Из чего образуются липиды. Разница между простыми и сложными липидами

Липиды, жиры и липоиды. Функции липидов

Липиды (от греч. липос – жир) включают жиры и жироподобные вещества. Содержатся почти во всех клетках - от 3 до 15%, а в клетках подкожной жировой клетчатки их до 50 %.

Особенно много липидов в печени, почках, нервной ткани (до 25 %), крови, семенах и плодах некоторых растений (29-57%). Липиды имеют разную структуру, но общие некоторые свойства. Эти органические вещества не растворяются в воде, но хорошо растворяются в органических растворителях: эфире, бензоле, бензине, хлороформе и др. Это свойство обусловлено тем, что в молекулах липидов преобладают неполярные и гидрофобные структуры. Все липиды можно условно разделить на жиры и липоиды.

Жиры

Наиболее распространенными являются жиры (нейтральные жиры, триглицериды ), представляющие собой сложные соединения трехатомного спирта глицерина и высокомолекулярных жирных кислот. Остаток глицерина - это вещество, хорошо растворимое в воде. Остатки жирных кислот - это углеводородные цепочки, почти нерастворимые в воде. При попадании капли жира в воду к ней обращается глицериновая часть молекул, а цепочки жирных кислот выступают из воды. В состав жирных кислот входит карбоксильная группа (-СООН). Она легко ионизируется. С ее помощью молекулы жирных кислот соединяются с другими молекулами.

Все жирные кислоты делятся на две группы - насыщенные и ненасыщенные . Ненасыщенные жирные кислоты не имеют двойных (ненасыщенных) связей, насыщенные - имеют. К насыщенным жирным кислотам относятся пальмитиновая, масляная, лауриновая, стеариновая и т. п. К ненасыщенным - олеиновая, эруковая, линолевая, линоленовая и т. п. Свойства жиров определяются качественным составом жирных кислот и их количественным соотношением.

Жиры, которые содержат насыщенные жирные кислоты, имеют высокую температуру плавления. По консистенции они, как правило, твердые. Это жиры многих животных, кокосовое масло. Жиры, которые имеют в своем составе ненасыщенные жирные кислоты, имеют низкую температуру плавления. Такие жиры преимущественно жидкие. Растительные жиры жидкой консистенции нарываются маслами . К этим жирам относят рыбий жир, подсолнечное, хлопчатниковое, льняное, конопляное масла и др.

Липоиды

Липоиды могут образовывать сложные комплексы с белками, углеводами и другими веществами. Можно выделить такие соединения:

  1. Фосфолипиды . Они являются сложными соединениями глицерина и жирных кислот и содержат остаток фосфорной кислоты. Молекулы всех фосфолипидов имеют полярную головку и неполярный хвост, образованный двумя молекулами жирных кислот. Основные компоненты клеточных мембран.
  2. Воски . Это сложные липиды, состоящие из более сложных спиртов, чем глицерин, и жирных кислот. Выполняют защитную функцию. Животные и растения используют их как водоотталкивающие и защищающие от высыхания вещества. Воски покрывают поверхность листьев растений, поверхность тела членистоногих, живущих на суше. Воски выделяют сальные железы млекопитающих, копчиковая железа птиц. Из воска пчелы строят соты.
  3. Стероиды (от греч. стереос – твердый). Для этих липидов характерно наличие не углеводных, а более сложных структур. К стероидам относятся важные вещества организма: витамин D, гормоны коры надпочечных желез, половых желез, желчные кислоты, холестерин.
  4. Липoпротеиды и гликолипиды . Липопротеиды состоят из белков и липидов, глюкопротеиды – из липидов и углеводов. Гликолипидов много в составе тканей мозга и нервных волокон. Липопротеиды входят в состав многих клеточных структур, обеспечивают их прочность и стабильность.

Функции липидов

Жиры являются главным типом запасающих веществ. Они запасаются в семени, подкожной жировой клетчатке, жировой ткани, жировом теле насекомых. Запасы жиров значительно превышают запасы углеводов.

Структурная . Липиды входят в состав клеточных мембран всех клеток. Упорядоченное размещение гидрофильных и гидрофобных концов молекул имеет большое значение для избирательной проницаемости мембран.

Энергетическая . Обеспечивают 25-30% всей энергии, необходимой организму. При распаде 1 г жира выделяется 38,9 кДж энергии. Это почти вдвое больше в сравнении с углеводами и белками. У перелетных птиц и животных, впадающих в спячку, липиды – единственный источник энергии.

Защитная . Слой жира защищает нежные внутренние органы от ударов, сотрясений, повреждений.

Теплоизоляционная . Жиры плохо проводят тепло. Под кожей некоторых животных (особенно морских) они откладываются и образуют слои. Например, кит имеет слой подкожного жира около 1 м, что позволяет ему жить в холодной воде.

У многих млекопитающих есть специальная жировая ткань, которая называется бурым жиром. Она имеет такую окраску, потому что богата митохондриями красно-бурой окраски, так как в них содержатся железосодержащие белки. В этой ткани вырабатывается тепловая энергия, необходимая животным в условиях низких

температур. Бурый жир окружает жизненно важные органы (сердце, головной мозг и т. п.) или лежит на пути крови, которая к ним приливает, и, таким образом, направляет тепло к ним.

Поставщики эндогенной воды

При окислении 100 г жиров выделяется 107 мл воды. Благодаря этой воде существует много животных пустынь: верблюды, тушканчики и т. п. Животные во время спячки также вырабатывают эндогенную воду из жиров.

Жирообразное вещество покрывает поверхность листьев, не дает им намокать во время дождей.

Некоторые липиды имеют высокую биологическую активность: ряд витаминов (A, D и т. п.), некоторые гормоны (эстрадиол, тестостерон), простагландины.

Липиды - жироподобные органические соединения, нерастворимые в воде, но хорошо растворимые в неполярных растворителях (эфире, бензине, бензоле, хлороформе и др.). Липиды принадлежат к простейшим биологическим молекулам. В химическом отношении большинство липидов представляет собой сложные эфиры высших карбоновых кислот и ряда спиртов. Наиболее известны среди них жиры . Каждая молекула жира образована молекулой трехатомного спирта глицерола и присоединенными к ней эфирными связями трех молекул высших карбоновых кислот. Согласно принятой номенклатуре жиры называют триацилглицеролами .

Когда жиры гидролизуются (т.е. расщепляются из-за внедрения H + и OH - в эфирные связи), они распадаются на глицерол и свободные высшие карбоновые кислоты, каждая из которых содержит четное число атомов углерода.

Атомы углерода в молекулах высших карбоновых кислот могут быть соединены друг с другом как простыми, так и двойными связями. Среди предельных (насыщенных) высших карбоновых кислот наиболее часто в состав жиров входят:

  • пальмитиновая СН 3 - (СН 2) 14 - СООН или С 15 Н 31 СООН;
  • стеариновая СН 3 - (СН 2) 16 - СООН или С 17 Н 35 СООН;
  • арахиновая СН 3 - (СН 2) 18 - СООН или С 19 Н 39 СООН;

среди непредельных:

  • олеиновая СН 3 - (СН 2) 7 - СН = СН - (СН 2) 7 - СООН или С 17 Н 33 СООН;
  • линолевая СН 3 - (СН 2) 4 - СН = СН - СН 2 - СН - (СН 2) 7 - СООН или С 17 Н 31 СООН;
  • линоленовая СН 3 - СН 2 - СН = СН - СН 2 - СН = СН - СН 2 - СН = СН - (СН 2) 7 - СООН или С 17 Н 29 СООН.

Степень ненасыщенности и длина цепей высших карбоновых кислот (т.е. число атомов углерода) определяет физические свойства того или иного жира.

