Канцерогенез как от него защищаться. Канцерогенез: теории и стадии

Канцерогенез - длительный процесс накопления генетиче­ских повреждений. Латентный период (время от начальный изменений в клетке до первых клинических проявлений) мо­жет длиться до 10-20 лет. Возникновение опухоли - это мно­гостадийный процесс, включающий 3 этапа (стадии):

I этап - инициация (трансформация) - приобретение ис­ходной нормальной клеткой способности беспредельно раз­множаться. Все теории, исторически подготовившие базу для открытия молекулярных механизмов канцерогенеза, исходили из общей посылки, что превращение нормальной клетки в опу­холевую (трансформация, или инициация) является результа­том стойких изменений в геноме клетки - мутации одного из генов, регулирующих клеточное размножение. Вследствие это­го клетка становится инициированной (потенциально способ­ной к неограниченному размножению), но требующей для про­явления этой способности ряда дополнительных условий. Инициирующими факторами служат различные канцерогены, вызывающие повреждения ДНК.

Каковы же современные представления о молекулярных механизмах канцерогенеза? На сегодня установлено, что в нор­мальных клетках в ДНК имеется участок гомологичный по иуклеотидному составу онкогену вирусов, а точнее - для каж­дого из 20 известных ретровирусных онкогенов в геноме нор­мальных и опухолевых клеток различных видов животных имеется свой клеточный аналог. В нормальных клетках кле­точный аналог вирусного онкогена неактивен и назван протоонкогеном. В опухолевых клетках он активен и называется кле­точным онкогеном.

Переход неактивного клеточного онкогена (протоонкогена) в активный клеточный онкоген происходит под влиянием химических, физических и биологических канцерогенов. Вы­деляют 4 основных механизма активации протоонкогенов:

1. Включение (вставка) промотора. Промотор - это уча­сток ДНК, с которым связывается РНК-полимераза, иниции­руя транскрипцию онкогена. Проявлению активирующего дей­ствия промотора способствует его расположение рядом с про-тоонкогеном («в непосредственной близости»). В роли промо­торов для протоонкогенов могут выступать ДНК-копии опре­деленных участков онкорнавирусов, а также «прыгающие ге­ны», которые представляют собой мобильные сегменты ДНК, способные перемещаться и встраиваться в разные участки ге­нома клеток.

2. Амплификация, т.е. увеличение числа (копий) про­тоонкогенов, которые в норме обладают небольшой активнос­тью. В итоге общая активность протоонкогенов значительно возрастает, что в конце концов может привести к опухолевой трансформации клетки.

3. Транслокация протоонкогенов. Установлено, что пере­мещение протоонкогена в локус с функционирующим промо­тором превращает его в клеточный онкоген.


4. Мутации протоонкогенов. Введение в геном клетки хо­тя бы одной копии клеточного онкогена (мутация) сопровож­дается активацией протоонкогенов.

Вслед за превращением протоонкогенов в активные кле­точные онкогены начинается экспрессия активных клеточных онкогенов. Она проявляется в увеличении синтеза онкобелков или в синтезе структурно измененных онкобелков. Затем на­чинается превращение (трансформация) нормальной клетки в опухолевую благодаря следующим механизмам:

а) онкобелки соединяются с рецепторами для факторов роста и образуют комплексы, постоянно генерирующие сигна­лы к делению клеток;

б) онкобелки повышают чувствительность рецепторов к факторам роста или понижают чувствительность к ингибито­рам роста;

в) онкобелки сами могут действовать как факторы роста.

Говоря о трансформации неопухолевых клеток в опухоле­вые, следует остановиться на гипотезе Хьюгса, которая в из­вестной степени отвечает на вопрос, каким образом опухоле­вая клетка становится «бессметрной», т.е. утрачивает лимит Хейфлика и приобретает способность к постоянному делению. Согласно этой гипотезы, регуляция деления в каждой клетке осу­ществляется системой, состоящей из трех регуляторных генов:

1. Ген-инициатор клеточного деления, кодирующий синтез белка - инициатора клеточного деления.

2. Ген-репрессор I, который кодирует синтез белка - репрессора I. Репрессор I выключает функционирование гена-инициатора клеточного деления.

3. Ген-репрессор II, кодирующий синтез белка - репрессора II. Репрессор II выключает функционирование гена-ре-прессора I.

При активации гена-репрессора I синтезируется репрессор I, который выключает ген-инициатор клеточного деления, в результате этого прекращается синтез белка-инициатора кле­точного деления, и деление клеток прекращается. В свою оче­редь, ген-репрессор I находится под контролем гена-репрессо­ра II, который кодирует синтез репрессора II, а он ингибирует ген-репрессор I. И далее, компоненты белка инициатора кле­точного деления способны выключать (репрессировать) ген-репрессор II.

Таким образом, система регуляции клеточного деления работает по принципу обратной связи, что обеспечи­вает ей автономность и определенную интенсивность клеточ­ного деления. «Обратная связь» в работе системы генов, регу­лирующих клеточное деление, заключается в репрессии гена-репрессора II компонентами инициатора клеточного деления.

При повреждении гена-репрессора I (воздействие радиа­ции или химических канцерогенов) белок репрессор I не син­тезируется, а значит ген-инициатор клеточного деления все время продуцирует инициатор клеточного деления - в итоге отмечается постоянное бесконечное деление опухолевых кле­ток. Это так называемый мутационный канцерогенез .

Некоторые канцерогенные факторы, например, вирусы, мо­гут создавать устойчивое нарушение нормальной регуляции генома соматической клетки хозяина путем интеграции с ге­ном-репрессором II этой клетки. В результате этого инициа­тор клеточного деления может выключить только ген-репрес­сор II хозяина, а на вирусном гене, интегрированном рядом с геном-репрессором II в клетку хозяина, будет продолжаться синтез репрессора II - в итоге будет происходить безудерж­ное деление клеток (опухолевых). Такой канцерогенез назы­вается эпигеномным (геном клетки хозяина не подвергается мутации!).

II этап - промоция, или активизация опухолевых клеток. Трансформированные клетки длительное время могут оста­ваться в ткани в неактивной форме, а дополнительное воздей­ствие ко канцерогенных факторов запускает амплификацию он­когенов, активирует новые протоонкогены, вызывает дополни­тельные генные и хромосомные аберрации, обусловливает включение промотора. Промоторы - множество химических веществ, которые сами не вызывают повреждения ДНК и не являются канцерогенами, но их постоянное воздействие на инициированные клетки приводит к возникновению опухоли. Вследствие этого опухолевые клетки, до этого находившиеся в латентном состоянии, начинают интенсивно размножаться, образуя первичный опухолевый узел. Главное в промоции -стимуляция клеточного деления, вследствие чего создается критическая масса инициированных клеток, что обусловлива­ет высвобождение инициированных клеток из-под тканевого контроля и способствует - мутационному процессу.

III этап - опухолевая прогрессия, или стойкие качествен­ные изменения свойств опухоли в сторону малигнизации, воз­никающие по мере ее роста. Опухолевая прогрес­сия - это не просто увеличение опухоли в размерах, это каче­ственное изменение ее части с появлением по существу новой опухоли, обладающей ранее отсутствовавшими свойствами, что может быть связано с отбором клеточных клонов, а также с мутацией опухолевых клеток. Прогрессия опухоли осуществ­ляется посредством отбора клеточных популяций с их непре­рывным развитием в направлении все большей автономии, де­структивного роста, инвазивности, способности к образованию метастазов и поразительную приспособляемость к меняющим­ся условиям существования.

