Как далеко может видеть глаз человека? Географическая дальность видимости предметов Сколько километров видит человеческий глаз.

От наблюдения далеких галактик за световые годы от нас до восприятия невидимых цветов, Адам Хэдхейзи на BBC объясняет, почему ваши глаза могут делать невероятные вещи. Взгляните вокруг. Что вы видите? Все эти цвета, стены, окна, все кажется очевидным, как будто так и должно быть здесь. Мысль о том, что мы все это видим благодаря частицам света - фотонам - которые отскакивают от этих объектов и попадают нам в глаза, кажется невероятной.

Эта фотонная бомбардировка всасывается примерно 126 миллионами светочувствительных клеток. Различные направления и энергии фотонов транслируются в наш мозг в разных формах, цветах, яркости, наполняя образами наш многоцветный мир.

Наше замечательное зрение, очевидно, обладает рядом ограничений. Мы не можем видеть радиоволны, исходящие от наших электронных устройств, не можем разглядеть бактерий под носом. Но с достижениями физики и биологии мы можем определить фундаментальные ограничения естественного зрения. «Все, что вы можете различить, имеет порог, самый низкий уровень, выше и ниже которого вы видеть не можете», - говорит Майкл Лэнди, профессор неврологии Нью-Йоркского университета.

Начнем рассматривать эти визуальные пороги сквозь призму - простите за каламбур - что многие ассоциируют со зрением в первую очередь: цвет.

Почему мы видим фиолетовый, а не коричневый, зависит от энергии, или длины волн, фотонов, падающих на сетчатку глаза, расположенную в задней части наших глазных яблок. Там находится два типа фоторецепторов, палочки и колбочки. Колбочки отвечают за цвет, а палочки позволяют нам видеть оттенки серого в условиях низкой освещенности, например, ночью. Опсины, или пигментные молекулы, в клетках сетчатки поглощают электромагнитную энергию падающих фотонов, генерируя электрический импульс. Этот сигнал идет через зрительный нерв к мозгу, где и рождается сознательное восприятие цветов и изображений.

У нас есть три типа колбочек и соответствующих опсинов, каждый из которых чувствителен к фотонам определенной длины волны. Эти колбочки обозначаются буквами S, M и L (короткие, средние и длинные волны соответственно). Короткие волны мы воспринимаем синими, длинные - красными. Длины волн между ними и их комбинации превращаются в полную радугу. «Весь свет, который мы видим, кроме созданного искусственно с помощью призм или хитроумных устройств вроде лазеров, представляет собой смесь разных длин волн, - говорит Лэнди».

Из всех возможных длин волн фотона наши колбочки обнаруживают небольшую полосу от 380 до 720 нанометров - то, что мы называем видимым спектром. За пределами нашего спектра восприятия есть инфракрасный и радиоспектр, у последнего диапазон волн составляет от миллиметра до километра длиной.

Над нашим видимым спектром, на более высоких энергиях и коротких длинах волн, мы находим ультрафиолетовый спектр, потом рентгеновские лучи и на вершине - гамма-лучевой спектр, длины волн которого достигают одной триллионной метра.

Хотя большинство из нас ограничены видимым спектром, люди с афакией (отсутствием хрусталика) могут видеть в ультрафиолетовом спектре. Афакия, как правило, создается вследствие оперативного удаления катаракты или врожденных дефектов. Обычно хрусталик блокирует ультрафиолетовый свет, поэтому без него люди могут видеть за пределами видимого спектра и воспринимать длины волн до 300 нанометров в голубоватом оттенке.

Исследование 2014 года показало, что, условно говоря, все мы можем видеть инфракрасные фотоны. Если два инфракрасных фотона случайно попадают в клетку сетчатки почти одновременно, их энергия объединяется, конвертируя их длину волны из невидимой (например, 1000 нанометров) в видимую 500-нанометровую (холодный зеленый цвет для большинства глаз).

Здоровый человеческий глаз имеет три типа колбочек, каждый из которых может различать порядка 100 разных цветовых оттенков, поэтому большинство исследователей сходятся во мнении, что наши глаза в общем могут различить примерно миллион оттенков. Тем не менее восприятие цвета - это довольно субъективная способность, которая варьируется от человека к человеку, поэтому определить точные цифры довольно сложно.

«Довольно трудно переложить это на цифры, - говорит Кимберли Джеймисон, научный сотрудник Калифорнийского университета в Ирвине. - То, что видит один человек, может быть лишь частью цветов, которые видит другой человек».

