Светочувствительные рецепторы палочки. Световая чувствительность

Светочувствительная часть глаза представляет собой мозаику реагирующих на свет клеток (фоторецепторов), расположенных на сетчатке. Сетчатка глаза содержит два типа светочувствительных рецепторов, занимающих область с раствором около 170° относительно зрительной оси: 120…130 млн. палочек (длинные и тонкие рецепторы ночного зрения), 6.5…7,0 млн. колбочек (короткие и толстые рецепторы дневного зрения). Прежде чем попасть на сетчатку свет должен вначале пройти слой нерв­ной ткани и слой кровеносных сосудов. Такое расположение светочувствительных элементов с точки зрения здравого смысла не является оптимальным. Любой разработчик телевизионной камеры позаботился бы о монтаже соединительных проводов так, чтобы не мешать свету, падающему на фотоэлемен­ты. Сетчатка построена по другому принципу и причины для такого обратного устройства сетчатки не полностью поняты.

Палочки и кол­бочки плотно примыкают друг к другу удлиненными сторона­ми. Размеры их очень малы: длина палочек 0,06 мм,диаметр 0,002 мм,длина и диаметр колбочек соответственно 0,035 и 0,006 мм. Плотность размещения палочек и колбо­чек на различных участках сетчатки составляет от 20000 до 200000 на 1 мм 2 . При этом колбочки преобладают в цент­ре сетчатки, палочки – на пе­риферии. В центре сетчатки на­ходится так называемое жел­тое пятно овальной формы (длина 2 мм,ширина 0,8 мм).В этом месте находятся почти одни колбочки. «Желтое пят­но» является участком сетчат­ки, обеспечивающим наиболее отчетливое резкое зрение.

Палочки и колбочки разли­чаются между собой содержа­щимися в них светочувстви­тельными веществами. Вещест­во палочек – родопсин (зри­тельный пурпур). Максималь­ное светопоглощение родопсина соответствует длине волны при­мерно 510 нм(зеленый свет), т.е., палочки имеют максималь­ную чувствительность к излучению с λ = 510 нм. Светочувствительное вещество колбочек (йодопсин) бываетеси трех типов, каждое из которых имеет максимальное поглощение в различных зонах спектра.

Под действием света молекулы светочувствительных веществ диссоциируют (распадаются) на положительно и отрицательно заряженные частицы. Когда концентрация ионов и, следовательно, их суммарный электрический заряд достигают опре­деленной величины, под действием заряда в нервном волокне возникает импульс тока, который направляется в мозг.

Реакции светового распада родопсина и йодопсина обрати­мы, т. е. после того, как под действием света они были разло­жены на ионы и заряд ионов возбудил в нерве импульс тока, эти вещества снова восстанавливаются в своей первоначальной чув­ствительной к свету форме. Энергию для восстановления дают продукты, которые поступают в глаз через разветвленную сеть мельчайших кровеносных сосудов. Таким об­разом, в глазу устанавливается непрерывный цикл разрушения и последующего восстановления светочувствительных веществ.

Если уровень количества света, действующих на глаз, не из­меняется по времени, то между концентрациями веществ в со­стояниях распада и первоначальной светочувствительной формы устанавливается подвижное равновесие. Величина этой концентрации зависит от количеств света, действующих на глаз в данный или предшествующий моменты, т.е. световая чувствительность глаза изменяет­ся при различных уровнях действующего света.

Известно, что, если войти с яркого света в очень слабо осве­щенное помещение, сначала глаз ничего не различает. Постепен­но способность глаза различать предметы восстанавливается. После длительного пребывания в темноте (около 1 ч)чувстви­тельность глаза становится максимальной, так как концентра­ция светочувствительных веществ достигает своего верхнего предела. Если же после длительного пребывания в тем­ноте выйти на свет, то в первый момент глаз будет находиться в состоянии ослепления: восстановление светочувствительных веществ отстает от их распада. Постепенно глаз приспосабливается к уровню освещения и начинает рабо­тать нормально.

Напомним, что свойство глаза приспосабливаться к уровню количества дей­ствующего света, которое выражается изменением его световой чувствительности, называется адаптацией .

Палочки – ночное зрение. Палочки могут реагировать на самое малое количество света. Они ответственны за нашу способность видеть при лунном свете, свете звездного неба и даже в тех случаях, когда это звездное небо скрыто обла­ками. На рис. 2.2 пунктирная кривая отображает зависимость чувстви­тельности палочек от длины волны. Палочки обеспечивают только ахрома­тическое, или нейтральное в цветовом отношении восприятие в виде белого, серого и черного. Более того, каждая палочка не имеет непосредственной связи с мозгом. Они объединяются в груп­пы. Подобное устройство объясняет высокую чувствительность палочкового зрения, но препятствует различению с его помощью мельчайших деталей. Эти факты поясняют общую бесцветность и нечеткость ночного зрения и справедливость пословицы: «Ночью все кошки се


ры».