Опухолевая прогрессия в отличие от дифференцировки нормальных тканей происходит независимо и несопряженно (В.С. Шабад, 1980), а поэтому развитие опухоли никогда нель­зя считать завершенным. Прогрессия касается и первичных, и вторичных признаков. Первичным или «неотъемлемым» при­знаком опухоли является нерегулируемый рост, а остальные свойства: скорость роста, инвазивность опухоли, метастазирование и т.д., это «вторичные» свойства или признаки, которые как раз и изменяются в ходе прогрессии.

Трансформации нормальных клеток в опухолевые, промо­ции и опухолевой прогрессии способствуют ряд факторов: сни­жение антибластомной резистентности и противоопухолевого иммунитета (иммунодепрессия, иммунодефицит), ослабление «кейлонного надзора» за опухолью, эндокринный дисбаланс, гормонально-метаболические нарушения и др.

Опухолевый атипизм

Для опухолей характерен атипизм - отличия опухолевых клеток от нормальных. Он проявляется в относительной авто­номности роста, особенностях размножения, дифференцировки, метаболизма, структуры, функции и антигенного набора опухолевых клеток.

1. Одной из причин относительной автономности рос­та опухоли, увеличения ее массы является усиленная экспрес­сия канцерогенами ряда протоонкогенов (гомологов онкогенов ретровирусов), кодирующих синтез опухолевой клеткой онкопродуктов, которые нередко гомологичны факторам роста, их рецепторам и белкам, участвующим в пострецепторной пере­даче митогенного сигнала. Опухолевые клетки обладают спо­собностью продуцировать собственные факторы роста путем так называемой аутокринной секреции. Это α- и β-трансформирующие факторы, эпидермальный фактор роста, инсулиноподобные факторы роста I и II.

Эти факторы или регуляторные пептиды, продуцируемые самой опухолевой клеткой, обеспечивают утилизацию энерге­тических и пластических субстратов из окружающей среды и включают механизмы деления опухолевой клетки. Продуци­руемые опухолью ростовые факторы стимулируют последую­щий рост массы опухоли и снижают потребность новообразо­вания в экзогенных факторах роста. Полагают, что именно аутокрииная секреция факторов роста лежит в основе относи­тельной автономности опухоли, ее независимости от регуляторных внешних факторов.

2. Метаболический и энергетический атипизм. До на­стоящего времени не удалось выявить качественных измене­ний метаболизма опухолевых клеток, которые отличали бы их от нормальных. Все обнаруженные изменения в опухолевых клетках носят количественный характер и касаются изменений концентрации соединений, активности ферментов, размера транспорта метаболитов и других величин. Эти изменения ме­таболизма опухолевых клеток являются следствием наруше­ния регуляторных процессов в них, причем величина измене­ний метаболизма прямо связана со скоростью роста опухоли.

Особенности метаболизма углеводов. Типичным для опу­холевых клеток является анаэробный гликолиз - расщепле­ние глюкозы до лактата в присутствии кислорода. Причиной активации анаэробного гликолиза считается недостаток коферментов, особенно НАД, КоА-SН и тиаминпирофосфата, что препятствует аэробному распаду глюкозы в опухолевой клет­ке. Весьма характерно, что распад углеводов до пирувата и его превращение в лактат происходит в присутствии кислорода (этот феномен получил название отрицательного эффекта Пастера). Если имеется недостаток глюкозы (главного энергети­ческого субстрата опухолевых клеток), о чем свидетельствует гипогликемия, встречающаяся при разнообразных опухолях, то они способны окислять и другие субстраты.

Наиболее часто гипогликемия является следствием про­дукции инсулиноподобных факторов роста (ИФР-1 и ИФР-II) самой опухолью. Гены инсулина кодируют образование проинсулина (неактивный предшественник инсулина), струк­тура которого сходна с двумя инсулиноподобными факторами роста, которые образуются в печени. Наибольшая концентра­ция ИФР-1 выявлена в печени, нервной системе, глазу, лег­ких, сердце, скелетных мышцах, яичках, тимусе, лимфоузлах, жировой ткани, поджелудочной железе.

Кроме того, причинами паранеопластической гипоглике­мии могут быть: повышенная продукция соматостатина и ин­гибиторов инсулиназы, торможение гликогенолиза в печени, блокирование глюконеогенеза и повышенное потребление глю­козы опухолью.

Для опухолевых клеток характерно низкое содержание ми­тохондрий, что уменьшает интенсивность тканевого дыхания и изменяет способ ресинтеза АТФ, а именно: увеличивается доля АТФ, образуемой в ходе гликолиза и уменьшается доля АТФ, синтезируемая в процессе тканевого дыхания. Общая продукция АТФ в опухолевой клетке снижена по сравнению с нормальной.

Усиление гликолиза в опухолевых клетках обусловливает их высокую выживаемость в условиях гипоксии.

С увеличением размеров опухоли прогрессивно ухудшается ее васкуляризация, что также усиливает анаэробный гликолиз. В опухо­левых клетках активируется обмен глюкозы по пентозофосфатному шунту через аэробную (при участии глюкозо-6-фосфатдегилрогеназы) и анаэробную (при участии трансальдолазы и транскетолазы) ветви этого процесса, что обеспечивает повышенную продукцию рибозо-5-фосфата как основного про­дукта для синтеза нуклеотидов и нуклеиновых кислот.

В опухолевых клетках в несколько раз увеличивается ак­тивность гексокиназы, фосфофруктокиназы и пируваткиназы - гликолитических ферментов (в итоге накапливаются недоокисленные продукты), а активность ферментов глюконеогенеза (глюкозо-6-фосфатаза, фруктозо-1,6-дифосфатаза, фосфоенолнируваткарбоксилаза и пируваткарбоксилаза) несколько снижена. И тем не менее, глюконеогенез в опухолевых клет­ках протекает с большей скоростью, чем в нормальных. Суб­стратом для этого процесса являются аминокислоты. Следует отметить, что ферменты глюконеогенеза обладают большим сродством к субстратам и хуже поддаются гормональной ре­гуляции.

Для злокачественного роста типичным является снижен­ный ответ гликемии на инсулин и сниженная в соответствии с этим толерантность к глюкозе. Учитывая, что синтез и вы­свобождение инсулина из клеток поджелудочной железы при опухолевом росте не меняется, нарушение следует искать на уровне рецепторов клеточных мембран.

Особенности белкового метаболизма. Обмен белков нару­шается не только в опухолевых клетках, но и в организме, по­раженном злокачественным ростом. На уровне опухолевых кле­ток интенсифицируется синтез онкобелков («опухолеродных» или «опухолевых» белков), которые обусловливают появление у опухолевых клеток характерных биологических свойств: бес­контрольность деления, утрата лимита Хейфлика, иммортализация (бессмертие) др.

Синтез онкобелков программируется активными клеточными онкогенами и в очень малых количе­ствах - их неактивными предшественниками, именуемыми протоонкогенами. Активные онкогены выявляются только в опухолевых клетках, а протоонкогены - во всех нормальных клетках. В опухолевых клетках отмечается уменьшение синте­за и содержания гистонов - белков-супрессоров синтеза ДНК.

На увеличение скорости белкового синтеза в опухолевых клетках влияет повышенная проницаемость цитоплазматических мембран для некоторых ключевых субстратов этого про­цесса. Опухолевые клетки представляются «пастью, откры­той для белков». Они изымают необходимые, незаменимые аминокислоты из крови без какой-либо регулировки этого про­цесса, влияя тем самым на состояние здоровых клеток. Резуль­татом этого становится не только быстрый рост опухолевых клеток, но и отрицательный азотистый баланс организма, что, как правило, сопровождается быстрым снижением массы тела и развитием кахексии. Кроме того, угнетаются процессы дезаминирования и переаминирования.

