Конъюгация хромосом происходит в процессе. В какой фазе мейоза происходит конъюгация хромосом

В результате двух мейотических делений диплоидной клетки образуются четыре клетки. При образовании мужских половых клеток получается четыре спермия примерно одинаковых размеров. При образовании же яйцеклеток деление цитоплазмы происходит очень неравномерно: одна клетка остается крупной, тогда как остальные три настолько малы, что их почти целиком занимает ядро. Эти мелкие клетки, т.н. полярные тельца, служат лишь для размещения избытка хромосом, образовавшихся в результате мейоза. Основная часть цитоплазмы, необходимой для зиготы, остается в одной клетке – яйцеклетке. Конъюгация и кроссинговер . Во время конъюгации хроматиды гомологичных хромосом могут разрываться и затем соединяться в новом порядке, обмениваясь участками следующим образом: Этот обмен участками гомологичных хромосом называется кроссинговером (перекрестом). Как показано выше, кроссинговер ведет к возникновению новых комбинаций аллелей сцепленных генов. Так, если исходные хромосомы имели комбинации АВ и ab , то после кроссинговера они будут содержать Ab и aB . Этот механизм появления новых генных комбинаций дополняет эффект независимой сортировки хромосом, происходящей в ходе мейоза. Различие состоит в том, что кроссинговер разделяет гены одной и той же хромосомы, тогда как независимая сортировка разделяет только гены разных хромосом. ЧЕРЕДОВАНИЕ ПОКОЛЕНИЙ В принципе, и гаплоидные, и диплоидные клетки способны размножаться посредством митоза и давать начало взрослым особям. Однако у большинства животных, включая человека, только диплоидные клетки, возникшие в результате деления зиготы, формируют взрослую особь. У наземных растений такую функцию выполняют и гаплоидные, и диплоидные клетки. Поскольку при этом гаплоидное поколение чередуется с диплоидным, данное явление получило название чередования поколений. У мхов и мохообразных (Bryophyta) доминантным является гаплоидное поколение, хотя диплоидное тоже довольно хорошо развито и обычно паразитирует на гаплоидном. У высших наземных растений (Tracheophyta) диплоидное поколение доминирует, а гаплоидное очень редуцировано и представлено пыльцой и семяпочками. ПРИМИТИВНЫЕ КЛЕТКИ: ПРОКАРИОТЫ Все изложенное выше относится к клеткам растений, животных, простейших и одноклеточных водорослей, в совокупности называемых эукариотами. Эукариоты эволюционировали из более простой формы – прокариотов, которые в настоящее время представлены бактериями, включая архебактерий и цианобактерий (последних раньше называли синезелеными водорослями). В сравнении с клетками эукариотов прокариотические клетки мельче и имеют меньше клеточных органелл. У них есть клеточная мембрана, но отсутствует эндоплазматический ретикулум, а рибосомы свободно плавают в цитоплазме. Митохондрии отсутствуют, но окислительные ферменты обычно прикреплены к клеточной мембране, которая таким образом становится эквивалентом митохондрий. Прокариоты лишены также хлоропластов, а хлорофилл, если он имеется, присутствует в виде очень мелких гранул.

Прокариоты не имеют окруженного мембраной ядра, хотя место расположения ДНК можно выявить по его оптической плотности. Эквивалентом хромосомы служит цепочка ДНК, обычно кольцевая, с намного меньшим количеством прикрепленных белков. Цепочка ДНК в одной точке прикрепляется к клеточной мембране. Митоз у прокариотов отсутствует. Его заменяет следующий процесс: ДНК удваивается, после чего клеточная мембрана начинает расти между соседними точками прикрепления двух копий молекулы ДНК, которые в результате этого постепенно расходятся. В конечном итоге клетка делится между точками прикрепления молекул ДНК, образуя две клетки, каждая со своей копией ДНК.