Рис. 2.2. Относительная спектральная чувствительность палочек и колбочек

Колбочки – дневное зрение. Реакция колбочек более сложна, чем у палочек. Вместо простого различения света и темноты, а также восприятия ряда различных серых цветов, колбочки обеспечивают восприятие хроматических цветов. Другими сло­вами, с помощью колбочкового зрения мы можем видеть различные цвета. Спектральное распределение чувствительности колбочкового зрения по длинам волн показано на рис. 2.2 сплошной линией. Эту кривую принято называть кривой видности, а также кривой спектральной чувствительности глаза. Палочковое зрение по сравнению с колбочковым гораздо более чувствительно к излучениям коротковолнового участ­ка видимого спектра, а чувствительность к излучениям длинно­волнового (красного) участка спектра примерно такая же, как у колбочек. Однако колбочки продолжают реагировать на малые увеличения интенсивности падающего света (формирующего изоб­ражение на сетчатке) даже тогда, когда плотность его потока на какое-то время становится столь велика, что палочки уже не реагируют на них – они насыщены. Иначе говоря, все палочки в таком случае дают максимально возможное количество нервных сигналов. Таким образом, наше дневное зрение обеспечивается почти полностью колбочками. Сдвиг чувствительности к воздей­ствию света по оси длин волн от колбочкового (дневного) зрения к палочковому (или ночному) зрению носит наиме­нование эффекта Пуркинье (правильнее Пуркине). Этот «сдвиг Пуркинье», названный так в честь впервые открывшего его в 1823 г. чешского ученого Пуркине, обусловливает тот факт, что объект, красный при дневном свете, воспринимается нами как черный при ночном или сумеречном освещении, в то время как объект, воспринимаемый днем как голубой, ночью кажется свет­ло-серым.

Наличие у человека двух типов светочувствительных приемников (палочек и колбочек) представляет собой большое преимущество. Не всем животным так повезло. Куры, например, имеют только колбочки и поэтому должны ложиться спать с заходом солнца. У сов же есть только палочки; они вынуждены весь день щурить глаза.

Палочки и колбочки – сумеречное зрение. В сумеречном зрении участвуют и палочки, и колбочки. Сумерки – это диапазон освещения, который простирается от освещения, создаваемого излучением от неба при солнце, опустившемся больше, чем на несколько градусов за горизонт, до освещения, которое дает поднявшаяся высоко в ясное небо луна в половинной фазе. К суме­речному зрению относится и видение в слабо освещенном (напри­мер, свечами) помещении. Поскольку в таких условиях относи­тельное участие палочкового и колбочкового зрений в общем зри­тельном восприятии непрерывно изменяется, суждения о цвете отличаются крайней ненадежностью. Тем не менее, имеется ряд продук­тов, цветовую оценку которых необходимо производить именно с помощью подобного смешанного зрения, так как они и предна­значены для потребления нами именно при тусклом свете. Приме­ром может служить фосфоресцирующая краска, используемая в дорожных знаках для условий затем­нения.

Работа мозга

Информация от рецепторов передается в мозг по зрительному нерву, содержащему около 800 тысяч волокон. Кроме такой прямой передачи возбуждения от сетчатки к мозговым центрам существует сложная обратная связь для управления, например, движениями глазных яблок.

Где-то в сетчатке происходит сложная переработка информации – логарифмирование плотности тока и преобразование логарифма в частоту импульсов. Далее информация о яркости, кодированная частотой импульсов, по волокну зрительного нерва передается в мозг. Однако по нерву проходит не просто ток, а сложный процесс возбуждения, некоторое сочетание электрических и химических явлений. Отличие от электрического тока подчеркивается тем, что скорость распространения сигнала по нерву очень мала. Она лежит в пределах от 20 до 70 м/с.

Поступающая от трех типов колбочек информация преобразуется в импульсы и до передачи в мозг кодируется в сетчатке. Эта закодированная информация посылается в виде сигнала о яркости от всех трех типов колбочек, а также в виде разностных сигналов каждых двух цветов (рис. 2.3). Сюда подключается также и второй яркостный канал, берущий начало, вероятно, от независимой палочковой системы.

Первый разностный цветовой сигнал представляет собой сигнал К-З. Он формируется красными и зелеными колбочками. Второй сигнал представляет собой сигнал Ж-С, который получается аналогичным образом, за исключением того, что информация о желтом цвете получается при сложении входных сиг


налов из К+З колбочек.

Рис.2.3. Модель зрительной системы

Мозг не раз уподобляли гигантскому центру, собираю­щему и перерабатывающему большой объем информации. Попытки разобраться в миллионах соединений этого неимо­верно сложного устройства были в значительной степени успешными. Мы знаем, например, что зрительный нерв одного глаза соединяется со зрительным нервом другого (перекрест зрительных нервов) таким образом, что нервные волокна правой половины одной сетчатки идут рядом с волокнами от правой половины другой сетчатки и после прохождения ретрансля­ционной станции (коленчатого тела) в среднем мозгу заканчивают свой путь почти в одном и том же месте в затылочной доле мозга, в задней его части. Возбуждения сетчаток проеци­руются в этой доле, причем часть их, соответствующая центру глаза (желтому пятну), в большой степени усилена по сравнению с возбуждениями других участков сетчатки. На ретрансляцион­ной станции имеется возможность для боковых соединений, да и сама затылочная часть имеет множество соединений со всеми другими участками мозга.