Изменения белкового состава крови у лиц с опухолевым процессом можно разделить на 2 группы:

1. Изменение количественного соотношения естественных белков плазмы крови.

2. Появление белков новых типов, связанных с возникно­вением или течением опухолевого роста.

Снижается синтез и концентрация сывороточного альбу­мина и повышается синтез α 1 ,α 2 и β- глобулинов. Прежде все­го, это относится к α 1 - гликопротеиду, α 1 -антитрипсину, церулоплазмину и трансферрину, в увеличении содержания кото­рых в сыворотке крови существенную роль играют внутрикле­точные гидролазы, освобождающиеся, при распаде опухолевых и неопухолевых клеток.

Развитие злокачественного роста в некоторых органах со­провождается появлением белков, синтез которых имел место только в эмбриональном периоде: альфа-фетопротеин, канцероэмбриональный антиген и хорионгонадотропин. Альфа-фе­топротеин синтезируется эмбриональными гепатоцитами и на­ходится в сыворотке эмбриона. В сыворотке крови взрослого человека этот белок обнаруживается при гепатоцеллюлярном раке печени, тератобластоме яичка и яичника. Он способен специфически связывать стероидные гормоны и один из изоферментов щелочной фосфатазы.

Повышенное содержание хорионгонадотропина отмечается во время беременности, но ес­ли его содержание возрастает без беременности, то следует ис­кать трофобластические опухоли.

Наиболее изученным при канцерогенезе и развитии опу­холи оказался метаболизм нуклеотидов и нуклеиновых кислот . Установлено, что одним из первых проявлений злокаче­ственной трансформации является экспрессия генов, ответст­венных за кодирование ключевых ферментов анаболических и катаболических процессов. При этом вначале значительно по­вышается активность ферментов, участвующих в анаболичес­ких процессах, поэтому в опухолевых клетках повышается син­тез нуклеиновых кислот, отмечается их избыточное накопле­ние, что характерно для злокачественного роста. Активность ферментов, участвующих в катаболических процессах, вначале опухолевого роста снижается (а в организме повышаются, и усиливаются катаболические процессы), а затем повышается.

Особенности метаболизма липидов. В организме, поражен­ном злокачественным ростом, липиды выполняют роль источ­ника энергии и субстратов для образования сложных липидов, участвующих в построении и в обмене фосфолипидов цитоплазматических мембран. В первом случае в метаболизме не наблюдается никаких отклонений: липолиз происходит обыч­ными путями и регулируется гормонами, но постепенно запа­сы нейтрального жира иссякают. Поскольку при этом не от­мечается как правило повышения в крови кетоновых тел, мож­но полагать, что процесс их распада является аэробным.

Структурные липиды, фосфолипиды, образующие цитоплазматические мембраны в опухолевых клетках, по своему качественному составу принципиально не отличаются от та­ковых и в нормальных клетках. Отмечается лишь некоторое упрощение их полисахарид кого компонента. Обнаруживаются также количественное различие в представительстве отдель­ных видов фосфолипидов, входящих в мембраны различных опухолевых клеток.

Общее содержание фосфолипидов в опухолевых клетках повышено, ускорен их метаболический оборот. Это связано с быстрым синтезом и делением клеток, для которого необходи­мым условием является быстрый синтез липидных компонен­тов мембран. Отсюда и ускоренный метаболизм липидов в микросомальной фракции, где их молекулы и образуются. Ана­логично изменяется синтез холестерина.

Весьма характерен для опухолей феномен «субстратных ловушек». Он заключается в усиленном захвате и использова­нии субстратов для энергообразования (глюкозы), для постро­ения цитоплазмы (аминокислот - отсюда «ловушка азота») клеточных мембран (холестерина), для защиты от свободных радикалов и стабилизации мембран (антиоксидант α-токоферол). Эта особенность повышает выживаемость опухолевых клеток при контакте их с нормальными клетками в условиях инвазивного роста и метастазирования.

3. Физико-химический атипизм проявляется увеличени­ем содержания в опухолевых клетках воды и некоторых элек­тролитов. Увеличение содержания воды облегчает диффузию субстратов метаболизма внутрь клетки и его продуктов нару­жу. Далее, в опухолях в пересчете на сухую массу или на бел­ковый азот повышается содержание ионов натрия и кальция (в опухолевой клетке), в меньшей степени - калия и значи­тельно снижается концентрация магния.

Увеличение содержания калия в опухолевой клетке пре­пятствует в определенной мере развитию внутриклеточного ацидоза в связи с усилением гликолиза и накоплением молоч­ной кислоты. Концентрация ионов водорода увеличивается в периферической, растущей зоне опухоли благодаря интенсив­ному гликолизу и уменьшается в некротизирующейся зоне, обычно расположенной центрально, благодаря выходу из рас­падающихся структур опухолевых клеток больших количеств калия и белка.

В организме-носителе опухоли отмечается тенденция к развитию алкалоза. Полагают, что механизм его развития свя­зан с компенсаторным перераспределением (в ответ на резорб­цию из опухоли в кровь лактата) щелочных катионов из тка­ней в кровь.

В некротически измененной опухоли высвобождаются жирные кислоты, которые связываются с ионами кальция, об­разуя соли (мыла) и тем самым способствуют увеличению ио­нов кальция в опухолевой ткани. Снижение ионов калия ха­рактерно для опухолей, отличающихся высокой продукцией муцинов (например, аденокарцинома яичников), которые свя­зывают ионы калия. При быстрой потере массы тела и при раз­витии кахексии вследствие разрушения большого количества клеточных структур калия много выделяется с мочой.

Изменения концентрации кальция обычно вторичны и со­провождают опухоли эндокринных желез или метастазы в ко­сти. Часто отмечается недостаточность железа, что играет важ­ную роль в возникновении железодефицитной анемии.

Повышается величина отрицательного заряда поверхности опухолевых клеток вследствие накопления на ней анионов нейраминовой кислоты, что способствует увеличению их вза­имного отталкивания и проникновению по межклеточным щелям в нормальные ткани. Повышается также электропровод­ность и снижается вязкость клеточных коллоидов.

В последние годы установлено, что опухолевые клетки из­лучают митогенетические лучи - ультрафиолетовые лучи с длиной волны 190-325 нм. Они генерируются всеми клетка­ми, но наиболее интенсивно - делящимися. Эти лучи способ­ны стимулировать деление соседних клеток. Они были откры­ты А.Г. Гурвичем и получили название митогенетических лу­чей Гурвича. В крови животных, страдающих опухолями, об­наруживаются вещества, ингибирующие митогенетическое из­лучение опухолевых клеток. Их назвали тушителями митоге­нетических лучей.

4. Морфологический атипизм делят на тканевой и кле­точный. Тканевой атипизм сам по себе, без клеточного атипизма, характерен только для доброкачественных опухолей и заключается в нарушении нормального соотношения тканевых структур, в неравномерности волокнистых или мышечных пуч­ков, в образовании неправильных и неравномерных железис­тых ходов, в отсутствии выводных протоков у опухолей желе­зистого характера.

Клеточный атипизм. Опухолевая клетка сама по себе не несет черт специфичности, но по совокупности структурно-функциональных качеств она отличается от нормальной клет­ки организма, т.е. она атипична. Морфологическая атипия опу­холи может выражаться в нарушении органотипической, гистотипической и цитотипической дифференцировки.