Жиры, содержащие короткие и ненасыщенные углеродные цепи в остатках жирных кислот, имеют низкую температуру плавления. При комнатной температуре это жидкости (масла) либо мазеподобные вещества. И наоборот, жиры с длинными и насыщенными цепями высших карбоновых кислот при комнатной температуре представляют собой твердые вещества. Вот почему при гидрировании (насыщении кислотных цепей атомами водорода по двойным связям) жидкое арахисовое масло, например, превращается в однородное мазеобразное арахисовое масло, а подсолнечное масло - в маргарин. В организме животных, живущих в холодном климате, например у рыб арктических морей, обычно содержится больше ненасыщенных триацилглицеролов, чем у обитателей южных широт. По этой причине тело их остается гибким и при низких температурах.

Различают:

Фосфолипиды - амфифильные соединения, т. е. имеют полярные головки и неполярные хвосты. Группы, образующие полярную головку, гидрофильны (растворимы в воде), а неполярные хвостовые группы гидрофобны (нерастворимы в воде).

Двойственная природа этих липидов обусловливает их ключевую роль в организации биологических мембран.

Воска - сложные эфиры одноатомных (с одной гидроксильной группой) высокомолекулярных (имеющих длинный углеродный скелет) спиртов и высших карбоновых кислот.

Еще одну группу липидов составляют стероиды . Эти вещества построены на основе спирта холестерола. Стероиды очень плохо растворимы в воде и не содержат высших карбоновых кислот.

К ним относятся желчные кислоты, холестерол, половые гормоны, витамин D и др.

К стероидам близки терпены (ростовые вещества растений - гиббереллины; фитол, входящий в состав хлорофилла каротиноиды - фотосинтетичские пигменты; эфирные масла растений - ментол, камфора и др.).

Липиды могут образовывать комплексы с другими биологическими молекулами.

Липопротеины - сложные образования, содержащие триацилглицеролы, холестерол и белки, причем последние не имеют ковалентных связей с липидами.

Гликолипиды - это группа липидов, построенных на основе спирта сфингозина и содержащих кроме остатка высших карбоновых кислот одну или несколько молекул сахаров (чаще всего глюкозу или галактозу).

Функции липидов

Структурная . Фосфолипиды вместе с белками образуют биологические мембраны. В состав мембран входят также стеролы.

Энергетическая . При окислении 1 г жиров высвобождается 38,9 кДж энергии, которая идет на образование АТФ. В форме липидов хранится значительная часть энергетических запасов организма, которые расходуются при недостатке питательных веществ. Животные, впадающие в спячку, и растения накапливают жиры и масла и расходуют их на поддержание процессов жизнедеятельности. Высокое содержание липидов в семенах обеспечивает энергией развитие зародыша и проростка, пока он не перейдет к самостоятельному питанию. Семена многих растений (кокосовая пальма, клещевина, подсолнечник, соя, рапс и др.) служат сырьем для получения масла промышленным способом.

Защитная и теплоизоляционная . Накапливаясь в подкожной жировой клетчатке и вокруг некоторых органов (почки, кишечник), жировой слой защищает организм от механических повреждений. Кроме того, благодаря низкой теплопроводности слой подкожного жира помогает сохранить тепло, что позволяет, например, многим животным обитать в условиях холодного климата. У китов, кроме того, он играет еще и другую роль - способствует плавучести.

Смазывающая и водоотталкивающая . Воска покрывают кожу, шерсть, перья, делают их более эластичными и предохраняют от влаги. Восковым налетом покрыты листья и плоды растений; воск используется пчелами в строительстве сот.

Регуляторная . Многие гормоны являются производными холестерола, например половые (тестостерон у мужчин и прогестерон у женщин) и кортикостероиды (альдостерон).

Метаболическая . Производные холестерола, витамин D играют ключевую роль в обмене кальция и фосфора. Желчные кислоты участвуют в процессах пищеварения (эмульгирование жиров) и всасывания высших карбоновых кислот.

Липиды являются источником метаболической воды. При окислении жира образуется примерно 105 г воды. Эта вода очень важна для некоторых обитателей пустынь, в частности для верблюдов, способных обходиться без воды в течение 10-12 суток: жир, запасенный в горбе, используется именно на эти цели. Необходимую для жизнедеятельности воду медведи, сурки и другие животные в спячке получают в результате окисления жира.

ЛИПИДЫ - это разнородная группа природных соединений, полностью или почти полностью нерастворимых в воде, но растворимых в органических растворителях и друг в друге, дающих при гидролизе высокомолекулярные жирные кислоты.

В живом организме липиды выполняют разнообразные функции.

Биологические функции липидов:

1) Структурная

Структурные липиды образуют сложные комплексы с белками и углеводами, из которых построены мембраны клетки и кле­точных структур, участвуют в разнообразных процессах, протекаю­щих в клетке.

2) Запасная (энергетическая)

Запасные липиды (в основном жиры) являются энергетическим резервом организма и участвуют в обменных процессах. В растениях они накапливаются главным образом в плодах и семенах, у животных и рыб - в подкожных жировых тканях и тканях, окру­жающих внутренние органы, а также печени, мозговой и нервной тка­нях. Содержание их зависит от многих факторов (вида, возраста, питания и т. д.) и в отдельных случаях составляет 95-97% всех вы­деляемых липидов.

Калорийность углеводов и белков: ~ 4 ккал/грамм.

Калорийность жира: ~ 9 ккал/грамм.

Преимуществом жира как энергетического резерва, в отличие от углеводов, является гидрофобность – он не связан с водой. Это обеспечивает компактность жировых запасов - они хранятся в безводной форме, занимая малый объем. В среднем, у человека запас чистых триацилглицеринов составляет примерно 13 кг. Этих запасов могло бы хватить на 40 дней голодания в условиях умеренной физической нагрузки. Для сравнения: общие запасы гликогена в организме – примерно 400 гр.; при голодании этого количества не хватает даже на одни сутки.

3) Защитная

Подкожные жировые ткани предо­храняют животных от охлаждения, а внутренние органы - от меха­нических повреждений.

Образование запасов жира в организме человека и некоторых животных рассматривается как приспособление к нерегулярному питанию и к обитанию в холодной среде. Особенно большой запас жира у животных, впадающих в длительную спячку (медведи, сурки) и приспособленных к обитанию в условиях холода (моржи, тюлени). У плода жир практически отсутствует, и появляется только перед рождением.

Особую группу по своим функциям в живом организме составляют защитные липиды растений - воски и их производные, покрывающие поверхность листьев, семян и плодов.

4) Важный компонент пищевого сырья

Липиды являются важным компонентом пищи, во многом опреде­ляя ее пищевую ценность и вкусовое достоинство. Исключительно велика роль липидов в разнообразных процессах пищевой техноло­гии. Порча зерна и продуктов его переработки при хранении (прогоркание) в первую очередь связана с изменением его липидного комп­лекса. Липиды, выделенные из ряда растений и животных, - основное сырье для получения важнейших пищевых и технических про­дуктов (растительного масла, животных жиров, в том числе сливоч­ного масла, маргарина, глицерина, жирных кислот и др.).

2 Классификация липидов

Общепринятой классификации липидов не существует.

Наибо­лее целесообразно классифицировать липиды в зависимости от их хи­мической природы, биологических функций, а также по отношению к некоторым реагентам, например, к щелочам.

По химическому составу липиды обычно делят на две группы: простые и сложные.

Простые липиды – сложные эфиры жирных кислот и спиртов. К ним относятся жиры , воски и стероиды .

Жиры – эфиры глицерина и высших жирных кислот.

Воски – эфиры высших спиртов алифатического ряда (с длинной углеводной цепью 16-30 атомов С) и высших жирных кислот.

Стероиды – эфиры полициклических спиртов и высших жирных кислот.

Сложные липиды – помимо жирных кислот и спиртов содержат другие компоненты различной химической природы. К ним относятся фосфолипиды и гликолипиды .