ДИФФЕРЕНЦИРОВКА КЛЕТКИ Многоклеточные растения и животные эволюционировали из одноклеточных организмов, клетки которых после деления оставались вместе, образуя колонию. Изначально все клетки были идентичными, но дальнейшая эволюция породила дифференцировку. В первую очередь дифференцировались соматические клетки (т.е. клетки тела) и половые клетки. Далее дифференцировка усложнялась – возникало все больше различных клеточных типов. Онтогенез – индивидуальное развитие многоклеточного организма – повторяет в общих чертах этот эволюционный процесс (филогенез ).

Физиологически клетки дифференцируются отчасти за счет усиления той или иной особенности, общей для всех клеток. Например, в мышечных клетках усиливается сократительная функция, что может быть результатом совершенствования механизма, осуществляющего амебоидное или иного типа движение в менее специализированных клетках. Аналогичный пример – тонкостенные клетки корня с их отростками, т.н. корневыми волосками, которые служат для всасывания солей и воды; в той или иной степени эта функция присуща любым клеткам. Иногда специализация связана с приобретением новых структур и функций – примером может служить развитие локомоторного органа (жгутика) у сперматозоидов.

Дифференцировка на клеточном или тканевом уровне изучена довольно подробно. Мы знаем, например, что иногда она протекает автономно, т.е. один тип клетки может превращаться в другой независимо от того, к какому типу клеток относятся соседние. Однако часто наблюдается т.н. эмбриональная индукция – явление, при котором один тип ткани стимулирует клетки другого типа дифференцироваться в заданном направлении.

В общем случае дифференцировка необратима, т.е. высокодифференцированные клетки не могут превращаться в клетки другого типа. Тем не менее это не всегда так, в особенности у растительных клеток.

Различия в структуре и функциях в конечном счете определяются тем, какие типы белков синтезируются в клетке. Поскольку синтезом белков управляют гены, а набор генов во всех клетках тела одинаков, дифференцировка должна зависеть от активации или инактивации тех или иных генов в различных типах клеток. Регуляция активности генов происходит на уровне транскрипции, т.е. образования информационной РНК с использованием ДНК в качестве матрицы. Только транскрибированные гены производят белки. Синтезируемые белки могут блокировать транскрипцию, но иногда и активируют ее. Кроме того, поскольку белки являются продуктами генов, одни гены могут контролировать транскрипцию других генов. В регуляции транскрипции участвуют также гормоны, в частности стероидные. Очень активные гены могут многократно дуплицироваться (удваиваться) для производства большего количества информационной РНК.

Развитие злокачественных образований часто рассматривалось как особый случай клеточной дифференцировки. Однако появление злокачественных клеток является результатом изменения структуры ДНК (мутации), а не процессов транскрипции и трансляции в белок нормальной ДНК.

См. также РАК. эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз происходит в половых клетках и связан с образованием гамет.

С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса .

В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом , правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.

Этот же механизм лежит в основе стерильности межвидовых гибридов . Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет (основным средством борьбы с этой проблемой является применение полиплоидных хромосомных наборов, поскольку в данном случае каждая хромосома конъюгирует с соответствующей хромосомой своего набора). Определённые ограничения на конъюгацию хромосом накладывают и хромосомные перестройки (масштабные делеции , дупликации , инверсии или транслокации).

Фазы мейоза [ | ]

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

  • Профаза I - профаза первого деления очень сложная и состоит из 5 стадий:

К концу профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления , разрушаются ядерная мембрана и ядрышки .

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

В результате из одной диплоидной клетки образуется четыре гаплоидных клетки . В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и три так называемых редукционных тельца (абортивные дериваты первого и второго делений).

Варианты [ | ]

У некоторых простейших мейоз протекает иначе, чем описанный выше типичный мейоз многоклеточных . Например, может протекать только одно, а не два последовательных, мейотических деления, а кроссинговер - проходить во время другой фазы мейоза . Предполагается, что такой одноступенчатый мейоз примитивен и предшествовал возникновению двухступенчатого мейоза, обеспечивающего эффективную

Мейоз – это способ деления клеток эукариот, при котором образуются гаплоидные клетки. Этим мейоз отличается от митоза, при котором образуются диплоидные клетки.