Для доброкачественных опухолей характерны два первых признака; для злокачественных опухолей характерным явля­ется в первую очередь нарушение цитотипической дифферен­цировки, отражающее появление опухолевого роста на уровне клетки и ее органоидов. На светооптическом уровне морфоло­гические признаки атипии клеток выражаются в их полимор­физме или мономорфизме. Полиморфизм касается ядер, ядры­шек. Выявляется гиперхроматоз ядер, «комковатый» хрома­тин, полиплоидия, нарушение ядерно-цитоплазматического индекса (из-за укрупнения ядра), обилие митозов с преобла­данием среди них патологических.

Наряду с атипией, проявляющейся дедифференцировкой, анаплазией, катаплазией, отмечаются признаки дифференци­ровки опухолевых клеток с образованием в них специфичес­ких структур. Дифференцировка опухолевых клеток всегда не­полная, атипичная и афункциональная, но продукты дифференцировки позволяют установить тканевую принадлежность опухоли, а нередко - и ее гистогенез.

Дифференцировка вы­ражается не только в появлении структур, характерных для нормальных клеток данной ткани и органа. Она сопровожда­ется изменениями функции клеток и проявляется в форме вы­работки специфических структурных белков (коллагена, мио­зина), секретов (слизи), гормонов (паратгормон, глюкагон), изменений активности ферментов (фосфорилазы) и др.

Ультраструктура опухолевой клетки. Специфических электронно-микроскопических изменений, характерных для опухолевых клеток, не обнаружено. Описываемая обычно дез­организация цитоплазмы, преобладание в ней свободных ри­босом, увеличение ядра, инвагинация ядерной оболочки и из­менения митохондрий встречаются далеко не во всех опухо­лях, а если и выявляются, то далеко не во всех клетках дан­ной опухоли. Все это свидетельствует, по мнению академика Д.С. Саркисова, о том, что опухолевая клетка совершает не «шаг назад», а «шаг в сторону», что Р.Вепеке назвал «катаплазией».

Катаплазия (приставка «ката» означает движение вниз) - появление слабодифференцированных или недиффе­ренцированных клеток, похожих на эмбриональные. Опухоль может утрачивать частично или полностью тканеспецифпчес-кие признаки.

Было бы принципиальной ошибкой пытаться описать уль­траструктурную организацию опухолевой клетки вообще, т.е. какой-то средней, единой для всех опухолей клетки. И тем не менее выделяют 2 особенности опухолевых клеток: ультраст­руктурную органоспецифичность и ультраструктурный поли­морфизм. Крайне редко опухоли имеют мономорфную ультра­структуру. Они весьма разнообразны - в одной и той же опу­холи встречаются клетки, находящиеся на разных уровнях дифференцировки и функционального созревания. Вот поэто­му-то в опухолях можно выявить 2 группы клеток:

5. Антигенный атипизм опухоли состоит в разнонаправ­ленных изменениях антигенного состава ее клеток: антигеном упрощении и появлении новых антигенов. Под антиген­ным упрощением понимают утрату опухолевыми клетками ан­тигенов, имеющихся в исходно нормальных клетках. В опухолевых клетках появляются новые, отсутствовавшие в нормаль­ных клетках, антигены. Существует две гипотезы, объясняю­щие возникновение новых антигенов в опухолевых клетках:

а) новые антигены (неоантигены) возникают вследствие соматической мутации генома клетки;

б) новые антигены являются результатом реактивации гех участков генома, которые в ходе развития (дифференцировки) были ингибированы.

Как известно, большинство клеточных антигенов локали­зуется в цитоплазматической мембране и имеет природу инте­гральных белков. Обычно, это гликопротеиды, проникающие через всю толщу мембраны, а на поверхности оканчивающие­ся цепью или цепями олигосахаридов. Именно эти олигосахариды принимают участие в обеспечении таких жизненно важ­ный функций, как адгезия, контактное инициирование и отли­чие своих белков от чужих.

При злокачественной трансформации может происходить отщепление выступающих над поверхностью опухолевой клет­ки антигенных структур под влиянием протеаз, и тогда на по­верхность выходят детерминантные группы, локализующиеся глубже - криптоантигены. Кроме того, выявляется обеднение поверхностных углеводных структур трансформированных клеток. Такая упрощенная поверхностная структура менее все­го способна различать другие подобные обедненные структу­ры. Это приводит к утрате контактного торможения (ингибирования), суть которого заключается в том. что клетки, входя в контакт с клетками того же вида, перестают делиться.

В зоне злокачественного перерождения па поверхности клеток не только возникают новые антигены; но одновремен­но с этим идет процесс исчезновения некоторых, ранее при­сутствовавших поверхностных антигенов. Они могут попадать в кровь, и это будет иметь большое значение для диагностики опухолей. Из типично опухолевых антигенов, освобождающих­ся с поверхности клетки и выходящих в кровь, с диагностиче­ской целью можно использовать такие антигены, как:

- α 1 -фетопротеин. Это гликопротеин (м.м. около 70 кД), образующийся в печени эмбриона. Его синтез прекращается после рождения и содержание его в крови находится на столь низких величинах, что можно обнаружить только радиоиммунным методом. Повышение его содержания характерно для ра­ка печени, а также для тератом различной природы и локали­зации;

Канцероэмбриональный антиген. Это также гликопротеид (м.м. 180-200 кД); выделено 3 различных вида данного ан­тигена. В физиологических условиях он имеется в клетках сли­зистой пищеварительного тракта и с их поверхности постоян­но выделяется в просвет кишечника. В крови его очень мало (следы) и он выявляется иммунохимически. Концентрация этого антигена в крови возрастает при раке прямой кишки, толстого кишечника, печени, бронхов, доброкачественных по­липах кишечника, язвенном колите. Содержание этого антиге­на может быть также повышено и при всех состояниях, кото­рые сопровождаются повышенной секрецией слизи: хроничес­кий бронхит, при курении.

Утрата опухолевыми клетками одних антигенов (органоспецифических) и появление в них эмбриональных антигенов (к которым не образуются антитела, поскольку они восприни­маются иммунной системой как свои) способствует «антиген­ной маскировке» опухолевых клеток и «неузнаваемости» их иммунной системой.

Кроме того, опухолевые клетки несут на своей поверхнос­ти туморассоциированные трансплантационные антигены - ТАТА. Именно эти антигены вызывают каскад реакций им­мунной системы, результатом которых является торможение роста опухоли или цитолиз трансформированных клеток.

Развитие опухоли в результате действия химических канцерогенов в настоящее время рассматривается как процесс не одномоментный, а многоэтапный. Многостадийность канцерогенеза может иметь два аспекта 1) этнологический - каждая стадия вызывается своим специфическим агентом, 2) морфологический - каждая стадия имеет только ей присущие морфологические и биологические проявления.

Рассмотрение первого аспекта имеет прямое отношение к пониманию этиологических факторов, играющих роль в возникновении и развитии злокачественных опухолей человека. Наиболее принятой схемой в настоящее время является двух стадийная на первой стадии (инициации) происходит описанное выше взаимодействие генотоксичесхого канцерогена с геномом клетки, приводящее к ее полной или частичной трансформации.

На второй стадии (промоции) происходит или превращение частично трансформированной клетки в опухолевую клетку, или пролиферация полностью трансформированной клетки с образованием опухоли. Эта гипотеза о двухстадийном развитии опухолей была предложена более 40 лет тому назад на основании опытов, проведенных на коже мышей, где в качестве инициатора применялась однократная субканиерогенная доза БП, MX или ДМБА (7,12-диметилбенз(а)антрацен), а в качестве промотора - длительное нанесение кротонового масла.