Фосфолипиды – это сложные липиды, в которых одна из спиртовых групп связана не с ЖК, а с фосфорной кислотой (фосфорная кислота может быть соединена с дополнительным соединением). В зависимости от того, какой спирт входит в состав фосфолипидов, они подразделяются на глицерофосфолипиды (содержат спирт глицерин) и сфингофосфолипиды (содержат спирт сфингозин).

Гликолипиды – это сложные липиды, в которых одна из спиртовых групп связана не с ЖК, а с углеводным компонентом. В зависимости от того, какой углеводный компонент входит в состав гликолипидов, они подразделяются на цереброзиды (в качестве углеводного компонента содержат какой-либо моносахарид, дисахарид или небольшой нейтральный гомоолигосахарид) и ганглиозиды (в качестве углеводного компонента содержат кислый гетероолигосахарид).

Иногда в самостоятельную группу липидов (минорные липиды ) выделяют жирораство­римые пигменты, стерины, жирорастворимые витамины. Некоторые из этих соединений могут быть отнесены к группе простых (нейтраль­ных) липидов, другие - сложных.

По другой классификации липиды в зависимости от их отношения к щелочам делят на две большие группы: омыляемые и неомыляемые . К группе омыляемых липидов относятся простые и сложные липиды, которые при взаимодействии со щелочами гидролизуются с образова­нием солей высокомолекулярных кислот, получивших название «мы­ла». К группе неомыляемых липидов относятся соединения, не подвергающиеся щелочному гидролизу (стерины, жирорастворимые витамины, простые эфиры и т. д.).

По своим функциям в живом организме липиды делятся на струк­турные, запасные и защитные.

Структурные липиды - главным образом фосфоли­пиды.

Запасные липиды - в основном жиры.

Защитные липиды растений - воски и их производные, покрывающие поверхность листьев, семян и плодов, животных – жиры.

ЖИРЫ

Химическое название жиров - ацилглицерины. Это сложные эфиры глицерина и высших жирных кислот. "Ацил-" - это означает "остаток жирных кислот".

В зависимости от количества ацильных радикалов жиры разделяются на моно-, ди- и триглицериды. Если в составе молекулы 1 радикал жирных кислот, то жир называется МОНОАЦИЛГЛИЦЕРИНОМ. Если в составе молекулы 2 радикала жирных кислот, то жир называется ДИАЦИЛГЛИЦЕРИНОМ. В организме человека и животных преобладают ТРИАЦИЛГЛИЦЕРИНЫ (содержат три радикала жирных кислот).

Три гидроксила глицерина могут быть этерифицированы либо только одной кислотой, например пальмитиновой или олеиновой, либо двумя или тремя различными кислотами:

Природные жиры содержат главным образом смешанные триглице-риды, включающие остатки различных кислот.

Так как спирт во всех природных жирах один и тот же - глицерин, наблюдаемые между жирами раз­личия обусловлены исключительно составом жирных кислот.

В жирах обнаружено свыше четырехсот карбоновых кислот раз­личного строения. Однако большинство из них присутствует лишь в незначительном количестве.

Кислоты, содержащиеся в природных жирах, являются монокарбоновыми, постро­ены из неразветвленных углеродных цепей, содержащих чет­ное число углеродных атомов. Кислоты, содержащие нечетное число атомов углерода, имеющие разветвленную углеродную цепочку или содержащие циклические фрагменты, присутствуют в незначительных количествах. Исключение составляют изовалериановая кислота и ряд циклических кислот, содержащихся в не­которых весьма редко встречающихся жирах.

Наиболее распространенные в жирах кислоты содержат от 12 до 18 атомов угле­рода, они часто называются жирными кислотами. В состав многих жиров входят в небольшом количестве низкомолекулярные кислоты (С 2 -С 10). Кислоты с числом атомов углерода выше 24 присут­ствуют в восках.

В состав глицеридов наиболее распространенных жиров в значительном количестве входят ненасыщенные кислоты, содержащие 1-3 двойные связи: олеиновая, линолевая и линоленовая. В жирах животных присутствует арахидоновая кислота, содержащая четыре двойные связи, в жирах рыб и морских животных обнаружены кислоты с пятью, шестью и более двойными связями. Большинство ненасыщенных кислот липидов имеет цис-конфигурацию, двойные связи у них изолированы или разделены метиленовой (-СН 2 -) груп­пой.

Из всех непредельных кислот, содержащихся в природных жирах, наиболее распространена олеиновая кислота. В очень многих жирах олеиновая кислота составляет больше полови­ны от общей массы кислот, и лишь в немногих жирах ее содер­жится меньше 10%. Две другие непредельные кислоты - линолевая и линоленовая - также очень широко распростра­нены, хотя они присутствуют в значительно меньшем количестве, чем олеиновая кислота. В заметных количествах линолевая и линоленовая кислоты содержатся в растительных мас­лах; для животных организмов они являются незаменимыми кислотами.

Из предельных кислот пальмитиновая кислота почти так же широко распространена, как и олеиновая. Она присутству­ет во всех жирах, причем некоторые содержат ее 15-50% от общего содержания кислот. Широко распространены стеари­новая и миристиновая кислоты. Стеариновая кислота содер­жится в большом количестве (25% и более) только в запасных жирах некоторых млекопитающих (например, в овечьем жи­ре) и в жирах некоторых тропических растений, например в масле какао.

Целесообразно разделять кислоты, содержащиеся в жи­рах, на две категории: главные и второстепенные кислоты. Главными кислотами жира считаются кислоты, содержание которых в жире превышает 10%.

Физические свойства жиров

Как правило, жиры не выдерживают перегонки и разлага­ются, даже если их перегоняют при пониженном давлении.

Температура плавления, а соответственно и консистенция жиров зависят от строения кислот, входящих в их состав. Твердые жиры, т. е. жиры, плавящиеся при сравнительно вы­сокой температуре, состоят преимущественно из глицеридов предельных кислот (стеариновая, пальмитиновая), а в маслах, плавящихся при более низкой температуре и представляющих собой густые жидкости, содержатся значительные количества глицеридов непредельных кислот (олеиновая, линолевая, ли-ноленовая).

Так как природные жиры представляют собой сложные смеси смешанных глицеридов, они плавятся не при определен­ной температуре, а в определенном температурном интервале, причем предварительно они размягчаются. Для характеристи­ки жиров применяется, как правило, температура затверде­вания, которая не совпадает с температурой плавления - она несколько ниже. Некоторые природные жиры - твердые ве­щества; другие же - жидкости (масла). Температура затверде­вания изменяется в широких пределах: -27 °С у льняного мас­ла, -18 °С у подсолнечного, 19-24 °С у коровьего и 30-38 °С у говяжьего сала.

Температура затвердевания жира обусловлена характером составляющих его кислот: она тем выше, чем больше содержа­ние предельных кислот.

Жиры растворяются в эфире, полигалогенопроизводных, в сероуглероде, в ароматических углеводородах (бензоле, толу­оле) и в бензине. Твердые жиры трудно растворимы в петролейном эфире; нерастворимы в холодном спирте. Жиры нера­створимы в воде, однако они могут образовывать эмульсии, ко­торые стабилизируются в присутствии таких поверхностно-ак­тивных веществ (эмульгаторов), как белки, мыла и некоторые сульфокислоты, главным образом в слабощелочной среде. При­родной эмульсией жира, стабилизированной белками, являет­ся молоко.

Химические свойства жиров

Жиры вступают во все химические реакции, характерные для сложных эфиров, однако в их химиче­ском поведении имеется ряд особенностей, связанных со строением жирных кислот и глицерина.

Среди химических реакций с участием жиров выделяют несколько типов превращений.