Кроме того, мейоз протекает в два следующих друг за другом деления, которые называют соответственно первым (мейоз I) и вторым (мейоз II). Уже после первого деления клетки содержат одинарный, т. е. гаплоидный, набор хромосом. Поэтому первое деление часто называют редукционным . Хотя иногда термин «редукционное деление» применяют по отношению ко всему мейозу.

Второе деление называется эквационным и по механизму протекания сходно с митозом. В мейозе II к полюсам клетки расходятся сестринские хроматиды.

Мейозу, как и митозу, в интерфазе предшествует синтез ДНК – репликация, после которой каждая хромосома состоит уже из двух хроматид, которые называют сестринскими. Между первым и вторым делениями синтеза ДНК не происходит.

Если в результате митоза образуются две клетки, то в результате мейоза – 4. Однако если организм производит яйцеклетки, то остается только одна клетка, сконцентрировавшая в себе питательные вещества.

Количество ДНК перед первым делением принято обозначать как 2n 4c. Здесь n обозначает хромосомы, c – хроматиды. Это значит, что каждая хромосома имеет гомологичную себе пару (2n), в то же время каждая хромосома состоит из двух хроматид. С учетом наличия гомологичной хромосомы получается четыре хроматиды (4c).

После первого и перед вторым делением количество ДНК в каждой из двух дочерних клетках сокращается до 1n 2c. То есть гомологичные хромосомы расходятся в разные клетки, но продолжают состоять из двух хроматид.

После второго деления образуются четыре клетки с набором 1n 1c, т. е. в каждой присутствует только одна хромосома из пары гомологичных и состоит она только из одной хроматиды.

Ниже приводится подробное описание первого и второго мейотического деления. Обозначение фаз такое же как при митозе: профаза, метафаза, анафаза, телофаза. Однако протекающие в эти фазы процессы, особенно в профазе I, несколько отличаются.

Мейоз I

Профаза I

Обычно это самая длинная и сложная фаза мейоза. Протекает намного дольше, чем при митозе. Связано это с тем, что в это время гомологичные хромосомы сближаются и обмениваются участками ДНК (происходят конъюгация и кроссинговер).


Конъюгация - процесс сцепления гомологичных хромосом. Кроссинговер - обмен идентичными участками между гомологичными хромосомами. Несестринские хроматиды гомологичных хромосом могут обменяться равнозначными участками. В местах, где происходит такой обмен формируется так называемая хиазма .

Спаренные гомологичные хромосомы называются бивалентами , или тетрадами . Связь сохраняется до анафазы I и обеспечивается центромерами между сестринскими хроматидами и хиазмами между несестринскими.

В профазе происходит спирализация хромосом, так что к концу фазы хромосомы приобретают характерную для них форму и размеры.

На более поздних этапах профазы I ядерная оболочка распадается на везикулы, ядрышки исчезают. Начинает формироваться мейотическое веретено деления. Образуются три вида микротрубочек веретена. Одни прикрепляются к кинетохорам, другие - к трубочкам, нарастающим с противоположного полюса (конструкция выполняет функцию распорок). Третьи формируют звезчатую структуру и прикрепляются к мембранному скелету, выполняя функцию опоры.

Центросомы с центриолями расходятся к полюсам. Микротрубочки внедряются в область бывшего ядра, прикрепляются к кинетохорам, находящимся в области центромер хромосом. При этом кинетохоры сестринских хроматид сливаются и действуют единым целым, что позволяет хроматидам одной хромосомы не разъединяться и в дальнейшем вместе отойти к одному из полюсов клетки.

Метафаза I

Окончательно формируется веретено деления. Пары гомологичных хромосом располагаются в плоскости экватора. Они выстраиваются друг против друга по экватору клетки так, что экваториальная плоскость оказывается между парами гомологичных хромосом.

Анафаза I

Гомологичные хромосомы разъединяются и расходятся к разным полюсам клетки. Из-за произошедшего в профазу кроссинговера их хроматиды уже не идентичны друг другу.

Телофаза I

Восстанавливаются ядра. Хромосомы деспирализуются в тонкий хроматин. Клетка делится надвое. У животных впячиванием мембраны. У растений образуется клеточная стенка.