Были установлены определенные закономерности инициации - промоции комбинация инициатор - промотор эффективна лишь в указанной, а не в обратной последовательности; инициация необратима, а промоция до определенного момента обратима, т е отмена промотора может вести к регрессии возникших папиллом, инициатор может быть применен однократно, а промотор должен обязательно применяться длительно; эффект от комбинации инициатора с промотором во много раз превышает сумму эффектов каждого из них, взятого в отдельности, и т. д. Последнее было особенно демонстративно: если применявшаяся доза ПАУ и применявшаяся доза кротонового масла сами по себе или вовсе не вызывали папиллом кожи, или вызывали единичные опухоли, то их комбинация в указанной последовательности приводила к появлению множественных папиллом у всех или почти у всех мышей. При достаточно длительном нанесении кротонового масла часть папиллом малигнизировалась.

Поскольку в этих опытах примененная доза кротонового масла опухолей сама по себе не вызывала, был сделан вывод о том, что инициация - промоция - это усиление канцерогенеза неканцерогенным агентом. Практическое значение этого вывода должно было быть велико, учитывая, что неканцерогенных агентов, способных стимулировать рост опухолей, в окружающей человека среде заведомо больше, чем самих канцерогенов Развитие опухолей под влиянием одних канцерогенов (без каких-либо дополнительных воздействий) объясняли тем, что они обладают н инициирующей н промоторной активностью, и их стали называть «полными» канцерогенами.

В течение трех десятилетий этот феномен воспроизводился лишь на коже мышей, поэтому его стали считать экспериментальным курьезом, не имеющим отношения ие только к человеку, но и к развитию опухолей в других органах животных Начиная с 70-х годов феномен инициации - промоции был воспроизведен на опухолях внутренних органов мышей, крыс и хомяков, вызванных самыми различными канцерогенами. Поскольку гипотеза двухстадий-ного канцерогенеза ныне постоянно используется при анализе возможных причин развития опухолей человека, следует вкратце остановиться на новых экспериментальных моделях инициации - промоции.

Использование этих моделей позволило выделить 2 группы стимуляторов канцерогенеза одни, влияющие на транспорт, метаболизм канцерогенов, их связывание с ДНК, т е на стадию инициации опухолей (их назвали коканцерогенами), и другие - промоторы, стимулирующие пролиферацию в уже возникших опухолевых клетках, т е ускоряющие рост опухоли, каким бы канцерогеном она ни была вызвана Модификаторы, тормозящие эти стадии канцерогенеза, называют актиканцерогеиами и антипромоторами соответственно. Таким образом, если модификатор вводится перед или одновременно с действием канцерогена, то он будет влиять на инициации Для изучения промоторной активности модификатор должен вводиться обязательно после прекращения действия канцерогена.

В качестве инициаторов в подобных опытах используют канцерогены» тропные к данному органу Наибольшее число исследований проведено на опухолях печени крыс: здесь промоторный эффект оказывали фенобарбитал, полихлорбифенилы, пестициды, ДДТ и диэлдрин, гексахлорбензол, эстрогенные препараты, желчные кислоты, причем разработаны ускоренные системы для обнаружения промоторной активности Для опухолей толстой кншки у крыс промоторами являются некоторые желчные кислоты, диета с высоким содержанием жира Для опухолей мочевого пузыря - сахарин, аллопуринол, аскорбикат натрия, эриторбат натрия, фенилфенат натрия, фенотиазин, бутилгидроксванинзол. В отношении опухолей почек у крыс промоторами были тестостерона пропионат, нефротоксические агенты (фолиевая кислота, дихлорфеинлеукцинимид, натриевая соль нитрилоуксусной кислоты, циклодекстрин и др.).

Индукция опухолей матки и молочной железы может быть ускорена эстрогенами, а опухолей железистого желудка у крыс - желчными кислотами, поваренной солью, опухолей щитовидной железы - метил- и пропилтиоурацилом, йод-дефицитной диетой, 3-амиио-1,2,4-триазолом, фенобарбиталом, 4,4"-диаминодифенилметаном

Московский государственный медико-стоматологический университет им. А.И. Евдокимова

Кафедра онкологии и лучевой терапии

Заведующий кафедрой: д.м.н, профессор Вельшер Леонид Зиновьевич

Преподаватель: к.м.н, доцент Генс Гелена Петровна

Реферат на тему:

Канцерогенез.

Выполнила: студентка 5 курса,

лечебного факультета (дн.отд.),

Меньщикова Е.В.

Москва 2013

Согласно теории Вирхова, патология клетки лежит в основе любой болезни. Канцерогенез - последовательный, многоступенчатый процесс накопления клеткой изменений ключевых функций и характеристик, приводящих к ее озлокачествлению. Клеточные изменения включают нарушения регуляции процессов пролиферации, дифференцировки, апоптоза и морфогенетических реакций. В результате клетка приобретает новые качества: иммортализацию ("бессмертие", т.е. способность к неограниченному делению), отсутствие контактного ингибирования и способность к инвазивному росту. Кроме того, опухолевые клетки получают способность избегать действия факторов специфического и неспецифического противоопухолевого иммунитета организма хозяина. В настоящее время ведущая роль в индукции и промоции канцерогенеза принадлежит генетическим нарушениям. Около 1% генов человека ассоциированы с канцерогенезом.

4 стадии канцерогенеза:

    Стадия инициации (изменение клеточных онкогенов, выключение генов-супрессоров)

    Фаза метаболической активации(превращение проканцерогенов в канцерогены)

    Фаза взаимодействия с ДНК (прямой и непрямой генотоксический эффект)

    Фаза фиксации индуцированных изменений (повреждения ДНК должны проявиться в потомстве клеток-мишеней, способных давать пролиферативный пул.)

    Стадия промоции

I(ранняя) фаза- перестройка фенотипа, происходящая вследствие эпигенетических изменений (т.е. генной экспрессии), индуцированных опухолевым промотором.

Изменение генной экспрессии, что дает возможность клетке функционировать в условиях пониженного синтеза генных продуктов.

II (поздняя) фаза - представляет собой качественно-количественные изменения, охватывающие период функционирования клетки в условиях переключения генной активности, завершающийся образованием неопластически трансформированных клеток (неопластическая трансформация - проявление признаков, характеризующих возможность клеток к неограниченной пролиферации и дальнейшей профессии, т.е. накоплению злокачественного потенциала

    Стадия прогрессии: разработана L.Foulds в 1969 г. Происходит постоянный стадийный прогрессирующий рост опухоли с прохождением ею ряда качественно отличных стадий в сторону повышения ее злокачественности. В ходе прогрессии опухоли может происходить ее клональная эволюция, появляются новые клоны опухолевых клеток, возникающие в результате вторичных мутаций. Опухоль постоянно изменяется: происходит прогрессия, как правило, в сторону повышения ее злокачественности, которая проявляеются инвазивным ростом и развитием метастазов. Стадия инвазивной опухоли характеризуется возникновением инфильтрирующего роста. В опухоли появляются развитая сосудистая сеть и строма, выраженная в различной степени. Границы с прилежащей неопухолевой тканью отсутствуют из-за прорастания в нее опухолевых клеток. Инвазия опухоли протекает в три фазы и обеспечивается определенными генетическими перестройками. Первая фаза инвазии опухоли характеризуется ослаблением контактов между клетками, о чем свидетельствуют уменьшение количества межклеточных контактов, снижение концентрации некоторых адгезивных молекул из семейства CD44 и других и, наоборот, усиление экспрессии прочих, обеспечивающих мобильность опухолевых клеток и их контакт с экстрацеллюлярным матриксом. На клеточной поверхности снижается концентрация ионов кальция, что приводит к повышению отрицательного заряда опухолевых клеток. Усиливается экспрессия интегриновых рецепторов, обеспечивающих прикрепление клетки к компонентам экстрацеллюлярного матрикса - ламинину, фибронектину, коллагенам. Во второй фазе опухолевая клетка секретирует протеолитические ферменты и их активаторы, которые обеспечивают деградацию экстрацеллюлярного матрикса, освобождая тем самым ей путь для инвазии. В то же время продукты деградации фибронектина и ламинина являются хемоаттрактантами для опухолевых клеток, которые мигрируют в зону деградации в ходе третьей фазы инвазии, а затем процесс повторяется снова.