Самая передняя часть глаза называется роговица . Она прозрачная (пропускает свет) и выпуклая (преломляет свет).


За роговицей находится радужная оболочка , в центре которой расположено отверстие - зрачок. Радужная оболочка состоит из мышц, которые могут изменять размер зрачка, и таким образом регулировать количество света, поступающего в глаз. В состав радужной оболочки входит пигмент меланин, который поглощает вредные ультрафиолетовые лучи. Если меланина много, то глаза получаются карие, если среднее количество - зеленые, если мало - голубые.


За зрачком располагается хрусталик . Это прозрачная капсула, заполненная жидкостью. За счет собственной упругости хрусталик стремится стать выпуклым, при этом глаз фокусируется на близких предметах. При расслаблении ресничной мышцы связки, удерживающие хрусталик, натягиваются и он становится плоским, глаз фокусируется на дальних предметах. Такое свойство глаза называется аккомодация.


За хрусталиком располагается стекловидное тело , заполняющее глазное яблоко изнутри. Это третий, последний компонент преломляющей системы глаза (роговица - хрусталик - стекловидное тело ).


За стекловидным телом, на внутренней поверхности глазного яблока располагается сетчатка . Она состоит из зрительных рецепторов - палочек и колбочек. Под действием света рецепотры возбуждаются и передают информацию в мозг. Палочки находятся в основном на периферии сетчатки, они дают только черно-белое изображение, но зато им достаточно слабого освещения (могут работать в сумерках). Зрительный пигмент палочек – родопсин, производное витамина А. Колбочки сосредоточены в центре сетчатки, они дают цветное изображение, требуют яркого света. В сетчатке имеются два пятна: желтое (в нем самая высокая концентрация колбочек, место наибольшей остроты зрения) и слепое (в нем рецепторов нет совсем, из этого места выходит зрительный нерв).


За сетчаткой (сетчатой оболочкой глаза, самой внутренней) расположена сосудистая оболочка (средняя). Она содержит кровеносные сосуды, питающие глаз; в передней части она видоизменяется в радужную оболочку и ресничную мышцу .


За сосудистой оболочкой располагается белочная оболочка , покрывающая глаз снаружи. Она выполняет функцию защиты, в передней части глаза она видоизменена в роговицу .

Выберите один, наиболее правильный вариант. Функция зрачка в организме человека состоит в
1) фокусировании лучей света на сетчатку
2) регулировании светового потока
3) преобразовании светового раздражения в нервное возбуждение
4) восприятии цвета

Ответ


Выберите один, наиболее правильный вариант. Черный пигмент, поглощающий свет, располагается в органе зрения человека в
1) слепом пятне
2) сосудистой оболочке
3) белочной оболочке
4) стекловидном теле

Ответ


Выберите один, наиболее правильный вариант. Энергия световых лучей, проникших в глаз, вызывает нервное возбуждение
1) в хрусталике
2) в стекловидном теле
3) в зрительных рецепторах
4) в зрительном нерве

Ответ


Выберите один, наиболее правильный вариант. За зрачком в органе зрения человека располагается
1) сосудистая оболочка
2) стекловидное тело
3) хрусталик
4) сетчатка

Ответ


1. Установите путь прохождения луча света в глазном яблоке
1) зрачок
2) стекловидное тело
3) сетчатка
4) хрусталик

Ответ


2. Установите последовательность прохождения светового сигнала к зрительным рецепторам. Запишите соответствующую последовательность цифр.
1) зрачок
2) хрусталик
3) стекловидное тело
4) сетчатка
5) роговица

Ответ


3. Установите последовательность расположения структур глазного яблока, начиная с роговицы. Запишите соответствующую последовательность цифр.
1) нейроны сетчатки
2) стекловидное тело
3) зрачок в пигментной оболочке
4) светочувствительные клетки-палочки и колбочки
5) выпуклая прозрачная часть белочной оболочки

Ответ


4. Установите последовательность прохождения сигналов по сенсорной зрительной системе. Запишите соответствующую последовательность цифр.
1) зрительный нерв
2) сетчатка
3) стекловидное тело
4) хрусталик
5) роговица
6) зрительная зона коры мозга

Ответ


5. Установите последовательность процессов прохождения луча света через орган зрения и нервного импульса в зрительном анализаторе. Запишите соответствующую последовательность цифр.
1) преобразование луча света в нервный импульс в сетчатке
2) анализ информации
3) преломление и фокусирование луча света хрусталиком
4) передача нервного импульса по зрительному нерву
5) прохождение лучей света через роговицу

Ответ


Выберите один, наиболее правильный вариант. Светочувствительные рецепторы глаза – палочки и колбочки – находятся в оболочке
1) радужной
2) белочной
3) сосудистой
4) сетчатой

Ответ


1. Выберите три правильных варианта: к светопреломляющим структурам глаза относятся:
1) роговица
2) зрачок
3) хрусталик
4) стекловидное тело
5) сетчатка
6) жёлтое пятно

Ответ


2. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Оптическая система глаза состоит из
1) хрусталика
2) стекловидного тела
3) зрительного нерва
4) жёлтого пятна сетчатки
5) роговицы
6) белочной оболочки