Спасибо

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Липиды в питании

Наряду с белками и углеводами, липиды являются основными пищевыми элементами, из которых состоит значительная часть продуктов питания . Поступление липидов в организм с пищей оказывает значительное влияние на здоровье человека в целом. Недостаточное или избыточное потребление этих веществ может привести к развитию различных патологий.

Большинство людей питаются достаточно разнообразно, и в их организм попадают все необходимые липиды. Следует отметить, что часть этих веществ синтезируется печенью , что отчасти компенсирует их недостаток в пище. Однако существуют и незаменимые липиды, а точнее их компоненты – полиненасыщенные жирные кислоты . Если они не поступают в организм с пищей, со временем это неизбежно приведет к определенным нарушениям.

Большая часть липидов в пище расходуется организмом на выработку энергии. Именно поэтому при голодании человек худеет и слабеет. Лишенный энергии организм начинает расходовать запасы липидов из подкожной жировой клетчатки.

Таким образом, липиды играют очень важную роль в здоровом питании человека. Однако при некоторых заболеваниях или нарушениях их количество должно быть строго ограничено. Об этом пациенты обычно узнают от лечащего врача (как правило, гастроэнтеролога или диетолога ).

Энергетическая ценность липидов и их роль в диете

Энергетическая ценность любой пищи рассчитывается в калориях. Продукт питания можно разложить по его составу на белки, углеводы и липиды, которые составляют вместе основную массу. Каждое из этих веществ в организме распадается с выделением определенного количества энергии. Белки и углеводы усваиваются легче, но при распаде 1 г этих веществ выделяется около 4 Ккал (килокалорий ) энергии. Жиры усваиваются труднее, но при распаде 1 г выделяется около 9 Ккал. Таким образом, энергетическая ценность липидов наиболее высока.

С точки зрения выделения энергии, наибольшую роль играют триглицериды . Насыщенные кислоты, входящие в состав этих веществ, усваиваются организмом на 30 – 40%. Мононенасыщенные и полиненасыщенные жирные кислоты здоровым организмом усваиваются полностью. Достаточное потребление липидов позволяет использовать углеводы и белки в других целях.

Растительные и животные липиды

Все липиды, поступающие в организм с пищей, можно разделить на вещества животного и растительного происхождения. С химической точки зрения, липиды, составляющие эти две группы, различаются по своему составу и структуре. Это объясняется отличиями в функционировании клеток у растений и животных.

Примеры источников липидов растительного и животного происхождения

Каждый источник липидов имеет определенные преимущества и недостатки. Например, в животных жирах содержится холестерин , которого нет в продуктах растительного происхождения. Кроме того, продукты животного происхождения содержат больше липидов, и их выгоднее употреблять с энергетической точки зрения. В то же время, избыток животных жиров повышает риск развития ряда заболеваний, связанных с обменом липидов в организме (атеросклероз , желчекаменная болезнь и др. ). В продуктах растительного происхождения липидов меньше, однако организм не может их синтезировать самостоятельно. Даже небольшое количество морепродуктов, цитрусовых или орехов поставляет достаточно полиненасыщенных жирных кислот, которые жизненно необходимы человеку. В то же время, небольшая доля липидов в растениях не может покрыть полностью энергетические затраты организма. Именно поэтому для сохранения здоровья рекомендуется делать рацион как можно более разнообразным.

Какая суточная потребность организма в липидах?

Липиды являются основными поставщиками энергии в организм, однако их избыток может навредить здоровью. Прежде всего, это касается насыщенных жирных кислот, большая часть которых откладывается в организме и зачастую приводит к ожирению . Оптимальным решением является соблюдение необходимых пропорций между белками, жирами и углеводами. Организм должен получать такое количество калорий, которое он затрачивает в течение дня. Именно поэтому нормы потребления липидов могут быть различными.

На потребность организма в липидах могут влиять следующие факторы:

  • Вес тела. Людям с избыточным весом приходится тратить больше энергии. Если они не собираются худеть, то потребность в калориях и, соответственно, в липидах будет несколько выше. Если же они стремятся сбросить вес, то ограничить, в первую очередь, нужно именно жирную пищу.
  • Нагрузки в течение дня. Люди, выполняющие тяжелую физическую работу, или спортсмены испытывают потребность в большом количестве энергии. Если у среднестатистического человека это 1500 – 2500 калорий, то у шахтеров или грузчиков норма может доходить до 4500 – 5000 калорий в сутки. Разумеется, потребность в липидах также возрастает.
  • Характер питания. В каждой стране и у каждого народа существуют свои традиции в питании. Рассчитывая оптимальную диету , надо учитывать, какие именно продукты обычно потребляет человек. У некоторых народов жирная пища является своеобразной традицией, другие же, наоборот, являются вегетарианцами , и потребление липидов у них сведено к минимуму.
  • Наличие сопутствующих патологий. При ряде нарушений потребление липидов следует ограничить. Прежде всего, речь идет о заболеваниях печени и желчного пузыря, так как именно эти органы отвечают за переваривание и усвоение липидов.
  • Возраст человека. В детском возрасте обмен веществ быстрее, и организм требует больше энергии для нормального роста и развития. Кроме того, у детей обычно не бывает серьезных проблем с желудочно-кишечным трактом, и они хорошо усваивают любую пищу. Следует также учитывать, что грудные дети получают оптимальный набор липидов с грудным молоком . Таким образом, возраст сильно влияет на норму потребления жиров.
  • Пол. Считается, что в среднем мужчина потребляет больше энергии, чем женщина, поэтому норма жиров в питании у мужчин несколько выше. Однако у беременных женщин потребность в липидах возрастает.
Считается, что здоровый взрослый мужчина, работающий 7 – 8 часов в сутки и придерживающийся активного образа жизни, должен потреблять около 2500 калорий в сутки. Жиры обеспечивают поступление примерно 25 - 30% этой энергии, что соответствует 70 – 80 г липидов. Из них насыщенные жирные кислоты должны составлять около 20%, а полиненасыщенные и мононенасыщенные – примерно по 40%. Также рекомендуется отдавать предпочтение липидам растительного происхождения (около 60% от общего количества ).

Самостоятельно человеку трудно произвести необходимые расчеты и учесть все факторы для подбора оптимальной диеты. Для этого лучше обратиться к врачу-диетологу или специалисту по гигиене питания. После непродолжительного опроса и уточнения характера питания они смогут составить оптимальный суточный рацион, которого пациент будет придерживаться в будущем. Также они могут посоветовать конкретные продукты питания, содержащие необходимые липиды.

В каких продуктах в основном содержатся липиды (молоко, мясо и др. )?

В том или ином количестве липиды содержатся практически во всех продуктах питания. Однако в целом продукты животного происхождения более богаты этими веществами. В растениях массовая доля липидов минимальна, однако жирные кислоты, входящие в такие липиды, наиболее важны для организма.

Количество липидов в том или ином продукте обычно указывается на упаковке товара в разделе «пищевая ценность». Большинство производителей обязано информировать потребителей о массовой доле белков, углеводов и жиров. В самостоятельно приготовленной пище количество липидов можно рассчитать с помощью специальных таблиц для диетологов, в которых указаны все основные продукты и блюда.

Массовая доля липидов в основных продуктах питания

В большинстве продуктов растительного происхождения (овощи, фрукты, зелень, корнеплоды ) массовая доля жиров составляет не более 1 – 2%. Исключение составляют цитрусовые, где доля липидов несколько выше, и растительные масла, которые представляют собой концентрат липидов.

Существуют ли незаменимые липиды, и какие их важнейшие источники?

Структурной единицей липидов являются жирные кислоты. Большинство этих кислот может быть синтезировано организмом (в основном – клетками печени ) из других веществ. Однако существует ряд жирных кислот, которые организм не может производить самостоятельно. Таким образом, липиды, содержащие эти кислоты, являются незаменимыми.