    Стадия метастазирования - заключительная стадия морфогенеза опухоли, сопровождающаяся определенными гено- и фенотипическими перестройками опухоли. Процесс метастазирования связан с распространением опухолевых клеток из первичной опухоли в другие органы по лимфатическим и кровеносным сосудам, периневрально, имплантационно, что стало основой выделения видов метастазирования. Процесс метастазирования объясняется теорией метастатического каскада, в соответствии с которой опухолевая клетка претерпевает цепь (каскад) перестроек, обеспечивающих распространение в отдаленные органы. В процессе метастазирования опухолевая клетка должна обладать качествами:

    проникать в прилежащие ткани и просветы сосудов (мелких вен и лимфатических сосудов);

    отделяться от опухолевого пласта в ток крови (лимфы) в виде отдельных клеток или небольших их групп;

    сохранять жизнеспособность после контакта в токе крови (лимфы) со специфическими и неспецифическими факторами иммунной защиты;

    мигрировать в венулы (лимфатические сосуды) и прикрепляться к их эндотелию в определенных органах;

    инвазировать микрососуды и расти на новом месте в новом окружении.

Метастатический каскад условно может быть разделен на четыре этапа:

    формирование метастатического опухолевого субклона;

    инвазия в просвет сосуда;

    циркуляция опухолевого эмбола в кровотоке (лимфотоке);

    оседание на новом месте с формированием вторичной опухоли.

В настоящее время существует несколько концепций онкогенеза, каждая из которых преимущественно влияет на 1 и(или) 2 этап канцерогенеза

Мутационная теория канцерогенеза Нормальная клетка превращается в опухолевую в результате структурных изменений в генетическом материале, т.е. мутаций. Стало аксиомой представление о многоэтапности процесса канцерогенеза, решающей предпосылкой которого является нерегулируемая экспрессия трансформирующего гена – онкогена, предсуществующего в геноме.

Превращение протоонкогена в активно действующий онкоген обеспечивается следующими механизмами. 1. Присоединение к протоонокгену промотора – участка ДНК, с которым связывается РНК-полимераза, инициирующая транскрипцию гена, в том числе и онкогена, располагающегося непосредственно за ним. Такого рода участки (промоторы) содержатся в больших терминальных повторах (LTR) ДНК-копий РНК-содержащих вирусов. Роль промотора могут выполнять и транспозирующие элементы генома – мобильные генетические элементы, способные перемещаться по геному и встраиваться в различные его участки

2. Вставка в геном клетки энхансера (enchancer – усилитель) – участка ДНК, способного активизировать работу структурного гена, находящегося не только в непосредственной близости от него, но и на расстоянии многих тысяч пар нуклеотидов или даже встроенного в хромосому после него. Свойствами усилителя обладают подвижные гены, LTR ДНК-копий.

3. Хромосомные абберации с явлениями транслокации, роль которых в механизмах опухолевой трансформации клетки можно проиллюстрировать следующим примером. При лимфоме Беркитта конец q-плеча хромосомы 8, отделившись от нее, переходит к хромосоме 14: гомологичный фрагмент последней перемещается к хромосоме 8; а неактивный ген туc (протоонкоген), находившийся в том ее сегменте, который попадает на хромосому 14, встраивается вслед за активными генами, кодирующими тяжелые цепи молекул иммуноглобулинов, и активизируется. Явления реципрокной транслокации между 9-й и 22-й хромосомами имеют место в 95 % случаев миелоцитарного лейкоза. Хромосома 22 с укороченным в результате такой транслокации одним плечом получила название Филадельфийской.

4.Точечные мутации протоонкогена, к примеру, C-H-raS, согласно имеющимся сведениям, отличается от нормального гена (C-H-raS) всего одной аминокислотой, но, тем не менее обусловливает снижение гуанозинтрифосфатазной активности в клетке, что может вызвать рак мочевого пузыря у человека.

5. Амплификация (умножение) протоонкогенов, обладающих в норме небольшой следовой активностью, обусловливает увеличение их общей активности до уровня, достаточного для инициации опухолевой трансформации. Известно, что в икринке шпорцевой лягушки около 5 млн копий гена туc. После оплодотворения и дальнейшего деления яйцеклетки число их прогрессирующе уменьшается. В каждой клетке будущего головастика в эмбриональный период развития содержится не более 20-50 копий myc-гена, обеспечивающих быстрое деление клеток и рост эмбриона. В клетках же взрослой лягушки выявляются лишь единичные гены туc, в то время как в раковых клетках той же лягушки число их вновь достигает 20-50. 6. Трансдукция неактивных клеточных генов (протоонкогенов) в геном ретровируса и последующее их возвращение в клетку: считается, что онкоген опухолеродного вируса клеточного происхождения; при инфицировании животных или человека таким вирусом «похищенный» им ген попадает в иной участок генома, что и обеспечивает активизацию некогда «молчавшего» гена.

Онкобелки могут:

    имитировать действие факторов роста пути (синдром «самозатягивающейся петли»)

    могут модифицировать рецепторы факторов роста

    действовать на ключевые внутриклеточные процессы

Тканевая теория канцерогенеза

Клетка становится автономной, т.к. нарушается тканевая система контроля пролиферации клоногенных клеток, обладающих активизированными онкогенами. Основным фактом, подтверждающим механизм, основанный на нарушении тканевого гомеостаза, является способность опухолевых клеток нормализоваться при дифференцировке.Изучение перевивной ороговевающей карциномы крысы методом автографического анализа показало (Pierce, Wallace, 1971), что раковые клетки при делении могут давать нормальное потомство, то есть злокачественность генетически не закреплена и не наследуется дочерними клетками, как это предполагалось мутационной гипотезой и молекулярно-генетической теорией. Хорошо известны эксперименты по пересадке ядер опухолевых клеток в предварительно энуклеированные зародышевые клетки: в этом случае развивается здоровый мозаичный организм. Таким образом, вопреки представлению о якобы сохранении трансформированных онкогенов в нормализованных опухолевых клетках при дифференцировке, есть основание поставить под сомнение связь генетических нарушений с механизмом трансформации в качестве непосредственной причины.