Ответ


Преломление лучей в глазном яблоке осуществляется с помощью
1) слепого пятна
2) жёлтого пятна
3) зрачка
4) хрусталика

Ответ



1. Выберите три верно обозначенные подписи к рисунку «Строение глаза». Запишите цифры, под которыми они указаны.
1) роговица
2) стекловидное тело
3) радужная оболочка
4) зрительный нерв
5) хрусталик
6) сетчатка

Ответ



2. Выберите три верно обозначенные подписи к рисунку «Строение глаза». Запишите цифры, под которыми они указаны.
1) радужка
2) роговица
3) стекловидное тело
4) хрусталик
5) сетчатка
6) зрительный нерв

Ответ



3. Выберите три верно обозначенные подписи к рисунку, на котором изображено внутреннее строение органа зрения. Запишите цифры, под которыми они указаны.
1) зрачок
2) сетчатка
3) фоторецепторы
4) хрусталик
5) склера
6) желтое пятно

Ответ



4. Выберите три верно обозначенные подписи к рисунку, на котором изображено строение глаза человека. Запишите цифры, под которыми они указаны.
1) сетчатка
2) слепое пятно
3) стекловидное тело
4) склера
5) зрачок
6) роговица

Ответ


Установите соответствие между зрительными рецепторами и их особенностями: 1) колбочки, 2) палочки. Запишите цифры 1 и 2 в правильном порядке.
А) воспринимают цвета
Б) активны при хорошем освещении
В) зрительный пигмент родопсин
Г) осуществляют черно-белое зрение
Д) содержат пигмент йодопсин
Е) по сетчатке распределены равномерно

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Отличия дневного зрения человека по сравнению с сумеречным состоят в том, что
1) работают колбочки
2) различение цветов не осуществляется
3) острота зрения низкая
4) работают палочки
5) различение цветов осуществляется
6) острота зрения высокая

Ответ


Выберите один, наиболее правильный вариант. При рассматривании предмета глаза человека непрерывно двигаются, обеспечивая
1) предупреждение ослепления глаза
2) передачу импульсов по зрительному нерву
3) направление световых лучей на желтое пятно сетчатки
4) восприятие зрительных раздражений

Ответ


Выберите один, наиболее правильный вариант. Зрение человека зависит от состояния сетчатки, так как в ней расположены светочувствительные клетки, в которых
1) образуется витамин А
2) возникают зрительные образы
3) черный пигмент поглощает световые лучи
4) формируются нервные импульсы

Ответ


Установите соответствие между характеристиками и оболочками глазного яблока: 1) белочная, 2) сосудистая, 3) сетчатка. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) содержит несколько слоёв нейронов
Б) содержит в клетках пигмент
В) содержит роговицу
Г) содержит радужку
Д) защищает глазное яблоко от внешних воздействий
Е) содержит слепое пятно

Ответ

© Д.В.Поздняков, 2009-2019

Дополните предложения 1) При сильных ушибах и ожогах нельзя... 2) Уровень уличного шума снижают.. Выберите верные утверждения: 1.

Белочная оболочка глаза (склера) прозрачная.

2. Сосудистая оболочка глаза ярко-красного цвета.

3. Носослезный поток отводит избыток слезной жидкости в носовую полость.

4. Рецепторами сетчатки являются палочки и колбочки.

5. Центральный зрительный анализатор находится в затылочной доле коры больших полушарий, а слуховой - в височной.

6. Рецепторы слуха находятся в барабанной перепонке.

7. Причиной раздражения слуховых рецепторов является деформация их волосковых клеток, возникающая при колебании основной мембраны под покровной пластинкой.

8. В осязании принимают участие тепловые, тактильные, мышечные рецепторы, рецепторы, воспринимающие давление и боль..

А1.Нервная система образована клетками нервной ткани, особенностью которой являются

1. Быстрая регенерация 2.Возбудимость и проводимость 3.Возбудимость и сократимость 4.Волокнистое строение
А2. Из перечисленных функций для спинного мозга не характерна следующая
1. Осуществление простейших рефлексов 2. Проведение сигналов от рецепторов тела в головной мозг 3. Проведение команд головного мозга к скелетным мышцам 4. Управление произвольными движениями скелетных мышц

А3. Величину зрачка и кривизну хрусталика регулируют нервные центры расположенные
1. В продолговатом мозге 2. В среднем мозге 3. В мозжечке 4. в затылочных долях больших полушарий

А4.Центры условных рефлексов расположены
1. в коре больших полушарий 2. в продолговатом мозге 3. в промежуточном мозге 4. в спином мозге

А5. Парасимпатическая нервная система активизируется
1..при большой физической нагрузке 2. в случае опасности 3. при стрессе 4. во время отдыха