Джеймисон знает, о чем говорит, поскольку работает с «тетрахроматами» - людьми, обладающими «сверхчеловеческим» зрением. Эти редкие индивиды, в основном женщины, обладают генетической мутацией, которая подарила им дополнительные четвертые колбочки. Грубо говоря, благодаря четвертому набору колбочек, тетрахроматы могут разглядеть 100 миллионов цветов. (Люди с цветовой слепотой, дихроматы, имеют только два вида колбочек и видят примерно 10 000 цветов).

Сколько минимум фотонов нам нужно видеть?

Для того чтобы цветное зрение работало, колбочкам, как правило, нужно намного больше света, чем их коллегам-палочкам. Поэтому в условиях низкой освещенности цвет «гаснет», поскольку на передний план выходят монохроматические палочки.

В идеальных лабораторных условиях и в местах сетчатки, где палочки по большей части отсутствуют, колбочки могут быть активированы лишь горсткой фотонов. И все же палочки лучше справляются в условиях рассеянного света. Как показали эксперименты 40-х годов, одного кванта света достаточно, чтобы привлечь наше внимание. «Люди могут реагировать на один фотон, - говорит Брайан Уонделл, профессор психологии и электротехники в Стэнфорде. - Нет никакого смысла в еще большей чувствительности».

В 1941 году исследователи Колумбийского университета усадили людей в темную комнату и дали их глазам приспособиться. Палочкам потребовалось несколько минут, чтобы достичь полной чувствительности - вот почему у нас возникают проблемы со зрением, когда внезапно гаснет свет.

Затем ученые зажгли сине-зеленый свет перед лицами испытуемых. На уровне, превышающем статистическую случайность, участники смогли зафиксировать свет, когда первые 54 фотона достигли их глаз.

После компенсации потери фотонов через всасывание другими компонентами глаза, ученые обнаружили, что уже пять фотонов активируют пять отдельных палочек, которые дают ощущение света участникам.

Каков предел самого мелкого и дальнего, что мы можем увидеть?

Этот факт может вас удивить: нет никакого внутреннего ограничения мельчайшей или самой далекой вещи, которую мы можем увидеть. Пока объекты любого размера, на любом расстоянии передают фотоны клеткам сетчатки, мы можем их видеть.

«Все, что волнует глаз, это количество света, которое попадает на глаз, - говорит Лэнди. - Общее число фотонов. Вы можете сделать источник света до смешного малым и удаленным, но если он излучает мощные фотоны, вы его увидите».

К примеру, расхожее мнение гласит, что темной ясной ночью мы можем разглядеть огонек свечи с расстояния 48 километров. На практике, конечно, наши глаза будут просто купаться в фотонах, поэтому блуждающие кванты света с больших расстояний просто потеряются в этой мешанине. «Когда вы увеличиваете интенсивность фона, количество света, которое вам необходимо, чтобы что-то разглядеть, увеличивается», - говорит Лэнди.

Ночное небо с темным фоном, усеянным звездами, являет собой поразительный пример дальности нашего зрения. Звезды огромны; многие из тех, что мы видим в ночном небе, составляют миллионы километров в диаметре. Но даже ближайшие звезды находятся минимум в 24 триллионах километров от нас, а потому настолько малы для нашего глаза, что их не разберешь. И все же мы их видим как мощные излучающие точки света, поскольку фотоны пересекают космические расстояния и попадают в наши глаза.

Все отдельные звезды, которые мы видим в ночном небе, находятся в нашей галактике - Млечный Путь. Самый далекий объект, который мы можем разглядеть невооруженным глазом, находится за пределами нашей галактики: это галактика Андромеды, расположенная в 2,5 миллионах световых лет от нас. (Хотя это спорно, некоторые индивиды заявляют, что могут разглядеть галактику Треугольника в чрезвычайно темном ночном небе, а она находится в трех миллионах световых лет от нас, только придется поверить им на слово).

Триллион звезд в галактике Андромеды, учитывая расстояние до нее, расплываются в смутный светящийся клочок неба. И все же ее размеры колоссальны. С точки зрения видимого размера, даже будучи в квинтиллионах километрах от нас, эта галактика в шесть раз шире полной Луны. Однако наших глаз достигает так мало фотонов, что этот небесный монстр почти незаметен.

Насколько острым может быть зрение?

