слабый электролит, см. § 90):

Рассматривая получившееся уравнение, видим, что в ходе реакции ионы и не претерпели изменений. Поэтому перепишем уравнение еще раз, исключив эти ионы из обеих частей уравнения. Получим:

Таким образом, реакции нейтрализации любой сильной кислоты любым сильным основанием сводятся к одному и тому же процессу - к образованию молекул воды из ионов водорода и гидроксид-ионов. Ясно, что тепловые эффекты этих реакций тоже должны быть одинаковы.

Строго говоря, реакция образования воды из ионов обратима, что можно выразить уравнением

Однако, как мы увидим ниже, вода - очень слабый электролит и диссоциирует лишь в ничтожно малой степени. Иначе говоря, равновесие между молекулами воды и ионами сильно смещено в сторону образования молекул. Поэтому практически реакция нейтрализации сильной кислоты сильным основанием протекает до конца.

При смешивании раствора какой-либо соли серебра с соляной кислотой или с раствором любой ее соли всегда образуется характерный белый творожистый осадок хлорида серебра:

Подобные реакции также сводятся к одному процессу. Для того чтобы получить его ионно-молекулярное уравнение, перепишем, например, уравнение первой реакции, записывая сильные электролиты, как и в предыдущем примере, в ионной форме, а вещество, находящееся в осадке, в молекулярной:

Как видно, ионы и не претерпевают изменений в ходе реакции. Поэтому исключим их и перепишем уравнение еще раз:

Это и есть ионно-молекулярное уравнение рассматриваемого процесса.

Здесь также надо иметь в виду, что осадок хлорида серебра находится в равновесии с ионами и в растворе, так что процесс, выраженный последним уравнением, обратим:

Однако, вследствие малой растворимости хлорида серебра, это равновесие очень сильно смещено вправо. Поэтому можно считать, что реакция образования из ионов практически доходит до конца.

Образование осадка будет наблюдаться всегда, когда в одном растворе окажутся в значительной концентрации ионы и . Поэтому с помощью ионов серебра можно обнаружить присутствие в растворе ионов и, наоборот, с помощью хлорид-ионов - присутствие ионов серебра; ион может служить реактивом на ион , а ион - реактивом на ион .

В дальнейшем мы будем широко пользоваться ионно-молекулярной формой записи уравнений реакций с участием электролитов.

Для составления ионно-молекулярных уравнений надо знать, какие соли растворимы в воде и какие практически нерастворимы. Общая характеристика растворимости в воде важнейших солей приведена в табл. 15.

Таблица 15. Растворимость важнейших солей в воде

Ионно-молекулярные уравнения помогают понять особенности протекания реакций между электролитами. Рассмотрим в качеству примера несколько реакций, протекающих с участием слабых кислот и оснований.

Как уже говорилось, нейтрализация любой сильной кислоты любым сильным основанием сопровождается одним и тем же тепловым эффектом, так как она сводится к одному и тому же процессу - образованию молекул воды из ионов водорода и гидроксид-иона.

Однако при нейтрализации сильной кислоты слабым основанием, слабой кислоты сильным или слабым основанием тепловые эффекты различны. Напишем ионно-молекулярные уравнения подобных реакций.

Нейтрализация слабой кислоты (уксусной) сильным основанием (гидроксидом натрия):

Здесь сильные электролиты - гидроксид натрия и образующаяся соль, а слабые - кислота и вода:

Как видно, не претерпевают изменении в ходе реакции только ионы натрия. Поэтому ионно-молекулярное уравнение имеет вид:

Нейтрализация сильной кислоты (азотной) слабым основанием (гидроксидом аммония):

Здесь в виде ионов мы должны записать кислоту и образующуюся соль, а в виде молекул - гидроксид аммония и воду:

Не претерпевают изменений ионы . Опуская их, получаем ионно-молекулярное уравнение:

Нейтрализация слабой кислоты (уксусной) слабым основанием (гидроксидом аммония):

В этой реакции все вещества, кроме образующейся слабые электролиты. Поэтому ионно-молекулярная форма уравнения имеет вид:

Сравнивая между собой полученные ионно-молекулярные уравнения, видим, что все они различны. Поэтому понятно, что неодинаковы и теплоты рассмотренных реакций.