Большая часть незаменимых липидов содержится в продуктах питания растительного происхождения. Это мононенасыщенные и полиненасыщенные жирные кислоты. Клетки организма не могут синтезировать эти соединения, так как обмен веществ у животных сильно отличается от такового у растений.

Незаменимые жирные кислоты и их основные источники в питании

Длительное время вышеперечисленные жирные кислоты приравнивались по значимости для организма к витаминам . Достаточное потребление этих веществ укрепляет иммунитет , ускоряет регенерацию клеток, уменьшает воспалительные процессы, способствует проведению нервных импульсов.

К чему ведет недостаток или избыток липидов в рационе?

Как недостаток, так и избыток липидов в питании могут серьезно повлиять на здоровье организма. В данном случае речь идет не о разовом приеме большого количества жиров (хотя и это может вызвать определенные последствия ), а о систематическом злоупотреблении жирной пище или длительном голодании. В первое время организм вполне способен успешно приспосабливаться к новому режиму питания. Например, при недостатке липидов в пище наиболее важные для организма вещества все равно будут синтезироваться собственными клетками, а энергетические потребности будут покрываться за счет расщепления жировых запасов. При избытке же липидов в питании значительная часть не будет всасываться в кишечнике и покинет организм с фекальными массами, а часть липидов, которые попадут в кровь, трансформируются в жировую ткань. Однако эти механизмы адаптации являются временными. Кроме того, они хорошо работают только в здоровом организме.

Возможные последствия дисбаланса липидов в рационе

Липиды крови и плазмы

Значительная часть липидов присутствует в крови в различной форме. Чаще всего это соединения липидов с другими химическими веществами. Например, триглицериды и холестерин переносятся в основном в виде липопротеинов. Уровень различных липидов в крови можно определить с помощью биохимических анализов крови . Это позволяет выявить ряд нарушений и заподозрить соответствующие патологии.

Триглицериды

Триглицериды выполняют в основном энергетическую функцию. Они попадают в организм с пищей, всасываются в кишечнике и разносятся по организму с кровью в виде различных соединений. Нормальным содержанием считается уровень 0,41 – 1,8 ммоль/л, но он может колебаться в значительных пределах. Например, после употребления большого количества жирной пищи уровень триглицеридов в крови может повыситься в 2 – 3 раза.

Свободные жирные кислоты

Свободные жирные кислоты попадают в кровь в результате распада триглицеридов. В норме они откладываются в жировой ткани. Современные исследования показали взаимосвязь между уровнем свободных жирных кислот в крови и некоторыми патологическими процессами. Например, у людей с высокой концентрацией жирных кислот (натощак ) хуже вырабатывается инсулин , поэтому риск развития сахарного диабета выше. Нормальное содержание жирных кислот в крови у взрослого человека – 0,28 – 0,89 ммоль/л. У детей границы нормы шире (до 1,10 ммоль/л ).

Холестерин

Холестерин является одним из наиболее важных липидов в организме человека. Он входит в состав множества клеточных компонентов и других веществ, влияя на самые разные процессы. Избыток или недостаток этого вещества либо нарушения его усвоения организмом могут привести к развитию тяжелых заболеваний.

В организме человека холестерин выполняет следующие функции:

  • придает жесткость клеточным мембранам;
  • принимает участие в синтезе стероидных гормонов ;
  • входит в состав желчи;
  • участвует в усвоении витамина D ;
  • регулирует проницаемость стенок некоторых клеток.

Липопротеины (липопротеиды ) и их фракции (низкой плотности, высокой плотности и др. )

Термином липопротеины или липопротеиды обозначают группу сложных белковых соединений, которые осуществляют транспорт липидов в крови. Некоторые липопротеины фиксированы в клеточных мембранах и выполняют ряд функций, связанных с обменом веществ в клетке.

Все липопротеины крови разделяют на несколько классов, каждый из которых имеет свои особенности. Основным критерием, по которым отличают липопротеины, является их плотность. По этому показателю все эти вещества подразделяют на 5 групп.

Существуют следующие классы (фракции ) липопротеинов:

  • Высокой плотности. ЛПВП ) принимают участие в переносе липидов от тканей организма к печени. С медицинской точки зрения они считаются полезными, так как за счет маленьких размеров могут проходить сквозь стенки сосудов и «очищать» их от отложений липидов. Таким образом, высокий уровень ЛПВП снижает риск развития атеросклероза.
  • Низкой плотности. ЛПНП ) осуществляют транспорт холестерина и других липидов от печени (места их синтеза ) к тканям. С медицинской точки зрения эта фракция липопротеинов является вредной, так как именно ЛПНП способствуют отложению липидов на стенках сосудов с образованием атеросклеротических бляшек. Высокий уровень ЛПНП сильно повышает риск развития атеросклероза.
  • Средней (промежуточной ) плотности. Липопротеины промежуточной плотности (ЛППП ) не имеют существенного диагностического значения, так как являются промежуточным продуктом обмена липидов в печени. Они также переносят липиды от печени к другим тканям.
  • Очень низкой плотности. ЛОНП ) переносят липиды от печени к тканям. Они также повышают риск развития атеросклероза, но в этом процессе играют второстепенную роль (после ЛПНП ).
  • Хиломикроны. Хиломикроны значительно больше других липопротеинов. Они образуются в стенках тонкого кишечника и переносят липиды, поступающие с пищей к другим органам и тканям. В развитии различных патологических процессов эти вещества не играют значительной роли.
В настоящее время раскрыта биологическая роль и диагностическое значение большинства липопротеинов, но все же существуют некоторые вопросы. Например, не до конца понятны механизмы, повышающие или понижающие уровень той или иной фракции липопротеинов.

Анализ на липиды

В настоящее время существует множество лабораторных анализов, с помощью которых можно определить различные липиды в крови. Обычно для этого берется венозная кровь. Пациента на анализ отправляет лечащий врач. Самые важные липиды (общий холестерин, триглицериды ) определяют в биохимическом анализе крови. Если пациенту необходимо более детальное обследование, врач указывает, какие именно липиды нужно определить. Сам анализ обычно длится несколько часов. Большинство лабораторий выдает результаты на следующий день.

Что такое липидограмма?

Липидограмма представляет собой комплекс лабораторных анализов крови, направленных на выяснение уровня липидов в крови. Это наиболее полезное исследование для пациентов с различными нарушениями обмена липидов, а также для больных с атеросклерозом. Некоторые показатели, входящие в липидограмму, определяются и в биохимическом анализе крови, но в ряде случаев этого может быть недостаточно для постановки точного диагноза. Липидограмму назначает лечащий врач, исходя из симптомов и жалоб пациента. Этот анализ проводит практически любая биохимическая лаборатория.

Липидограмма включает анализы на определение следующих липидов крови:

  • Холестерин. Этот показатель не всегда зависит от образа жизни и питания. Значительную часть холестерина в крови составляет так называемый эндогенный холестерин, который вырабатывается самим организмом.
  • Триглицериды. Уровень триглицеридов обычно растет или понижается пропорционально уровню холестерина. Также он может повышаться после еды.
  • Липопротеины низкой плотности (ЛПНП ). Накопление этих соединений в крови сильно повышает риск развития атеросклероза.
  • Липопротеины высокой плотности (ЛПВП ). Эти соединения способны «очищать» сосуды от избытка холестерина и являются полезными для организма. Низкий уровень ЛПВП говорит о том, что организм плохо усваивает жиры.
  • Липопротеины очень низкой плотности (ЛОНП ). Имеют второстепенное диагностическое значение, но их повышение вместе с ростом уровня ЛПНП обычно говорит об атеросклерозе.
При необходимости в липидограмму могут быть добавлены и другие показатели. На основании результатов лаборатория может выдать, например, коэффициент атерогенности, который отражает риск развития атеросклероза.