Почему мы не различаем отдельных звезд в галактике Андромеды? Пределы нашего визуального разрешения, или остроты зрения, накладывают свои ограничения. Острота зрения - это возможность различать такие детали, как точки или линии, отдельно друг от друга, чтобы те не сливались воедино. Таким образом, можно считать пределы зрения числом «точек», которые мы можем различить.

Границы остроты зрения устанавливают несколько факторов, например, расстояния между колбочками и палочками, упакованными в сетчатке. Также важна оптика самого глазного яблока, которое, как мы уже говорили, предотвращает проникновение всех возможных фотонов к светочувствительным клеткам.

Теоретически, как показали исследования, лучшее, что мы можем разглядеть, это примерно 120 пикселей на градус дуги, единицу углового измерения. Можете представить это как черно-белую шахматную доску 60 на 60 клеток, которая умещается на ногте вытянутой руки. «Это самый четкий паттерн, который вы можете разглядеть», - говорит Лэнди.

Проверка зрения, вроде таблицы с мелкими буквами, руководствуется теми же принципами. Эти же пределы остроты объясняют, почему мы не может различить и сосредоточиться на одной тусклой биологической клетке шириной в несколько микрометров.

Но не списывайте себя со счетов. Миллион цветов, одиночные фотоны, галактические миры за квантиллионы километров от нас - не так уж и плохо для пузырька желе в наших глазницах, подключенных к 1,4-килограммовой губке в наших черепах.

Каждый предмет имеет определенную высоту Н (рис. 11), поэтому дальность видимости предмета Дп-MR слагается из дальности видимого горизонта наблюдателя Де=Мc и дальности видимого горизонта предмета Дн=RС:


Рис. 11.


По формулам (9) и (10) H. Н. Струйским составлена номограмма (рис. 12), а.в МТ-63 приведена табл. 22-в «Дальность видимости предметов», рассчитанная по формуле (9).

Пример 11. Найти дальность видимости предмета высотой над уровнем моря H=26,5 м (86фут) при высоте глаза наблюдателя над уровнем моря е = 4,5 м (1 5 фут).

Решение.

1. По номограмме Струйского (рис. 12) па левой вертикальной шкале «Высота наблюдаемого предмета» отмечаем точку, соответствующую 26,5 м (86 фут), на правой вертикальной шкале «Высота глаза наблюдателя» отмечаем точку, соответствующую 4,5 м (15 фут); соединив отмеченные точки прямой линией, в месте пересечения последней со средней вертикальной шкалой «Дальность видимости» получаем ответ: Дn = 15,1 м.

2. По МТ-63 (табл. 22-в). Для е=4, 5 м и H=26, 5 м величина Дn = 15,1 м. Приводимая в навигационных пособиях и на морских картах дальность видимости маячных огней Дк-KR рассчитана для высоты глаза наблюдателя, равной 5 м. Если действительная высота глаза наблюдателя не равна 5 м, то к данной в пособиях дальности Дк необходимо прибавить поправку А = МС-КС- =Де-Д5 . Поправка является разностью между дальностями видимого горизонта с высоты еми 5 м и называется поправкой на высоту глаза наблюдателя:


Как видно из формулы (11), поправка на высоту глаза наблюдателя А может быть положительной (когда е> 5 м) или отрицательной (когда е
Итак, дальность видимости маячного огня определяется по формуле


Рис. 12.


Пример 12. Дальность видимости маяка, указанная на карте, Дк = 20,0 мили.

С какого расстояния увидит огонь наблюдатель, глаз которого находится на высоте е = 16 м.

Решение. 1) по формуле (11)


2) по табл. 22-а МЕ-63 А=Де - Д5 = 8,3-4,7 = 3,6 мили;

3) по формуле (12) Дп = (20,0+3,6) = 23,6 мили.

Пример 13. Дальность видимости маяка, указанная на карте, Дк = 26 миль.

С какого расстояния увидит огонь наблюдатель, находящийся на шлюпке (е=2, 0 м)

Решение. 1) по формуле (11)


2) по табл. 22-а МТ-63 А=Д - Д = 2,9 - 4,7 = -1,6 мили;

3) по формуле (12) Дп = 26,0-1,6 = 24,4 мили.

Дальность видимости предмета, рассчитанную по формулам (9) и (10), называют географической.


Рис. 13.


Дальность видимости маячного огня, или оптическая дальность видимости, зависит от силы источника света, системы маячного аппарата и цвета огня. В правильно построенном маяке она обычно совпадает с его географической дальностью.