Как уже указывалось, реакции нейтрализации сильных кислот сильными основаниями, в ходе которых ионы водорода и гидроксид-ионы соединяются в молекулу воды, протекают практически до конца. Реакции же нейтрализации, в которых хотя бы одно из исходных веществ - слабый электролит и при которых молекулы малоднссоциирующих веществ имеются не только в правой, но и в левой части ионно-молекулярного уравнения, протекают не до конца.

Они доходят до состояния равновесия, при котором соль сосуществует с кислотой и основанием, от которых она образована. Поэтому уравнения подобных реакций правильнее записывать как обратимые реакции.

Химические свойства кислот и оснований.

Химические свойства ОСНОВАНИЙ:

1. Действие на индикаторы: лакмус - синий, метилоранж - жёлтый, фенолфталеин - малиновый,
2. Основание + кислота = Соли + вода Примечание:реакция не идёт, если и кислота, и щёлочь слабые. NaOH + HCl = NaCl + H2O
3. Щёлочь + кислотный или амфотерный оксид = соли + вода
2NaOH + SiO2 = Na2SiO3 + H2O
4. Щёлочь + соли = (новое)основание + (новая) соль прим-е:исходные вещества должны быть в растворе, а хотя бы 1 из продуктов реакции выпасть в осадок или мало растворяться. Ba(OH)2 + Na2SO4 = BaSO4+ 2NaOH
5.Слабые основания при нагреве разлагаются: Cu(OH)2+Q=CuO + H2O
6.При нормальных условиях невозможно получить гидроксиды серебра и ртути, вместо них в реакции появляются вода и соответствующий оксид: AgNO3 + 2NaOH(p) = NaNO3+Ag2O+H2O

Химические свойства КИСЛОТ:
Взаимодействие с оксидами металлов с образованием соли и воды:
CaO + 2HCl(разб.) = CaCl2 + H2O
Взаимодействие с амфотерными оксидами с образованием соли и воды:
ZnO+2HNO3=ZnNO32+H2O
Взаимодействие со щелочами с образованием соли и воды (реакция нейтрализации):
NaOH + HCl(разб.) = NaCl + H2O
Взаимодействие с нерастворимыми основаниями с образованием соли и воды, если полученная соль растворима:
CuOH2+H2SO4=CuSO4+2H2O
Взаимодействие с солями, если выпадает осадок или выделяется газ:
Сильные кислоты вытесняют более слабые из их солей:
K3PO4+3HCl=3KCl+H3PO4
Na2CO3 + 2HCl(разб.) = 2NaCl + CO2 + H2O
Металлы, стоящие в ряду активности до водорода, вытесняют его из раствора кислоты (кроме азотной кислоты HNO3 любой концентрации и концентрированной серной кислоты H2SO4), если образующаяся соль растворима:
Mg + 2HCl(разб.) = MgCl2 + H2
С азотной кислотой и концентрированной серной кислотами реакция идёт иначе:
Mg + 2H2SO4 = MgSO4 + 2H2O + SO4
Для органических кислот характерна реакция этерификации (взаимодействие со спиртами с образованием сложного эфира и воды):
CH3COOH + C2H5OH = CH3COOC2H5 + H2O

Номенклатура и химические свойства солей.

Химические свойства СОЛЕЙ
Определяются свойствами катионов и анионов, входящих в их состав.