Перед сдачей крови на липидограмму следует придерживаться нескольких простых правил. Они помогут избежать значительных колебаний уровня липидов в крови и сделают результаты более достоверными.

Перед сдачей анализа пациенты должны учитывать следующие рекомендации:

  • Вечером перед сдачей анализа кушать можно, но злоупотреблять жирной пищей не стоит. Лучше придерживаться привычного режима питания.
  • За день перед сдачей анализа надо исключить различного рода нагрузки (как физические, так и эмоциональные ), так как они могут привести к распаду запасов жировой ткани в организме и повышению уровня липидов в крови.
  • Утром, непосредственно перед сдачей крови, не следует курить .
  • Регулярный прием ряда препаратов тоже влияет на уровень липидов в крови (противозачаточные препараты , гормональные препараты и др. ). Отменять их не обязательно, но этот факт нужно учитывать при интерпретации результатов.
На основании липидограммы врачи могут поставить правильный диагноз и назначить необходимое лечение.

Нормальный уровень липидов в крови

Границы нормы у всех людей несколько отличаются. Зависит это от пола, возраста, наличия хронических патологий и ряда других показателей. Однако существуют определенные пределы, превышение которых однозначно указывает на наличие проблем. Ниже в таблице приведены общепринятые границы нормы для различных липидов крови.
Границы нормы относительны, и сам пациент не всегда может сделать правильные выводы при интерпретации результатов анализа. Лечащий врач при ознакомлении с результатами обязательно учтет, что во время беременности границы нормы расширяются, как и при голодании. Поэтому паниковать при некоторых отклонениях от нормы не стоит. Окончательное заключение в любом случае должен сделать лечащий врач.

Болезни, связанные с обменом липидов

Существует довольно много заболеваний, которые в той или иной степени связаны с обменом липидов в организме. Часть таких патологий вызывает повышение или понижение различных липидов в крови, что отражается в анализах. Другие патологии являются следствием дисбаланса липидов.

Нарушения обмена липидов (дислипидемии )

Избыток или недостаток липидов в рационе может приводить к разнообразным патологиям. В здоровом организме, нормально усваивающем все поступающие вещества, этот дисбаланс не так влияет на обменные процессы. Например, избыток липидов не всегда приводит к ожирению. Для этого у человека должна быть также генетическая предрасположенность, эндокринные нарушения, либо он должен вести малоподвижный образ жизни. Другими словами, количество липидов в питании в большинстве случаев является лишь одним из многих факторов, влияющих на появление патологии.

Дисбаланс липидов может привести к следующим патологиям:

  • атеросклероз (как следствие – аневризмы , ишемическая болезнь сердца , гипертония или другие проблемы с сердечно-сосудистой системой );
  • проблемы с кожей;
  • проблемы с нервной системой;
  • ряд патологий желудочно-кишечного тракта (панкреатит , желчекаменная болезнь и др. ).
Недостаток липидов в рационе у маленьких детей может отразиться на наборе веса и скорости развития.

Причины повышенного и пониженного уровня липидов

Наиболее распространенной причиной повышенного уровня липидов в анализе крови являются ошибки, допущенные при сдаче крови. Пациенты сдают кровь не натощак, из-за чего содержание липидов не успевает нормализоваться, и врач ошибочно может заподозрить некоторые проблемы. Однако существует множество патологий, которые вызывают нарушения содержания липидов в крови, независимо от питания.

Патологические состояния, связанные с изменением количества липидов в крови, называют дислипидемиями. Их тоже разделяют на несколько видов. Если в крови повышен уровень триглицеридов, говорят о гипертриглицеридемии (синоним – гиперлипемия ). Если же повышается уровень холестерина, говорят о гиперхолестеринемии.

Также все дислипидемии по происхождению разделяют на следующие группы:

  • Первичные. Под первичными дислипидемиями подразумевают в основном генетические заболевания и отклонения. Как правило, они проявляются избытком или недостатком каких-либо ферментов , что и нарушает обмен липидов. В результате понижается или повышается количество этих веществ в крови.
  • Вторичные. Под вторичными дислипидемиями подразумевают патологические состояния, при которых повышение липидов в крови является следствием какой-то другой патологии. Таким образом, лечить нужно, в первую очередь, именно эту патологию, тогда уровень липидов постепенно стабилизируется.
Основной задачей лечащего врача является правильная постановка диагноза, основанная на результатах анализов и симптомах больного. Вторичные дислипидемии более распространены, и их обычно стараются исключить первыми. Первичные дислипидемии встречаются значительно реже, но диагностировать и лечить их значительно труднее.

Различают пять основных типов первичных гиперлипопротеинемий (повышенный уровень липопротеинов ):

  • Гиперхиломикронемия. При данном заболевании в крови растет уровень триглицеридов, в то время как уровень других липидов обычно остается в пределах нормы. У пациентов могут возникать приступообразные боли в животе , но без напряжения мышц брюшного пресса. На коже могут появляться ксантомы (образования коричневого или желтоватого цвета ). Болезнь не ведет к развитию атеросклероза.
  • Семейная гипер-бета-липопротеинемия. При данной патологии растет количество бета-липопротеинов, а иногда и пребета-липопротеинов. В анализе значительно превышен уровень холестерина. Количество триглицеридов может быть в норме или слегка повышено. У больных также появляется ксантоматоз (ксантомы на коже ). Значительно повышается риск атеросклероза. При данном заболевании возможен инфаркт миокарда даже в молодом возрасте.
  • Семейная гиперхолестеринемия с гиперлипемией. В крови значительно повышен уровень и холестерина, и триглицеридов. Ксантомы крупные и появляются после 20 – 25 лет. Повышен риск развития атеросклероза.
  • Гипер-пре-бета-липопротеинемия. В данном случае растет уровень триглицеридов, а уровень холестерина остается в пределах нормы. Болезнь часто сочетается с сахарным диабетом, подагрой или ожирением.
Также иногда встречается эссенциальная гиперлипемия (болезнь Бюргера-Грютца ). Вышеперечисленные болезни диагностируют на основании данных электрофореза . Заподозрить одну из этих патологий можно следующим образом. У здоровых людей после еды с обилием жирной пищи наблюдается липемия (в основном за счет уровня хиломикронов и бета-липопротеинов ), которая исчезает через 5 – 6 часов. Если уровень триглицеридов в крови не спадает, нужно провести анализы для выявления первичных гиперлипопротеинемий.

Также существуют вторичные (симптоматические ) гиперлипопротеинемии при следующих заболеваниях:

  • Сахарный диабет. В данном случае избыток липидов в крови объясняется трансформацией избытка углеводов.
  • Острый панкреатит. При данном заболевании усвоение липидов нарушается, а в крови их уровень растет за счет распада жировой ткани.
  • Гипотиреоз. Болезнь вызвана недостатком гормонов щитовидной железы , которые регулируют в том числе обмен липидов в организме.
  • Внутрипеченочный холестаз и другие патологии печени. Печень принимает участие в синтезе большинства липидов, необходимых организму. При различных гепатитах, нарушениях оттока желчи и других патологиях печени и желчевыводящих протоков уровень липидов в крови может возрастать.
  • Нефротический синдром. Данный синдром развивается при поражении клубочкового аппарата почек . У больных наблюдаются сильные почечные отеки. В крови падает уровень белков, а уровень холестерина значительно повышается.
  • Порфирия. Порфирия является заболеванием с наследственной предрасположенностью. У больных нарушается обмен ряда веществ, в результате чего в крови накапливаются порфирины. Параллельно может повышаться уровень липидов (иногда значительно ).
  • Некоторые аутоиммунные заболевания. При аутоиммунных заболеваниях антитела, производимые организмом, атакуют собственные клетки. В большинстве случаев развиваются хронические воспалительные процессы, с которыми связано повышение уровня липидов.
  • Подагра. При подагре в организме нарушается обмен мочевой кислоты , и она накапливается в виде солей. Отчасти это отражается и на обмене липидов, хотя их уровень в данном случае повышен незначительно.
  • Злоупотребление алкоголем. Злоупотребление алкоголем приводит к патологиям печени и желудочно-кишечного тракта. Может активироваться ряд ферментов, повышающих уровень липидов в крови.
  • Прием некоторых медикаментов. К повышению уровня липидов может привести, например, длительный прием пероральных контрацептивов (противозачаточные средства ). Чаще всего о данном побочном эффекте упоминают в инструкции к соответствующему препарату. Перед сдачей анализа такие препараты принимать не следует либо нужно предупредить об этом лучащего врача, чтобы он правильно интерпретировал результаты анализа.
В подавляющем большинстве случаев причиной стабильно повышенного уровня липидов в крови является одна из вышеперечисленных проблем. Следует также отметить, что повышенный уровень липидов может отмечаться довольно длительное время после серьезных травм или перенесенного инфаркта миокарда.