А6. Анализатором называют систему, включающую в себя
1. симпатические и парасимпатические волокна 2. рецептор, чувствительный путь, участок центральной нервной системы, двигательный путь, исполнительный орган 3. нейроны, воспринимающие, проводящие и обрабатывающие информацию 4. различные отделы головного мозга
А7. Прикасаясь кончиком языка к горькой таблетке, человек не чувствует горького вкуса, т. к.
1. рецепторы, воспринимающие горький вкус, находятся в стенках пищевода 2. рецепторы, воспринимающие горький вкус, расположены на стенках ротовой полости 3. рецепторы, воспринимающие горький вкус, расположены ближе к корню языка 4. у человека нет рецепторов воспринимающих горький вкус
А8. Сумеречное зрение обеспечивается
1. радужной оболочкой 2. Колбочками 3.палочками 4. Хрусталиком
А9.В результате раздражения пылью или попадания микробов слизистая оболочка глаза воспаляется – развивается
1. близорукость 2.дальнозоркость 3.конъюктивит 4. Катаракта
А. 10 Слуховая труба среднего уха обеспечивает
. 1.колебания жидкости в улитке внутреннего уха 2. передачу звуковых колебаний от барабанной перепонки к суховым косточкам среднего уха 3.
3 преобразование механических колебаний в нервные импульсы 4. Выравнивание давления по разным сторонам барабанной перепонки

В1. Выберите три правильных ответа из шести. При близорукости
1.глазное яблоке укороченное 2.изображение фокусируется перед сетчаткой
3. необходимо носить очки с двояковыпуклыми линзами
4. Глазное яблоко имеет удлиненную форму
5.изображение фокусируется за сетчаткой
6. рекомендуются очки с фокусирующими линзами
Ответ:______________

Установите соответствие между отделом нервной системы и его функциямиФункцииОтдел нервной системы

Допрлните предложения.

1. Изображение в близоруком глазу фокусируется... сечатки, а в дальнозорком... нее.
2. Близорукость исправляется исправляется ... очками, дальнозоркость... .
3. При сильных ушибах и ожогах нельзя.... .

4. Причиной воспаления среднего уха может стать проникновение возбудителей ангины и гриппа по... в среднее ухо.
5. Уровень уличного шума снижают.... .
6. На качелях хорошо тренеруется.... .
7. Что бы узнать запах предмета, надо направить струю воздуха к... .Вдыхать пары незнакомого вещества... .

Отметьте верные утверждения.
1. Белочная оболочка глаза (склера) прозрачна.
2. Сосудистая оболочка глаза ярко-красного цвета.
3. Носослезной проток отводит избыток слезной жидкости в носовую полость.
4. Рецепторами сечатки являются палочки и колбочки.
5. Центральный зритльный анализатор находится в затылочной доле коры полушарий, а слуховой- в височной.
6. Рецепторы слуха находятся в барабанной перепонке.
7. Причиной раздражения слуховых рецепторов является деформация их волосковых клеток, возникающая при колебании основной мамбраны под поктовной пластинкой.

8. В озязании принимают участие тепловые, тактильные, мышечные рецепторы, воспринимающие давление и боль.
_________________________________________________________________
Выберете правильный ответ
1. "Слепое пятно" расположено в месте, где находятся (находится) :
а) палочки;
б) колбочки;
в) выход зрительного нерва;
г) сосудистая оболочка.
2. Овальное м круглое окна, затянутые перепонкой, находятся между:
а) слуховой трубой и глоткой;
б) наружным и средним ухом;
в) средним и внутренним ухом.

А15. Какое образование кожи выполняет выделительную функцию?

1.клетки эпидермиса

2. потовые железы

3. холодовые и тепловые рецепторы

4. подкожная жировая клетчатка

А16. Соматическая нервная система управляет работой

1. скелетных мышц

2. сердца и сосудов

3. кишечника

1. исполнительным органом

2. чувствительным нейроном

3. рецептором

4. вставочным нейроном

А18. В какой оболочке глаза находятся рецепторы в виде палочек и колбочек?

1. белочной

2. сосудистой

3. радужной

4. сетчатке

А19. Социальная природа человека проявляется в

1. приспособленности к прямохождению

2. речевой деятельности

4. образовании условных рефлексов

А20. На рост человека большое влияние оказывают гормоны

1. надпочечников

2. гипофиза

3. щитовидной железы

4. поджелудочной железы

А21. Пример железы смешанной секреции

1. гипофиз

3. поджелудочная железа

4. щитовидная железа

А22. При чтении книг в движущемся транспорте происходит утомление мышц

1. изменяющих кривизну хрусталика

2. верхних и нижних век

3. регулирующих размер зрачка

4. изменяющих объем глазного яблока

А23. Дышать следует через нос, так как в носовой полости

1. происходит газообмен

2. образуется много слизи

3. имеются хрящевые полукольца

4. воздух согревается и очищается

А24. Повышение артериального давления у человека – это

1. нормотония

2. гипердинамия

3. гипертония

4. гипотония

А25. Для уменьшения отека и боли при вывихе сустава следует

1. согреть поврежденный сустав

2. приложить пузырь со льдом к поврежденному суставу

3. самостоятельно вправить вывих в поврежденном суставе

4.попытаться, превозмогая боль, разработать поврежденный сустав

ПОМОГИТЕ ОЧЕНЬ НАДО >>>ОТМЕТЬТЕ ВЕРНЫЕ УТВЕРЖДЕНИЯ.>>>

1 .Белочная оболочка глаза(склера) прозрачна. 2 . Сосудистая оболочка глаза ярко-красного цвета. 3 . Носослезный проток отводит избыток слёзной жидкости в носовую полость. 4. Рецепторами сетчатки являются палочки и колбочки . 5 . Центральный зрительный анализатор находится в затылочной доле коры больших полушарий. а слуховых - в височной 6 . Рецепторы слуха находятся в барабанной перепонке . 7. Причиной раздражение слуховых рецепторов является деформация их волосковых клеток возникающая при колебании основной мембраны под покровной пластинкой. 8 . В осязании принимают участие тепловые, тактильные, мышечные рецепторы, воспринимающие давление и боль. Пожалуйста помогите!!!))