Соли взаимодействуют с кислотами и основаниями, если в результате реакции получается продукт, который выходит из сферы реакции (осадок, газ, мало диссоциирующие вещества, например, вода):
BaCl2(тверд.) + H2SO4(конц.) = BaSO4↓ + 2HCl
NaHCO3 + HCl(разб.) = NaCl + CO2 + H2O
Na2SiO3 + 2HCl(разб.) = SiO2↓ + 2NaCl + H2O
Соли взаимодействуют с металлами, если свободный металл находится левее металла в составе соли в электрохимическом ряде активности металлов:
Cu+HgCl2=CuCl2+Hg
Соли взаимодействуют между собой, если продукт реакции выходит из сферы реакции; в том числе эти реакции могут проходить с изменением степеней окисления атомов реагентов:
CaCl2 + Na2CO3 = CaCO3↓ + 2NaCl
NaCl(разб.) + AgNO3 = NaNO3 +AgCl↓
3Na2SO3 + 4H2SO4(разб.) + K2Cr2O7 = 3Na2SO4 + Cr2(SO4)3 + 4H2O + K2SO4
Некоторые соли разлагаются при нагревании:
CuCO3=CuO+CO2
NH4NO3 = N2O + 2H2O
NH4NO2 = N2 + 2H2O


Комплексные соединения: номенклатура, состав и химические свойства.

Ионообменные реакции с участием осадков и газов.

Молекулярные и молекулярно-ионные уравнения.

Это реакции, идущие в растворах между ионами. Сущность их выражается ионными уравнениями, которые записываются так:
сильные электролиты пишутся в виде ионов, а слабые электролиты, газы, осадки (твердые вещества) – в виде молекул, независимо от того в какой части уравнения они находятся: левой или правой.

1. AgNO 3 + HCl = AgCl↓ + HNO 3 – молекулярное уравнение;
Ag + + NO 3 – + H + + Cl – = AgCl↓ + H + + NO 3 – – ионное уравнение.

Если одинаковые ионы в обеих частях уравнения сократить, то получится краткое, или сокращенное, ионное уравнение:

Ag + + Cl – = AgCl↓.

CaCO 3 ↓ + 2H + + 2Cl – = Ca 2+ + Cl – + CO 2 + H 2 O,
CaCO 3 ↓ + 2H + = Ca 2+ + CO 2 + H 2 O.

4. CH 3 COOH + NH 4 OH = CH 3 COONH 4 + H 2 O,
CH 3 COOH + NH 4 OH = CH 3 COO – + NH 4 + +H 2 O,
CH 3 COOH и NH 4 OH – слабые электролиты.

5. CH 3 COONH 4 + NaOH = CH 3 COONa + NH 4 OH NH 3
H 2 O

CH 3 COO – +NH 4 + + Na + + OH – = CH 3 COO – + Na + + NH 3 + H 2 O,
CH 3 COO – + NH 4 + + OH – = CH3COO – + NH 3 + H 2 O.

Реакции в растворах электролитах идут практически до конца в сторону образования осадков, газов и слабых электролитов.

4.2) Молекулярное уравнение это обычное уравнение, которыми мы часто пользуемся на уроке.
Например: NaOH+HCl -> NaCl+H2O
CuO+H2SO4 -> CuSO4+H2O
H2SO4+2KOH -> K2SO4+2H2O и т.д
Ионное уравнение.
Некоторые вещества растворяются в воде, образуя при этом ионы. Эти вещества можно записать с помощью ионов. А малорастворимые или труднорастворимые оставляем в первоначальном виде. Это и есть ионное уравнение.
Например: 1) CaCl2+Na2CO3 -> NaCl+CaCO3-молекулярное уравнение
Ca+2Cl+2Na+CO3 -> Na+Cl+CaCO3-ионное уравнение
Cl и Na остались такими же, какими они были до реакции, т.н. они не приняли в нём участие. И их можно убрать и из правой, и из левой частей уравнения. Тогда получается:
Ca+CO3 -> CaCO3
2) NaOH+HCl -> NaCl+H2O-молекулярное уравнение
Na+OH+H+Cl -> Na+Cl+H2O-ионное уравнение
Na и Cl остались такими же, какими они были до реакции, т.н. они не приняли в нём участие. И их можно убрать и из правой, и из левой частей уравнения. Тогда получается?
OH+H -> H2O