Также повышенный уровень липопротеинов в крови может наблюдаться при беременности . Такое повышение обычно незначительно. При повышении уровня липидов в 2 – 3 раза выше нормы, нужно рассматривать вероятность беременности в сочетании с другими патологиями, вызывающими повышение уровня липидов.

Какие болезни пищеварительной системы связаны с обменом липидов?

Здоровая пищеварительная система является залогом хорошего усвоения липидов и других питательных веществ. Значительный дисбаланс липидов в пище в течение долгого времени может привести к развитию некоторых патологий желудкаОдной из самых распространенных проблем в кардиологии является атеросклероз. Это заболевание возникает из-за отложения липидов в сосудах (преимущественно в артериях ). В результате этого процесса просвет сосуда сужается и затрудняется ток крови. В зависимости от того, какие артерии поражены атеросклеротическими бляшками, у пациентов могут наблюдаться различные симптомы. Наиболее характерно высокое артериальное давление , ишемическая болезнь сердца (иногда и инфаркт миокарда ), появление аневризм.

Атерогенными липидами называют те вещества, которые ведут к развитию атеросклероза. Следует отметить, что разделение липидов на атерогенные и неатерогенные весьма условно. Помимо химической природы веществ развитию данного заболевания способствует и множество других факторов.

Атерогенные липиды чаще ведут к развитию атеросклероза в следующих случаях:

  • интенсивное курение;
  • наследственность;
  • сахарный диабет;
  • избыточный вес (ожирение );
  • малоподвижный образ жизни (гиподинамия ) и др.
Кроме того, при оценке риска атеросклероза важны не столько потребляемые вещества (триглицериды, холестерин и др. ), а скорее процесс усвоения этих липидов организмом. В крови значительная часть липидов присутствует в виде липопротеинов – соединений липида и белка. Для липопротеинов низкой плотности характерно «оседание» жиров на стенках сосудов с формированием бляшек. Липопротеины же высокой плотности считаются «антиатерогенными», так как способствуют очищению сосудов. Таким образом, при одинаковом рационе у одних людей атеросклероз развивается, а у других – нет. И триглицериды, и насыщенные, и ненасыщенные жирные кислоты могут трансформироваться в атеросклеротические бляшки. Но зависит это от обмена веществ в организме. В целом, однако, считается, что значительный избыток любых липидов в рационе предрасполагает к развитию атеросклероза. Перед применением необходимо проконсультироваться со специалистом.

Органическое вещество, растворимое в органических растворителях; согласно строгому химическому определению, это гидрофобная или амфифильная молекула, полученная путём конденсации тиоэфиров или изопренов .

Энциклопедичный YouTube

    1 / 5

    ✪ Липиды и их роль в жизнедеятельности клетки. Видеоурок по биологии 10 класс

    ✪ Липиды | Биология 10 класс #7 | Инфоурок

    ✪ Липиды (видео 11) | Макромолекулы | Биология

    ✪ 04. Классификация липидов

    ✪ Липиды. Учебный фильм по химии.

    Субтитры

Границы определения

Используемое ранее определение липидов, как группы органических соединений, хорошо растворимых в неполярных органических растворителях (бензол , ацетон , хлороформ) и практически нерастворимых в воде, является слишком расплывчатым. Во-первых, такое определение вместо чёткой характеристики класса химических соединений говорит лишь о физических свойствах. Во-вторых, в настоящее время известно достаточное количество соединений, нерастворимых в неполярных растворителях или же, наоборот, хорошо растворимых в воде, которые, тем не менее, относят к липидам. В современной органической химии определение термина «липиды» основано на биосинтетическом родстве данных соединений - к липидам относят жирные кислоты и их производные . В то же время в биохимии и других разделах биологии к липидам по-прежнему принято относить и гидрофобные или амфифильные вещества другой химической природы . Это определение позволяет включать сюда холестерин , который вряд ли можно считать производным жирной кислоты.

Описание

Липиды - один из важнейших классов сложных молекул , присутствующих в клетках и тканях животных . Липиды выполняют самые разнообразные функции: снабжают энергией клеточные процессы, формируют клеточные мембраны , участвуют в межклеточной и внутриклеточной сигнализации. Липиды служат предшественниками стероидных гормонов , жёлчных кислот , простагландинов и фосфоинозитидов. В крови содержатся отдельные компоненты липидов (насыщенные жирные кислоты , мононенасыщенные жирные кислоты и полиненасыщенные жирные кислоты), триглицериды , холестерин , эфиры холестерина и фосфолипиды . Все эти вещества не растворимы в воде, поэтому в организме имеется сложная система транспорта липидов. Свободные (неэтерифицированные) жирные кислоты переносятся кровью в виде комплексов с альбумином . Триглицериды, холестерин и фосфолипиды транспортируются в форме водорастворимых липопротеидов . Некоторые липиды используются для создания наночастиц , например, липосом . Мембрана липосом состоит из природных фосфолипидов, что определяет их многие привлекательные качества. Они нетоксичны, биодеградируемы, при определённых условиях могут поглощаться клетками, что приводит к внутриклеточной доставке их содержимого. Липосомы предназначены для целевой доставки в клетки препаратов фотодинамической или генной терапии, а также компонентов другого назначения, например, косметического .

Классификация липидов

Классификация липидов, как и других соединений биологической природы, - весьма спорный и проблематичный процесс. Предлагаемая ниже классификация хоть и широко распространена в липидологии, но является далеко не единственной. Она основывается, прежде всего, на структурных и биосинтетических особенностях разных групп липидов.

Простые липиды

Простые липиды - липиды, включающие в свою структуру углерод(С), водород(H) и кислород(O).

Биологические функции

Энергетическая (резервная) функция

Многие жиры используются организмом как источник энергии. При полном окислении 1 г жира выделяется около 9 ккал энергии, примерно вдвое больше, чем при окислении 1 г углеводов (4.1 ккал). Жировые отложения используются в качестве запасных источников питательных веществ, прежде всего животными, которые вынуждены носить свои запасы на себе. Растения чаще запасают углеводы, однако в семенах многих растений высоко содержание жиров (растительные масла добывают из семян подсолнечника, кукурузы, рапса, льна и других масличных растений).

Почти все живые организмы запасают энергию в форме жиров. Существуют две основные причины, по которым именно эти вещества лучше всего подходят для выполнения такой функции. Во-первых, жиры содержат остатки жирных кислот, уровень окисления которых очень низкий (почти такой же как у углеводородов нефти). Поэтому полное окисление жиров до воды и углекислого газа позволяет получить более чем в два раза больше энергии, чем окисление той же массы углеводов. Во-вторых, жиры - гидрофобные соединения, поэтому организм запасая энергию в такой форме, не должен нести дополнительной массы воды необходимой для гидратации, как в случае с полисахаридами, на 1 г которых приходится 2 г воды. Однако триглицериды - это «более медленный» источник энергии, чем углеводы.