Палочки имеют форму цилиндра с неравномерным, но приблизительно равным диаметром окружности по длине. К тому же длина (равная 0,000006 м или 0,06 мм) в 30 раз превышает их диаметр (0,000002 м или 0,002 мм), из-за чего вытянутый в длину цилиндр действительно очень похож на палочку. В глазу здорового человека насчитывается порядка 115-120 миллионов палочек.

Палочка глаза человека состоит из 4 сегментов:

1 - Наружный сегмент (содержит мембранные диски),

2 - Связующий сегмент (ресничка),

4 - Базальный сегмент (нервное соединение)

Палочки крайне светочувствительны. Достаточно энергии одного фотона (мельчайшая, элементарная частица света) для реакции палочек. Этот факт помогает при так называемом ночном зрении, позволяя видеть в сумерках.

Палочки не способны различать цвета, в первую очередь, это связано с наличием в палочках всего одного пигмента родопсина. Родопсин, или иначе его называют зрительный пурпур, благодаря включенным в себя двум группам белков (хромофор и опсин) имеет два максимума светопоглощения, хотя, учитывая, что один из этих максимумов находится за гранью видимого человеческим глазом света (278 нм – это область ультрафиолета, не видимого глазом), стоит называть их максимумами волнопоглощения. Однако второй максимум поглощения всё же виден глазу - он находится на отметке 498 нм, что как бы на границе между зелёным цветовым спектром и синим.

Достоверно известно, что содержащийся в палочках родопсин реагирует на свет медленнее, чем йодопсин в колбочках. Потому палочки слабее реагируют на динамику светового потока и плохо различают объекты в движении. По этой же причине острота зрения тоже не специализация палочек.

Колбочки сетчатки глаза

Колбочки получили такое название благодаря своей форме, похожей на лабораторные колбы. Длина колбочки равна 0,00005 метра, или 0,05 мм. Ее диаметр в самом узком месте составляет около 0,000001 метра, или 0,001 мм, и 0,004 мм в самом широком. На здорового взрослого человека около 7 миллионов колбочек.

Колбочки менее чувствительны к свету, другими словами, для их возбуждения потребуется световой поток в десятки раз интенсивнее, чем для возбуждения палочек. Однако колбочки способны обрабатывать свет интенсивнее палочек, из-за чего они лучше воспринимают изменение светового потока (например, лучше палочек различают свет в динамике при движении объектов относительно глаза), а также определяют более четкое изображение.

Колбочка человеческого глаза состоит из 4 сегментов:

1 - Наружный сегмент (содержит мембранные диски с йодопсином),

2 - Связующий сегмент (перетяжка),

3 - Внутренний сегмент (содержит митохондрии),

4 - Область синаптического соединения (базальный сегмент).

Причиной вышеописанных свойств колбочек является содержание в них биологического пигмента йодопсина. На момент написания этой статьи были найдены (выделены и доказаны) два вида йодопсина: эритролаб (пигмент, чувствительный к красной части спектра, к длинным L-волнам), хлоролаб (пигмент, чувствительный к зеленой части спектра, к средним M-волнам). На сегодняшний день пигмент, который чувствителен к синей части спектра, к коротким S-волнам, не найден, хотя за ним уже закреплено название – цианолаб.

Разделение колбочек на 3 вида (по доминированию в них цветовых пигментов: эритролаба, хлоролаба, цианолаба) носит название трехкомпонентной гипотезы зрения. Однако существует и нелинейная двухкомпонентная теория зрения, приверженцы которой считают, что каждая колбочка одновременно содержит в себе и эритролаб, и хлоролаб, а значит, способна воспринимать цвета красного и зеленого спектра. При этом роль цианолаба принимает на себя выцветший родопсин из палочек. В поддержку этой теории говорит и то, что люди, страдающие , а именно в синей части спектра (тританопией), так же испытывают трудности с сумеречным зрением (куриная слепота), что является признаком ненормальной работы палочек сетчатки глаза.

Основными светочувствительными элементами (рецепторами) являются два вида клеток: одни в виде стебелька - палочки 110-123 млн . (высота 30 мкм, толщина 2мкм), другие более короткие и более толстые -колбочки 6-7 млн . (высота 10мкм, толщина 6-7 мкм). Они распределены в сетчатке неравномерно. Центральная ямка сетчатки(fovea centralis) содержит только колбочки(до 140 тыс. на 1 мм). По направлению к периферии сетчатки их число уменьшается, а число палочек возрастает.