Вирусная теория канцерогенеза

Чтобы стать злокачественной клетка должна приобрести по крайней мере 6 свойств как результат мутации генов, ответственных за деление клетки, апоптоз, репарацию ДНК, внутриклеточные контакты и т.д. В частности, на пути к приобретению злокачественности клетка, как правило: 1) самодостаточна в плане сигналов пролиферации (что может быть достигнуто активацией некоторых онкогенов, например, Н-Ras); 2) нечувствительна к сигналам, подавляющим ее рост (что происходит при инактивации гена опухолевого супрессора Rb); 3) способна ослабить или избежать апоптоза (что происходит в результате активации генов, кодирующих факторы роста); 4) формирование опухоли сопровождается усиленным ангиогенезом (что может быть обеспечено активацией гена VEGF, кодирующего ростовые факторы эндотелия сосудов; 5) генетически нестабильна; 6) не подвергается клеточной дифференцировке; 7) не подвергается старению; 8) характеризуется изменением морфологии и локомоции, что сопровождается приобретением свойств к инвазии и метастазированию. Поскольку мутации генов являются событиями случайными и достаточно редкими, их накопление для инициации клеточной трансформации может длиться десятилетиями. Трансформация клетки может произойти гораздо быстрее в случае высокой мутагенной нагрузки и/или дефектности (слабости) механизмов защиты генома (генов p53, Rb, ДНК репарации и некоторых других). В случае же инфицирования клетки онкогенными вирусами, кодируемые вирусным геномом белки, обладающие трансформирующим потенциалом, нарушают номальные клеточные сигнальные связи, обеспечивая условия для активной клеточной пролиферации.

Хорошо известно, что возникновение примерно 15-20% новообразований человека имеют вирусное происхождение. Среди наиболее часто встречающихся таких вирусом индуцированных опухолей можно назвать рак печени, рак шейки матки, рак носоглотки, лимфому Беркитта, лимфому Ходжкина и многие другие. В настоящее время экспертами Международного Агентства по Изучению Рака (МАИР) следующие вирусы рассматриваются в качестве онкогенных для человека:

Вирусы гепатита В и С (Hepatitis B virus и Hepatitis C virus, HBV/ HCV) , вызывающие рак печени; В результате генетических перестроек происходит делеция гена X и некоторой части генов PreS2 , при этом клетки печени становятся HBsAg-негативными и окончательно уходят из-под иммунологического контроля. Далее происходит селекция клеток, в которых интегрирована ДНК HBV и которые содержат 3 основных транс-активатора, а именно: HBx, LHBs и/или MHBs(t). Транс-активаторы активируют клеточные гены, ответственные за пролиферацию клеток, синтез цитокинов (IL-6) и т.д. Цитокины, секретируемые клетками, содержащими транс-активаторы, создают микроокружение из прилегающих фибробластов, эндотелиальных клеток и др., в свою очередь, выделяющих другие ростовые факторы, стимулирупующие по паракринному типу пролиферацию гепатоцитов. Усиленная пролиферация гепатоцитов может привести к генетическим поломкам, которые будут способствовать селекции клеток с ускоренной пролиферацией и приобретению ими признаков злокачественной трансформации. В опухолевых клетках печени часто имеет место инактивация опухолевых супрессоров р53, Rb, BRCA2 и Е-кадхерина. Отмечена также активация теломеразы в печеночных клетках на стадии их превращения в злокачественные и нарушение функционирования ряда важных сигнальных систем.

Определенные типы (16 и 18) папаломавирусов человека (Human papillomavirus, HPV) - являющихся этиологическим агентом рака шейки матки и некоторых опухолей ано-генитальной сферы; Установлено, что трансформирующими генами являются в основном гены Е6 и Е7 , в меньшей степени Е5 . Механизм функционирования генов Е6 и Е7 сводится к взаимодействию продуктов этих генов с продуктами 2-х генов супрессоров р53 и Rb и последующей инактивации последних, что приводит к неконтролируемому росту инфицированных клеток.Проведенные исследования показали, что каждый из выше упомянутых 3-х генов латентной HPV инфекции, обладающий трансформирующими потенциями, вносит свой вклад внарушение сигнальных путей клетки, увеличение ее пролиферативной активности и накопление дополнительных генетических изменений. Стоит отметить что созданы терапевтические и профилактические вакцины против ВПЧ. Которые стимулюруют иммунную систему против Е6 и/или Е7 ранних вирусных белков (опухолевых антигенов), препятствующих входу инфицированных клеток в апоптоз и фазу старения, а также генерируют вирус-нейтрализующие антитела, специфические для капсида HPV.

Вирус Эпштейна-Барр (Epstein-Barr virus, EBV ), принимающий участие в возникновении целого ряда злокачественных новообразований;Механизм канцерогенеза сложен и мало изучен. В частности, белок LMP1, локализуясь в мембране, имитирует функцию конститутивно активированного рецептора СD40 и частично замещает эту функцию. Привлекая адаптерные молекулы TRAF через домены активации CTAR1 и CTAR2 активирует транскрипционные факторы AP-1 и NFkB и таким образом индуцирует экспрессию генов, регулируемую этими факторами (рецептор эпидермального фактора роста, EGFR, CD40, поверхностные активационные маркеры, молекулы адгезии и т.д.). Кроме того, LMP1 взаимодействует с Jak3-киназой и таким образом активирует STAT-сигнальные пути, стимулирующие размножение и передвижение клеток. LMP2A активирует киназу Akt/PBK, вызывая ряд эффектов, наиболее ярким из которых является подавление апоптоза. EBNA2 имитирует транскрипционную функцию процессированной формы Notch (трансмембранный белок, преобразующий контакты с окружающими клетками в генетические программы, регулирующие судьбу клетки), конститутивная активность которого ведет к развитию лимфоидных и эпителиальных опухолей. Основная функция EBNA1 состоит в обеспечении репликации и поддержания эписомального состояния генома ВЭБ.

Герпесвирус человека 8-го типа (Human herpesvirus type 8, HHV-8) , игращий важную роль в возникновении саркомы Капоши, первичной выпотной лимфомы, болезни Кастельмана и некоторых других патологических состояний;

Вирус Т-клеточного лейкоза человека (Human T-cell leukemia virus, HTLV-1) , являющийся этиологическим агентом Т-клеточного лейкоза взрослых, а также тропического спастического парапареза и ряда других неонкологических заболеваний.Механизм транс-актививации транскрипции ряда вирусных и клеточных генов (цитокинов, их рецепторов, циклинов и др), ассоциированных с клеточной пролиферацией и способствующих росту инфицированных HTLV-1 клеток. Белок Тах может и транс-репрессировать транскрипции определенных генов, действуя через транскрипционный ко-активатор р300. Тах также инактивирует чекпоинты (сверочные точки) клеточного цикла и ДНК-полимеразу (DNApol), снижая активность всех 3-х систем репарации ДНК и вызывая тем самым генетическую нестабильность, что в конечном итоге приводит к возникновению опухолевой клетки.

Вирус иммунодефицита человека (Human immunodeficiency virus, HIV) - не обладающего трансформирующими генами, но создающего необходимые условия (иммунодефицит) для возникновения рака.

Несмотря на различную организацию онкогенных вирусов человека, неодинаковый спектр их клеток-мишеней, они обладают рядом общих биологических свойств, а именно: 1) вирусы лишь инициируют патологический процесс, усиливая пролиферацию и генетическую нестабильность инфицированных ими клеток; 2) у инфицированных онкогенными вирусами лиц возникновение опухоли, как правило, событие нечастое: один случай новообразования возникает среди сотен, иногда тысяч инфицированных; 3) после инфицирования до возникновения опухоли имеет место продолжительный латентный период, длящийся годами, иногда десятилетиями; 4) у большинства инфицированных лиц возникновение опухоли не является обязательным, но они могут составить группу риска, с более высокой возможностью ее возникновения; 5) для злокачественной трансформации инфицированных клеток необходимы дополнительные факторы и условия, приводящие к селекции наиболее агрессивного опухолевого клона.

Теория химического канцерогенеза.