Жиры запасаются в форме капель в цитоплазме клетки. У позвоночных имеются специализированные клетки - адипоциты , почти полностью заполненные большой каплей жира. Также богатыми на триглицериды являются семена многих растений. Мобилизация жиров в адипоцитах и клетках прорастающих семян происходит благодаря ферментам липазам , которые расщепляют их до глицерина и жирных кислот.

У людей наибольшее количество жировой ткани находится под кожей (так называемая подкожная клетчатка), особенно в районе живота и молочных желез. Человеку с лёгким ожирением (15-20 кг триглицеридов) таких запасов может хватить для обеспечения себя энергией в течение месяца, в то время как всего запасного гликогена хватит более чем сутки .

Функция теплоизоляции

Жир - хороший теплоизолятор, поэтому у многих теплокровных животных он откладывается в подкожной жировой ткани, уменьшая потери тепла. Особенно толстый подкожный жировой слой характерен для водных млекопитающих (китов, моржей и др.). Но в то же время у животных, обитающих в условиях жаркого климата (верблюды, тушканчики) жировые запасы откладываются на изолированных участках тела (в горбах у верблюда, в хвосте у жирнохвостых тушканчиков) в качестве резервных запасов воды, так как вода - один из продуктов окисления жиров.

Структурная функция

Основными структурными липидами, которые входят в состав мембран животных клеток, являются глицерофосфолипиды, в основном фосфатидилхолин и фосфатидилэтаноламин, а также холестерол, что увеличивает их непроницаемость. Отдельные ткани могут быть выборочно обогащены другими классами мембранных липидов, например нервная ткань содержит большое количество сфингофосфолипидов, в частности сфингомиелина , а также сфингогликолипидов. В мембранах растительных клеток холестерол отсутствует, однако встречается другой стероид - эргостерол. Мембраны тилакоидов содержат большое количество галактолипидов, а также сульфолипиды.

Регуляторная

  • Витамины -липиды ( , , , )
  • Гормональная (стероиды , эйкозаноиды , простагландины и прочие.)
  • Кофакторы (долихол)
  • Сигнальные молекулы (диглицериды, жасмоновая кислота ; МP3-каскад)

Некоторые липиды играют активную роль в регулировании жизнедеятельности отдельных клеток и организма в целом. В частности, к липидам относятся стероидные гормоны, секретируемые половыми железами и корой надпочечников. Эти вещества переносятся кровью по всему организму и влияют на его функционирование.

Среди липидов есть также и вторичные посредники - вещества, участвующие в передаче сигнала от гормонов или других биологически активных веществ внутри клетки. В частности фосфатидилинозитол-4,5-бифосфат (ФИ (4,5) Ф 2) задействован в сигнализировании при участии G-белков , фосфатидилинозитол-3,4,5-трифосфат инициирует образование супрамолекулярных комплексов сигнальных белков в ответ на действие определённых внеклеточных факторов, сфинголипиды, такие как сфингомиелин и церамид, могут регулировать активность протеинкиназы.

Производные арахидоновой кислоты - эйкозаноиды - являются примером паракринных регуляторов липидной природы. В зависимости от особенностей строения эти вещества делятся на три основные группы: простагландины , тромбоксаны и лейкориены. Они участвуют в регуляции широкого спектра физиологических функций, в частности эйкозаноиды необходимы для работы половой системы, для индукции и прохождения воспалительного процесса (в том числе обеспечение таких его аспектов как боль и повышенная температура), для свёртывания крови, регуляции кровяного давления, также они могут быть задействованы в аллергических реакциях .

Защитная (амортизационная)

Толстый слой жира защищает внутренние органы многих животных от повреждений при ударах (например, сивучи при массе до тонны могут прыгать в воду со скал высотой 20-25 м [ ]).

Увеличения плавучести

Суточная потребность взрослого человека в липидах - 70-140 граммов.

Незаменимые жирные кислоты

Печень играет ключевую роль в метаболизме жирных кислот, однако некоторые из них она синтезировать неспособна. Поэтому они называются незаменимыми, к таким в частности относятся ω-3- (линоленовая) и ω-6- (линолевая) полиненасыщенные жирные кислоты, они содержатся в основном в растительных жирах. Линоленовая кислота является предшественником для синтеза двух других ω-3-кислот: эйозапентаэноевой (EPA) и докозагексаэноевой (DHA) . Эти вещества необходимы для работы головного мозга, и положительно влияют на когнитивные и поведенческие функции .

Важно также соотношение ω-6\ω-3-жирных кислот в рационе: рекомендуемые пропорции лежат в пределах от 1:1 до 4:1. Однако исследования показывают, что большинство жителей Северной Америки употребляют в 10-30 раз больше ω-6 жирных кислот, чем ω-3. Такое питание связано с риском возникновения сердечно-сосудистых заболеваний. Зато «средиземноморская диета» считается значительно здоровее, она богата на линоленовую и другие ω-3-кислоты, источником которых являются зелёные растения (например листья салата), рыба, чеснок, целые злаки, свежие овощи и фрукты. Как пищевую добавку, содержащую жирные кислоты ω-3, рекомендуется принимать рыбий жир.

Транс-ненасыщенные жирные кислоты

Большинство природных жиров содержат ненасыщенные жирные кислоты с двойными связями в цис-конфигурации. Если пища, богатая такими жирами, долгое время находится в контакте с воздухом, она горчит. Этот процесс связан с окислительным расщеплением двойных связей, в результате которого образуются альдегиды и карбоновые кислоты с меньшей молекулярной массой, часть из которых является летучими веществами.

Для того чтобы увеличить срок хранения и устойчивость к высоким температурам триглицеридов с ненасыщенными жирными кислотами применяют процедуру частичной гидрогенизации . Следствием этого процесса является превращение двойных связей в одинарные, однако побочным эффектом также может быть переход двойных связей из цис- в транс-конфигурацию . Употребление так называемых «транс-жиров» влечёт повышение содержания липопротеинов низкой плотности («плохой» холестерол) и снижение содержания липопротеинов высокой плотности («хороший» холестерол) в крови, что приводит к увеличению риска возникновения сердечно-сосудистых заболеваний, в частности коронарной недостаточности . Более того «транс-жиры» способствуют воспалительным процессам.

Литература

На иностранных языках

  • Julian N. Kanfer and Sen-itiroh Hakomori, Sphingolipid Biochemistry, vol. 3 of Handbook of Lipid Research (1983)
  • Dennis E. Vance and Jean E. Vance (eds.), Biochemistry of Lipids and Membranes (1985).
  • Donald M. Small, The Physical Chemistry of Lipids, vol. 4 of Handbook of Lipid Research (1986).
  • Robert B. Gennis, Biomembranes: Molecular Structure and Function (1989)
  • Gunstone, F. D., John L. Harwood, and Fred B. Padley (eds.), The Lipid Handbook (1994).
  • Charles R. Scriver, Arthur L. Beaudet, William S. Sly, and David Valle, The Metabolic and Molecular Bases of Inherited Disease (1995).
  • Gunstone, F. D. Fatty acids and lipid chemistry. - London: Blackie Academic and Professional, 1996. 252 pp.
  • Robert M. Bell, John H. Exton, and Stephen M. Prescott (eds.), Lipid Second Messengers, vol. 8 of Handbook of Lipid Research (1996).
  • Christopher K. Mathews, K.E. van Holde, and Kevin G. Ahern, Biochemistry, 3rd ed. (2000).
  • Chapter 12 in «Biochemistry» by Jeremy M. Berg, John L. Tymoczko and Lubert Stryer (2002) W. H. Freeman and Co.
  • Alberts, B., et al. (2004) «Essential Cell Biology, 2nd Edition.» Garland Science.