В пасмурную погоду действительная дальность видимости может значительно отличаться от географической или оптической дальности.

В последнее время исследованиями установлено, что в условиях дневного плавания дальность видимости предметов точнее определяется по следующей формуле :


На рис. 13 приведена номограмма, рассчитанная по формуле (13). Пользование номограммой поясним на решении задачи с условиями примера 11.

Пример 14. Найти дальность видимости предмета высотой над уровнем моря Н = 26,5 м, при высоте глаза наблюдателя над уровнем моря е = 4,5 м.

Решение. 1 по формуле (13)

Поверхность Земли изгибается и пропадает из поля видимости на расстоянии 5 километров. Но острота нашего зрения позволяет видеть далеко за горизонт. Если бы Земля была плоской, или если б вы стояли на верху горы и смотрели на гораздо больший участок планеты, чем обычно, вы смогли бы увидеть яркие огни на расстоянии сотен километров. В темную ночь вам удалось бы даже увидеть пламя свечи, находящейся в 48 километрах от вас.

Насколько далеко может видеть человеческий глаз зависит от того, сколько частиц света, или фотонов, испускает удаленный объект. Самым далеким объектом, видимым невооруженным глазом, является Туманность Андромеды, расположенная на громадном расстоянии в 2,6 миллионов световых лет от Земли. Один триллион звезд этой галактики испускает в общей сложности достаточно света для того, чтоб несколько тысяч фотонов каждую секунду сталкивались с каждым квадратным сантиметром земной поверхности. В темную ночь этого количества достаточно для активизации сетчатки глаза .

В 1941 году специалист по вопросам зрения Селиг Гехт со своими коллегами из Колумбийского университета сделал то, что до сих пор считается надежным средством измерения абсолютного порога зрения – минимального количества фотонов, которые должны попасть в сетчатку, чтобы вызвать осознание визуального восприятия. Эксперимент устанавливал порог в идеальных условиях: глазам участников давали время, чтобы полностью привыкнуть к абсолютной темноте, сине-зеленая вспышка света, действующая как раздражитель, имела длину волны 510 нанометров (к которой глаза наиболее чувствительны), и свет был направлен на периферический край сетчатки, заполненный распознающими свет клетками палочками.

По данным ученых, для того, чтоб участники эксперимента смогли распознать такую вспышку света более чем в половине случаев, в глазные яблоки должно было попасть от 54 до 148 фотонов. На основании измерений ретинальной абсорбции ученые подсчитали, что в среднем 10 фотонов в действительности впитываются палочками сетчатки человека. Таким образом, абсорбция 5-14 фотонов или, соответственно, активация 5-14 палочек указывает мозгу, что вы что-то видите.

«Это действительно очень малое количество химических реакций », - отметили Гехт и его коллеги в статье об этом эксперименте.

Принимая во внимание абсолютный порог, яркость пламени свечи и расчетное расстояние, на котором светящийся объект тускнеет, ученые пришли к выводу, что человек может различить слабое мерцание пламени свечи на расстоянии 48 километров.

Но на каком расстоянии мы можем распознать, что объект представляет собой нечто большее, чем просто мерцание света? Чтобы объект казался пространственно протяженным, а не точечным, свет от него должен активировать не менее двух смежных колбочек сетчатки – клеток, отвечающих за цветное зрение. В идеальных условиях объект должен лежать под углом не менее 1 аркминута, или одна шестая градуса, чтобы возбудить смежные колбочки. Эта угловая мера остается одной и той же вне зависимости от того, близко или далеко находится объект (удаленный объект должен быть гораздо больше, чтобы находиться под тем же углом, что и ближний). Полная Луна лежит под углом 30 аркминут, тогда как Венера едва различима как протяженный объект под углом около 1 акрминуты.

Объекты величиной с человека различимы как протяженные на расстоянии лишь около 3 километров. В сравнении на таком расстоянии мы смогли бы четко различить две

Дальность видимости горизонта

Наблюдаемая в море линия, по которой море как бы соединяется с небосводом, называется видимым горизонтом наблюдателя.

Если глаз наблюдателя находится на высоте е М над уровнем моря (т. А рис. 2.13), то луч зрения идущий по касательной к земной поверхности, определяет на земной поверхности малый круг аа , радиуса D .

Рис. 2.13. Дальность видимости горизонта

Это было бы верно, если бы Землю не окружала атмосфера.