Большинство «сильных» канцерогенов обладают и инициирующими, и промоторными свойствами, а все промоторы, за редкими исключениями, проявляют канцерогенную активность, если их применять в высоких дозах и достаточно долго. Деление на инициаторы и промоторы в определенной степени соответствует делению канцерогенов 1. Генотоксические

Канцерогены прямого действия при растворении распадаются с

образованием высокоактивных производных, содержащих избыточный положительный заряд, который взаимодействует с отрицательно заряженными (нуклеофильными) группами молекулы ДНК, образуя стабильную ковалентную связь. При репликации нуклеотид,связанный с остатком канцерогена, может быть неправильно считан ДНК полимеразой, что приводит к мутации.(Ex: N-нитрозоалкилмочевины,азотистый иприт,диэпоксибутан, бета-пропиолактон, этиленимин)

Канцерогены непрямого действия являются малореакционноспособными соединениями, активирующиеся по действием ферментов.

ДЕТОКСИКАЦИЯ ХИМИЧЕСКИХ КАНЦЕРОГЕНОВ (окисление проканцерогена изоформами цитохрома Р-450)

МЕТАБОЛИЧЕСКАЯ АКТИВАЦИЯ (Некоторые проканцерогены активируются, превращаясь в непосредственные канцерогены - высокореактивные производные, ковалентно связывающиеся склеточными белками и нуклеиновыми кислотами.

2. Негенотоксические

К ним относят соединения различной химической

структуры и различного механизма действия: промоторы двухстадийного канцерогенеза, пестициды, гормоны, волокнистые материалы, прочие соединения (нужно заметить, что и пестициды, и гормоны могут быть промоторами канцерогенеза). Негенотоксические канцерогены часто называют канцерогенами промоторного типа.Промоторы, как уже говорилось, должны воздействовать в высоких дозах, длительно, и, что очень важно, беспрерывно. Более или менее длительный перерыв в их применении сопровождается

остановкой канцерогенеза (новые опухоли больше не появляются) или даже регрессией возникших опухолей. Они вызывают клеточную пролиферацию, тормозят апоптоз, нарушают взаимодействие между клетками. Известны следующие механизмы действия негенотоксических канцерогенов:

а) промоция спонтанной инициации;

б) цитотоксичность со стойкой клеточной пролиферацией (митогенный эффект);

в) оксидативный стресс;

г) образование комплекса канцероген- рецептор;

д) торможение апоптоза;

ж) нарушение межклеточных щелевых контактов.

КАНЦЕРОГЕННООПАСНЫЕ КЛАССЫ ХИМИЧЕСКИХ СОЕДИНЕНИЙ:

    Полициклические ароматические углеводороды.

    Ароматические амины.

    Аминоазосоединения.

    Нитроарены.

    Нитрозосоединения.

    Афлатоксины.

    Металлы(никель, хром, беррилий, кадмий, кобальт, мышьяк, свинец, ртуть.)

    Волокнистые и неволокнистые силикаты.

Гормональная теория канцерогенеза Самостоятельное существование гормонального канцерогенеза у человека в течение длительного времени отрицали. Полагали, что гормоны играют роль факторов риска, предрасполагающих к развитию ведущих неинфекционных заболеваний, включая злокачественные новообразования.

С изучением так называемых аддуктов - комплексов ДНК с соответствующим соединением, в том числе гормональной природы в опытах in vivo характер получаемых результатов, а соответственно и выводов, стал меняться. Существенную роль в признании способности некоторых гормонов (типа диэтилстильбэстрола и природных эстрогенов) вызывать повреждение ДНК сыграли исследования группы И.Лиир совместно с Дж.Вейс - одной из ведущих специалистов в области изучения метаболитов классических эстрогенов - катехолэстрогенов, в частности 2- и 4-гидроксиэстрона и 2- и 4-гидроксиэстрадиола. Результатом этой продолжительной работы стала оригинальная концепция, суть которой такова: классические эстрогены могут в той или иной степени превращаться в катехолэстрогены, которые вовлекаются в реакции обменно-востановительного цикла с образованием хинонов, семихинонов и других свободнорадикальных метаболитов, способных повреждать ДНК, формировать ее аддукты, приводить к мутациям, а значит, инициировать неопластическую трансформацию. Основные возражения против этой концепции сводятся к тому, что катехолэстрогены весьма нестойки, их концентрация в крови и тканях относительно низка и что в упомянутой модели никак не учитывается гормон-индуцированная усиленная пролиферация. Тем не менее прямые эксперименты показали, что из всех изученных эстрогенных производных наиболее канцерогенны 4-гидроксипроизводные, которые одновременно и самые генотоксичные. У 2-гидроксиметаболитов почти нет бластомогенного эффекта, но они могут подавлять активность катехол-О-метилтрансферазы (КОМТ) и соответственно - препятствовать инактивации 4-гидроксипроизводных, что имеет и важное практическое значение. По данным группы Х.Адлеркрейц, полученным методом газовой хроматографии и масс-спектрометрии, уровень катехолэстрогенов в крови и особенно их экскреция с мочой далеко не столь низки. Интересно, что на основании этих результатов установлены существенные различия между азиатскими и европеоидными популяциями, отличающимися и по частоте выявления онкологических заболеваний органов репродуктивной системы.

Есть все основания полагать, что возможны два основных типа гормонального канцерогенеза: промоторный или физиологический, когда действие гормонов сводится к роли своеобразных кофакторов, усиливающих клеточное деление (стадию промоции); и генотоксический, когда гормоны или их производные оказывают непосредственное действие на ДНК, способствуя индукции мутаций и инициации опухолевого роста. О реальности первого говорят и классические наблюдения, и представление о факторах риска и гормонально-метаболической предрасположенности к развитию опухолей, и многочисленные эпидемиологические и лабораторные данные. В пользу второго свидетельствует все большее число работ, в которых демонстрируется способность гормонов (пока - преимущественно эстрогенов) повреждать ДНК: образовывать аддукты, усиливать расплетение ее цепей, формировать разрывы и т.д., что может приводить к другим, более специфическим (пробластомогенным) изменениям на уровне клеточного генома.

Антибластомная резистентность Антибластомной резистентностью называется устойчивость организма к опухолевому росту. Различают три группы механизмов антибластомной резистентности.

Антиканцерогенные механизмы, действующие на этапе взаимодействия канцерогенного агента с клетками: инактивация химических канцерогенов в микросомальной системе; их элиминации из организма в составе желчи, мочи, кала; выработка антител к соответствующим канцерогенам; ингибирование свободнорадикальных процессов и перекисного окисления липидов (антирадикальные и антиперекисные реакции), обеспечиваемое витамином Е, селеном, супероксиддисмутазой и др.; взаимодействие с онкогенными вирусами интерферона, антител и др. Антитрансформационные механизмы: поддержание генного гомеостаза за счет процессов репарации ДНК; синтез ингибиторов опухолевого роста, обеспечивающих подавление размножения клеток и стимуляцию их дифференцировки (функция антионкогенов).

Антицеллюлярные механизмы, направленные на ингибирование и уничтожение отдельных опухолевых клеток, на предотвращение образованияих колонии, т.е. опухоли. К ним относятся иммуногенные механизмы – неспецифические (реакция ЕК) и специфические (реакция иммунных Т-киллеров; иммунных макрофагов), – неимунногенные факторы и механизмы (фактор некроза опухолей, интерлейкин-1, торможения аллогенное, контактное, кей-лонное – регулирующее нейротрофическое и гормональное влияние – и др.).

Таким образом изучение процессов канцерогенеза является ключевым моментом как для понимания природы опухолей, так и для поиска новых и эффективных методов лечения онкологических заболеваний.