Каждый фоторецептор - палочка или колбочка состоит из чувствительного к действию света наружного сегмента содержащего зрительный пигмент и внутреннего сегмента, который содержит ядро и митохондрии обеспечивающие энергетические процессы в фоторецепторной клетке

Наружный сегмент светочувствительный участок, где световая энергия преобразуется в рецепторный потенциал Электронно-микроскопические исследования выявили, что наружный сегмент заполнен мембранными дисками, образованными плазматической мембраной. В палочках , в каждом наружном сегменте, содержится 600-1000 дисков , которые представляют собой уплощенные мембранные мешочки, уложенные как столбик монет. В колбочках мембранных дисков меньше. Это частично объясняет более высокую чувствительность палочки к свету (палочку может возбудить всего один квант света , а для активации колбочки требуется больше сотни квантов).

Каждый диск представляет собой двойную мембрану, состоящую из двойного слоя молекул фосфолипидов , между которыми находятся молекулы белка. С молекулами белка связан ретиналь, входящий в состав зрительного пигмента родопсина.

Наружный и внутренний сегменты фоторецепторной клетки разделены мембранами, через которые проходит пучок из 16-18 тонких фибрил . Внутренний сегмент переходит в отросток, с помощью которого фоторецепторная клетка передает возбуждение через синапс на контактирующую с ней биполярную нервную клетку

Наружные сегменты рецепторов обращены к пигментному эпителию, так что свет в начале проходит через 2 слоя нервных клеток и внутренние сегменты рецепторов, а потом достигает пигментного слоя.

Колбочки функционируют в условиях больших освещенностей - обеспечивают дневное и цветовое зрение , а палочки - отвечают за сумеречное зрение.

Видимый нами спектр электромагнитных излучений заключен между коротковолновым (длина волны от 400нм) излучением, которое мы называем фиолетовым цветом и длинноволновым излучением (длина волны до 700 нм ) называемым красным цветом. В палочках находится особый пигмент- родопсин , (состоит из альдегида витамина А или ретиналя и белка) или зрительный пурпур, максимум спектра, поглощения которого находится в области 500 нанометров. Он ресинтезируется в темноте и выцветает на свету. При недостатке витамина А нарушается сумеречное зрение -"куриная слепота".

В наружных сегментах трех типов колбочек (сине-, зелено- и красно-чувствительных ) содержится три типа зрительных пигментов, максимум спектров поглощения которых находится в синей (420 нм ), зеленой(531 нм) и красной(558 нм ) частях спектра . Красный колбочковый пигмент получил название - "йодопсин" . Структура йодопсина близка к родопсину.

Рассмотрим последовательность изменений:

Молекулярная физиология фоторецепции: Внутриклеточные регистрации от колбочек и палочек животных показали, что в темноте вдоль фоторецептора течет темновой ток, выходящий из внутреннегосегмента и входящий в наружный сегмент. Освещение приводит к блокаде этого тока. Рецепторный потенциал модулирует выделение медиатора (глутамата) в синапсе фоторецептора. Было показано, что в темноте фоторецептор непрерывно выделяет медиатор, который действует деполяризующим образом на мембраны постсинаптических отростков горизонтальных и биполярных клеток.


Палочки и колбочки обладают уникальной среди всех рецепторов электрической активностью, их рецепторные потенциалы при действии света - гиперполяризующие, потенциалы действия под их влиянием не возникают.

{ При поглощении света молекулой зрительного пигмента - родопсина в ней происходит мгновенная изомеризация ее хромофорной группы: 11-цис-ретиналь превращается в транс-ретиналь. Вслед за за фотоизомеризацией ретиналя происходят пространственные изменения в белковой части молекулы: она обесцвечивается и переходит в состояние метородопсина II В результате этого молекула зрительного пигмента приобретает способность к взаимодействию с другим примембранным белком г уанозин трифосфат(ГТФ) - связывающим белком – трансдуцином (Т) .

В комплексе с метародопсином трансдуцин переходит в активное состояние и обменивает связанный с ним в темноте ганозитдифосфат(ГДФ) на (ГТФ). Трансфдуцин + ГТФ, активируют молекулу другого примеммбранного белка - фермента фосфодиэстеразы(ФДЭ). Активированная ФДЭ разрушает несколько тысяч молекул цГМФ .

В результате падает концентрация цГМФ в цитоплазме наружного сегмента рецептора. Это приводит к закрытию ионных каналов в плазматической мембране наружного сегмента, которые были открыты в темноте и через которые внутрь клетки входили Na + и Ca . Ионные каналы закрываются вследствие того, что падает концентрация цГМФ, которая держала каналы открытыми. В настоящее время выяснено, что поры в рецепторе открываются благодаря цГМФ циклическому гуанозинмонофосфату .

Механизм восстановления исходного темного состояния фоторецептора связан с повышением концентрации цГМФ. (в темновую фазу с участием алкагольдегидрогеназы + НАДФ)

Т.о поглощение света, молекулами фотопигмента приводит к снижению проницаемости для Nа, что сопровождается гиперполяризацией, т.е. возникновением рецепторного потенциала. Гиперполяризационный рецепторный потенциал, возникший на мембране наружного сегмента, распространяется затем вдоль клетки до ее пресинаптического окончания и приводит к уменьшению скорости выделения медиатора - глутамата . Кроме глутамата нейроны сетчатки могут синтезировать и другие нейромедиаторы, такие как ацетилхолин, дофамин, глицин ГАМК .