Если принять Землю за шар и исключить влияние атмосферы то, из прямоугольного треугольника ОАа следует: ОА=R+e

Так как величина чрезвычайно мала (для е = 50м при R = 6371км – 0,000004 ), то окончательно имеем:

Под действием земной рефракции, в результате преломления зрительного луча в атмосфере, наблюдатель видит горизонт дальше (по кругу вв ).

(2.7)

где х – коэффициент земной рефракции (» 0,16).

Если принять дальность видимого горизонта D e в милях, а высоту глаза наблюдателя над уровнем моря (е М ) в метрах и подставить значение радиуса Земли (R =3437,7 мили = 6371 км ), то окончательно получим формулу для расчета дальности видимого горизонта

(2.8)

Например:1) е = 4 м D е = 4,16 мили; 2) е = 9 м D е = 6,24 мили;

3) е = 16 м D е = 8,32 мили; 4) е = 25 м D е = 10,4 мили.

По формуле (2.8) составлена таблица № 22 «МТ-75» (с. 248) и таблица № 2.1 «МТ-2000» (с. 255) по (е М ) от 0,25 м ¸ 5100 м . (см. табл. 2.2)

Дальность видимости ориентиров в море

Если наблюдатель, высота глаза которого находится на высоте е М над уровнем моря (т. А рис. 2.14), наблюдает линию горизонта (т. В ) на расстоянии D е(миль) , то, по аналогии, и с ориентира (т. Б ), высота которого над уровнем моря h M , видимый горизонт (т. В ) наблюдается на расстоянии D h(миль) .

Рис. 2.14. Дальность видимости ориентиров в море

Из рис. 2.14 очевидно, что дальность видимости предмета (ориентира), имеющего высоту над уровнем моря h M , с высоты глаза наблюдателя над уровнем моря е М будет выражаться формулой:

Формула (2.9) решается с помощью таблицы 22 «МТ-75» с. 248 или таблицы 2.3 «МТ-2000» (с. 256).

Например: е = 4 м, h = 30 м, D П = ?

Решение: для е = 4 м ® D е = 4,2 мили;

для h = 30 м® D h = 11,4 мили.

D П = D е + D h = 4,2 + 11,4 = 15,6 мили.

Рис. 2.15. Номограмма 2.4. «МТ-2000»

Формулу (2.9) можно решать и с помощью Приложения 6 к «МТ-75» или номограммы 2.4 «МТ-2000» (с. 257) ® рис. 2.15.

Например: е = 8 м, h = 30 м, D П = ?

Решение: Значения е = 8 м (правая шкала) и h = 30 м (левая шкала) соединяем прямой линией. Точка пересечения этой линии со средней шкалой (D П ) и даст нам искомую величину 17,3 миль. (см. табл. 2.3).

Географическая дальность видимости предметов (из табл. 2.3. «МТ-2000»)

Примечание:

Высота навигационного ориентира над уровнем моря выбирается из навигационного руководства для плавания «Огни и знаки» («Огни»).

2.6.3. Дальность видимости огня ориентира, показанная на карте (рис. 2.16)

Рис. 2.16. Дальности видимости огня маяка, показанные

На навигационных морских картах и в навигационных пособиях дальность видимости огня ориентира дана для высоты глаза наблюдателя над уровнем моря е = 5 м, т.е.:

Если же действительная высота глаза наблюдателя над уровнем моря отличается от 5 м, то для определения дальности видимости огня ориентира необходимо к дальности, показанной на карте (в пособии), прибавить (если е > 5 м), или отнять (если е < 5 м) поправку к дальности видимости огня ориентира (DD К ), показанной на карте за высоту глаза.

(2.11)

(2.12)

Например: D К = 20 миль, е = 9 м.

D О = 20,0+1,54=21,54мили

тогда: D О = D К + ∆ D К = 20,0+1,54 =21,54 мили

Ответ: D О = 21,54 мили.

Задачи на расчет дальностей видимости

А) Видимого горизонта (D e ) и ориентира (D П )

Б) Открытие огня маяка

Выводы

1. Основными для наблюдателя являются:

а) плоскости:

Плоскость истинного горизонта наблюдателя (пл. ИГН);

Плоскость истинного меридиана наблюдателя (пл. ИМН);

Плоскость первого вертикала наблюдателя;

б) линии:

Отвесная линия (нормаль) наблюдателя,

Линия истинного меридиана наблюдателя ® полуденная линия N-S ;

Линия Е-W .