Мейоз II

Интерфаза между двумя мейотическими делениями называется интеркинезом , он очень короткий. В отличие от интерфазы удвоения ДНК не происходит. По-сути она и так удвоена, просто в каждой из двух клеток содержится по одной из гомологичных хромосом. Мейоз II протекает одновременно в двух клетках, образовавшихся после мейоза I. На схеме ниже изображено деление только одной клетки из двух.


Профаза II

Короткая. Снова исчезают ядра и ядрышки, а хроматиды спирализуются. Начинает формироваться веретено деления.

Метафаза II

К каждой хромосоме, состоящей из двух хроматид, прикрепляется по две нити веретена деления. Одна нить с одного полюса, другая – с другого. Центромеры состоят из двух отдельных кинетохор. Метафазная пластинка образуется в плоскости перпендикулярной экватору метафазы I. То есть если родительская клетка в мейозе I делилась вдоль, то теперь две клетки будут делиться поперек.

Анафаза II

Белок, связывающий сестринские хроматиды, разделяется, и они расходятся к разным полюсам. Теперь сестринские хроматиды называются сестринскими хромосомами.

Телофаза II

Подобна телофазе I. Происходит деспирализация хромосом, исчезновение веретена деления, образование ядер и ядрышек, цитокинез.

Значение мейоза

В многоклеточном организме мейозом делятся только половые клетки. Поэтому главное значение мейоза – это обеспечение механизм а полового размножения, при котором сохраняется постоянство числа хромосом у вида .

Другое значение мейоза – это протекающая в профазе I перекомбинация генетической информации, т. е. комбинативная изменчивость. Новые комбинации аллелей создаются в двух случаях. 1. Когда происходит кроссинговер, т. е. несестринские хроматиды гомологичных хромосом обмениваются участками. 2. При независимом расхождении хромосом к полюсам в обоих мейотических делениях. Другими словами, каждая хромосома может оказаться в одной клетке в любой комбинации с другими негомологичными ей хромосомами.

Уже после мейоза I клетки содержат разную генетическую информацию. После второго деления все четыре клетки отличаются между собой. Это важное отличие мейоза от митоза, при котором образуются генетически идентичные клетки.

Кроссинговер и случайное расхождение хромосом и хроматид в анафазах I и II создают новые комбинации генов и являются одной из причин наследственной изменчивости организмов , благодаря которой возможна эволюция живых организмов.

Подробно изучить процесс прохождения одной из форм деления диплоидной клетки, а именно со схемой мейоза, поможет данная статья. В ней вы узнаете из скольких фаз состоит данный процесс, какие особенности имеет каждая фаза, в какой фазе происходит конъюгация хромосом, что такое кроссинговер и какая результативность каждого этапа деления.

Значение понятия «мейоз»

Данная форма деления в основном характерна для клеток половой системы, а именно яичников и сперматозоидов. С помощью мейоза из материнской диплоидной клетки образуются четыре гаплоидные гаметы с n набором хромосом.

Состоит процесс из двух стадий:

  • Редукционная, мейоз 1 - состоит из четырёх фаз: профаза, метафаза, анафаза и телофаза. Первое деление мейоза заканчивается образованием из диплоидной клетки двух гаплоидных.
  • Еквационная стадия, мейоз 2 , процессуально схожа с митозом. Для этого этапа характерно разделение сестринских хромосом и расхождение их к разным полюсам.

Каждый этап состоит из четырёх последовательных фаз, которые плавно переходят одна в другую. Между двумя стадиями деления интерфаза практически отсутствует, поэтому повторный процесс репликации ДНК не происходит.

Рис. 1. Схема первого деления мейоза.

Особенностью первой стадии деления является профаза 1, которая состоит из отдельных пяти этапов. Объяснение процессов, которые происходят на каждом из них, вы найдёте далее в таблице. В ходе профазы 1 хромосомы укорачиваются за счёт спирализации. Гомологичные хромосомы так плотно соединяются друг с другом, что происходит процесс конъюгации (сближение и слияние участков хромосом).

В это время некоторые участки несестринских хромосом могут обменяться друг с другом, такой процесс называется кроссинговером.

Рис. 2. Схема второго мейотического деления.