Фоторецепторы связаны между собой - электрическими(щелевыми) контактами. Эта связь избирательная: палочки связаны с палочками и т.д.

Эти ответы от фоторецепторов сходятся на горизонтальные клетки, которые приводят к деполяризации в соседних колбочках возникает отрицательная обратная связь, которая повышает световой контраст.

На уровне рецепторов происходит торможение и сигнал колбочки перестает отражать число поглощенных фотонов, а несет информацию о цвете, распределении и интенсивности света, падающего на сетчатку в окрестностях рецептора.

Существует 3-и типа нейронов сетчатки - биполярные, горизонтальные и амакриновые клетки. Биполярные клетки непосредственно связывают фоторецепторы с ганглиозными клетками, т.е. осуществляют передачу информации через сетчатку в вертикальном направлении. Горизонтальные и амакриновые клетки передают информацию по горизонтали.

Биполярные клетки занимают в сетчатке стратегическую позицию, поскольку все сигналы, возникающие в рецепторах поступающие к ганглиозным клеткам, должны пройти через них.

Экспериментально было доказано, что биполярные клетки имеют рецептивные поля в которых выделяют центр и переферию (Джон Даулинг- и др. Гарвардская медицинская школа).

Рецептивное поле - совокупность рецепторов, посылающих данному нейрону сигналы через один или большее число синапсов.

Размер рецептивных полей: d=10 мкм или 0,01 мм - вне центральной ямки.

В самой ямке d=2,5мкм (благодаря этому мы способны различать 2-е точки при видимом расстоянии между ними лишь 0,5 угловых минут-2,5мкм - если сравнить, то это монета в 5 копеек на расстоянии около 150 метров)

Начиная с уровня биполярных клеток нейроны зрительной системы дифференцируются на две группы, противоположным образом реагирующие на освещение и затемнение:

1 - клетки, возбуждающиеся при освещении и тормозящиеся при затемнении "on"- нейроны и

    Клетки возбуждающиеся при затемнении и тормозящиеся при освещении - " off"- нейроны. Клетка с on-центром разряжается с заметно повышенной частотой.

Если слушать разряды такой клетки через громкоговоритель, то сначала вы услышите спонтанную импульсацию, отдельные случайные щелчки, а затем после включения света, возникает залп импульсов, напоминающий пулеметную очередь. Наоборот в клетках с off-реакцией (при выключении света - залп импульсов) Такое разделение сохраняется на всех уровнях зрительной системы, до коры включительно.

В пределах самой сетчатки передача информации осуществляется безимпульсным путем (распространением и транссинаптической передачей градуальных потенциалов).

В горизонтальных, биполярных и амокриновых клетках переработка сигнала происходит путем медленных изменений мембраны потенциалов(тонический ответ). ПД не генерируется.

Ответы палочек, колбочек и горизонтальных клеток являются гиперполяризующими, а ответы биполярных клеток могут быть как гиперполяризующие, так и деполяризующие. Амакриновые клетки создают деполяризующие потенциалы.

Чтобы понять, почему это так, следует представить себе влияние малого светлого пятна. Рецепторы активны в темноте, а свет, вызывая гиперполяризацию, уменьшает их активность. Если синапс возбуждающий, биполяр будет активироваться в темноте , а инактивироваться на свету ; если же синапс тормозной, биполяр в темноте тормозится, а на свету, выключая рецептор, снимает это торможение, т.е биполярная клетка активируется. Т.о. является ли рецепторно-биполярный синапс возбуждающим или тормозным, зависит от выделяемого рецептором медиатора.

В передаче сигналов от биполярных клеток на ганглиозные участвуют горизонтальные клетки которые, передают информацию от фоторецепторов к биполярным клеткам и далее к ганглиозным.

Горизонтальные клетки отвечают на свет гиперполяризацией с ярко выраженной пространственной суммацией.

Горизонтальные клетки не генерируют нервных импульсов, но мембрана обладает нелинейными свойствами, обеспечивающими безимпульсное проведение сигнала без затухания.

Клетки делятся на два типа: В и С. Клетки В-типа, или яркостные, всегда отвечают гиперполяризацией вне зависимости от длины волны света. Клетки С-типа, или хроматические делятся на двух- и трехфазные. Хроматические клетки отвечают или гипер, или деполяризацией в зависимости от длины стимулирующего света.

Двухфазные клетки бывают либо красно - зеленые (деполяризуются красным светом, гиперполяризуются зеленым), либо зелено-синие (деполяризуются зеленым светом, гиперполяризуются синим). Трехфазные клетки деполяризуются зеленым светом, а синий и красный свет вызывает гиперполяризацию мембраны. Амакриновые клетки, регулируют синаптическую передачу на следующем этапе от биполяров к ганглиозным клеткам.

Дендриты амакриновые клеток разветвляются во внутреннем слое, где контактируют с отростками биполяров и дендритами ганглиозных клеток. На амакриновые клетках оканчиваются центробежные волокна, идущие из головного мозга.

Амакриновые клетки генерируют градуальные и импульсные потенциалы (фазный характер ответа). Эти клетки отвечают быстротекущей деполяризацией на включение и выключение света и демонстрируют слабый

пространственный антагонизм между центром и периферией.