2. Системами счета направлений являются:

Круговая (0°¸360°);

Полукруговая (0°¸180°);

Четвертная (0°¸90°).

3. Любое направление на поверхности Земли может быть измерено углом в плоскости истинного горизонта, принимая за начало отсчета линию истинного меридиана наблюдателя.

4. Истинные направления (ИК, ИП) определяются на судне относительно северной части истинного меридиана наблюдателя, а КУ (курсовой угол) – относительно носовой части продольной оси судна.

5. Дальность видимого горизонта наблюдателя (D e ) рассчитывается по формуле:

.

6. Дальность видимости навигационного ориентира (днем в хорошую видимость) рассчитывается по формуле:

7. Дальность видимости огня навигационного ориентира, по его дальности (D К ), показанной на карте, рассчитывается по формуле:

, где .

Глава VII . Навигация.

Навигация - основа науки о судовождении. Навигационный способ судовождения заключается в том, чтобы провести судно из одного места в другое наивыгоднейшим, кратчайшим и безопасным путем. Этот способ решает две задачи: как направить судно по избранному пути и как определять его место в море по элементам движения судна и наблюдениям береговых предметов с учетом воздействия на судно внешних сил - ветра и течения.

Чтобы быть уверенным в безопасности движения своего судна, необходимо знать место судна на карте, определяющее его положение относительно опасностей в данном района плавания.

Навигация занимается разработкой основ судовождения, она изучает:

Размеры и поверхность земли, способы изображения земной поверхности на картах;

Способы счисления и прокладки пути судна на морских картах;

Способы определения места судна на море по береговым предметам.

§ 19. Основные сведения о навигации.

1. Основные точки, круги, линии и плоскости

Наша земля имеет форму сфероида, у которого большая полуось ОЕ равна 6378 км, а малая полуось ОР 6356 км (рис. 37).


Рис. 37. Определение координат точки на земной поверхности

Практически, с некоторым допущением, землю можно считать шаром, вращающимся вокруг оси, занимающей определенное положение в пространстве.

Для определения точек на земной поверхности ее принято мысленно делить вертикальными и горизонтальными плоскостя ми, образующими с поверхностью земли линии - меридианы и параллели. Концы воображаемой оси вращения земли называются полюсами - северным, или нордовым, и южным, или зюйдовым.

Меридианы - большие круги, проходящие через оба полюса. Параллели - малые круги на земной поверхности, параллельные экватору.

Экватор - большой круг, плоскость которого проходит через центр земли перпендикулярно оси ее вращения.

Как меридианов, так и параллелей на земной поверхности можно вообразить бесчисленное множество. Экватор, меридианы и параллели образуют сетку географических координат земли.

Место любой точки А на земной поверхности можно определить по ее широте (f) и долготе (l).

Широтой места называется дуга меридиана от экватора до параллели данного места. Иначе: широта места измеряется центральным углом, заключенным между плоскостью экватора и направлением из центра земли на данное место. Широта измеряется в градусах от О до 90° по направлению от экватора к полюсам. При расчетах считают, что северная широта f N имеет знак плюс, южная широта - f S знак минус.

Разностью широт (f 1 - f 2) называется дуга меридиана, заключенная между параллелями данных точек (1 и 2).

Долготой места называется дуга экватора от нулевого меридиана до меридиана данного места. Иначе: долгота места измеряется дугой экватора, заключенной между плоскостью нулевого меридиана и плоскостью меридиана данного места.

Разностью долгот (l 1 -l 2) называется дуга экватора, заключенная между меридианами заданных точек (1 и 2).

Нулевой меридиан - гринвичский меридиан. От него производится измерение долготы в обе стороны (к востоку и западу) от 0 до 180°. Западная долгота отсчитывается на карте влево от гринвичского меридиана и при расчетах берется со знаком минус; восточная - вправо и имеет знак плюс.

Широта и долгота любой точки на земле называются географическими координатами этой точки.

2. Деление истинного горизонта

Мысленно воображаемая горизонтальная плоскость, проходящая через глаз наблюдателя, называется плоскостью истинного горизонта наблюдателя, или истинного горизонта (рис. 38).

Предположим, что в точке А находится глаз наблюдателя, линия ZABC - отвесная, HH 1 - плоскость истинного горизонта, а линия P NP S - ось вращения земли.

Из множества вертикальных плоскостей только одна плоскость на чертеже будет совпадать с осью вращения земли и точкой А. Пересечение этой вертикальной плоскости с поверхностью земли дает на ней большой круг P N BEP SQ , называемый истинным меридианом места, или меридианом наблюдателя. Плоскость истинного меридиана пересекается с плоскостью истинного горизонта и дает на последней линию норд-зюйда NS . Линия OW , перпендикулярная линии истинного норд-зюйда, называется линией истинного оста и веста (востока и запада).

Таким образом, четыре основные точки истинного горизонта - север, юг, восток и запад - занимают в любом месте на земле, кроме полюсов, вполне определенное положение, благодаря чему относительно этих точек можно определять различные направления по горизонту.

Направления N (север), S (юг), О (восток), W (запад) носят название главных румбов. Вся окружность горизонта делится на 360°. Деление производится от точки N по движению часовой стрелки.

Промежуточные направления между главными румбами называются четвертными румбами и носят наименование NO , SO , SW , NW . Главные и четвертные румбы имеют следующие значения в градусах:


Рис. 38. Истинный горизонт наблюдателя

3. Видимый горизонт, дальность видимого горизонта

Видимое с судна водное пространство ограничивается окружностью, образованной кажущимся пересечением небесного свода с поверхностью воды. Эта окружность называется видимым горизонтом наблюдателя. Дальность видимого горизонта зависит не только от высоты расположения глаз наблюдателя над водной поверхностью, но и от состояния атмосферы.



Рис 39. Дальность видимости предмета

Судоводитель всегда должен знать, как далеко он видит горизонт в разных положениях, например, стоя у штурвала, на палубе, сидя и т. п.

Дальность видимого горизонта определяется по формуле:

d = 2,08

или, приближенно, для высоты глаза наблюдателя менее 20 м по формуле:

d = 2 ,

где d - дальность видимого горизонта в милях;

h - высота глаза наблюдателя, м.

Пример. Если высота глаза наблюдателя h = 4 м, то дальность видимого горизонта 4 мили.

Дальность видимости наблюдаемого предмета (рис. 39), или, как ее называют, географическая даль ность D n , является суммой дальностей видимого горизонта с высоты этого предмета Н и высоты глаза наблюдателя А.

Наблюдатель А (рис. 39), находящийся на высоте h , со своего судна может видеть горизонт только на расстояние d 1 , т. е. до точки В водной поверхности. Если же поместить наблюдателя в точке В водной поверхности, то он мог бы видеть маяк С, расположенный от него па расстоянии d 2 ; поэтому наблю датель, находящийся в точке А, увидит маяк с расстояния, равного D n :

D n= d 1+d 2.

Дальность видимости предметов, расположенных выше уровня воды, можно определить по формуле:

D n = 2,08( + ).

Пример. Высота маяка H = 1б,8 м, высота глаза наблюдателя h = 4 м.

Решение. D n = l 2,6 мили, или 23,3 км.

Дальность видимости предмета определяется также приближенно по номограмме Струйского (рис. 40). Прикладывая линейку так, чтобы одной прямой были соединены высоты, соответствующие глазу наблюдателя и наблюдаемому предмету, получают на средней шкале дальность видимости.

Пример. Найти дальность видимости предмета высотой над уровнем моря в 26,2 м при высоте глаза наблюдателя над уровнем моря в 4,5 м.

Решение. D n = 15,1 мили (пунктирная линия на рис. 40).

На картах, лоциях, в навигационных пособиях, в описании знаков и огней дальность видимости дана для высоты глаза наблюдателя 5 ж от уровня воды. Так как на маломерном судне глаз наблюдателя расположен ниже 5 м, для него дальность видимости будет меньше обозначенной в пособиях или на карте (см. табл. 1).

Пример. На карте обозначена дальность видимости маяка в 16 миль. Это значит, что наблюдатель увидит этот маяк с расстояния 16 миль, если его глаз будет на высоте 5 м над уровнем моря. Если же глаз наблюдателя находится на высоте 3 м, то видимость соответственно уменьшится на разность дальности видимости горизонта для высот 5 и 3 м. Дальность видимости горизонта для высоты 5 м равна 4,7 мили; для высоты 3 м - 3,6 мили, разность 4,7 - 3,6=1,1 мили.

Следовательно, дальность видимости маяка будет равна не 16 милям, а только 16 - 1,1 = 14,9 мили.


Рис. 40. Номограмма Струйского