Таблица по фазам мейоза

Фаза

Особенности

Профаза 1

Состоит из пяти этапов:

  • Лептотена (тонкие нити) - вместо гранул хроматина появляются тонкие нити хромосом;
  • Зиготена (объединение нитей) - происходит процесс конъюгации;
  • Пахитена (толстые нити) - характерен кроссинговер участков хромосом;
  • Диплотена (двойные нити) - просматриваются хиазмы и хроматиды;
  • Диакинез – укорачиваются хромосомы, центромеры отталкиваются друг от друга, растворяются ядерные мембраны и ядрышко, формируется веретено деления.

Метафаза 1

Хромосомы выстраиваются на экваторе веретена деления, при этом ориентация центромер к полюсам абсолютно случайная.

Анафаза 1

Гомологичные хромосомы отходят к разным полюсам, при этом сестринские хромосомы всё ещё соединены центромерой.

Телофаза 1

Конец телофазы обозначен деспирализацией хромосом и образованием новой ядерной оболочки.

Профаза 2

Восстанавливается новое веретено деления, ядерная мембрана растворяется.

Метафаза 2

Хромосомы выстраиваются в экваториальной части веретена.

Анафаза 2

Центромеры расщепляются и хроматиды движутся к противоположным полюсам.

Телофаза 2

Из одного гаплоидного ядра образуются два с гаплоидным набором, внутри которых находится одна хроматида.

В результате такого деления из одной диплоидной клетки образуется четыре гаметы с гаплоидным набором. Генетически у каждой из четырёх клеток своё особенное генетическое содержимое.

ТОП-4 статьи которые читают вместе с этой

Рис. 3. Схема гаметогенеза.

Процесс кроссинговер мейозу 2 не характерен, так как обмен участками между хромосомами происходит в профазе первого деления.

Что мы узнали?

Деление клеток половых желёз происходит с помощью мейоза, который состоит из двух этапов деления. Каждая стадия имеет четыре фазы: профазу, метафазу, анафазу и телофазу. Особенностью первого этапа деления является образование двух клеток с гаплоидным набором хромосом. В результате второго деления количество образованных гамет равно четырём.

Тест по теме

Оценка доклада

Средняя оценка: 4.1 . Всего получено оценок: 186.

В ходе профазы мейоза I синаптонемный комплекс удерживает параллельно расположенные гомологичные хромосомы почти до момента их построения на экваторе клетки в метафазу I. Хромосомы соединяются с помощью синаптонемного комплекса на некоторое время (от 2ч удрожжей до 2-3сутоку человека), втечение которого между гомологичными хромосомами совершается обмен гомологичными участками ДНК -- кроссинговер. Образуется синаптонемальный комплекс в результате конъюгации гомологичных хромосом.

Конъюгация или синапсис - попарный контакт параллельно расположенных и слабо конденсированных гомологичных хромосом. Конъюгация и формирование синаптонемального комплекса (СК) отсутствует у низшего гриба Aspergillusnidulans, дрожжей Sc. Pombe и у самцов некоторых мух, например Drosophilamelanogaster.

Рисунок 2. Строение синаптонемального комплекса

После премейотическойS-фазы две сестринские хроматиды хромосомы формируют общий осевой элемент. Осевые элементы гомологичных хромосом включаются в виде латеральных (боковых) элементов в СК. Формируется синаптонемный комплекс (СК) - из белковых осей двух гомологичных хромосом и центрального элемента. Ширина боковых элементов составляет 30-60 нм, ширина центрального элемента - 60-120 нм. Боковые элементы состоят из мейоз-специфичных белков. Между ними формируются белковые перемычки. Первым специфическим белком СК (появляется еще в интерфазу) является белок REC8. ДНК гомологичных хромосом в виде петель отходят от боковых (латеральных) элементов СК. Большая часть ДНК локализована вне СК, лишь 0,5% геномной ДНК входит в СК, прочно связываясь с белками. Небольшое количество ДНК проходит через центральное пространство СК. ДНК СК состоит их уникальных и умеренно повторяющихся последовательностей, которые могут взаимодействовать с белками СК и белками, участвующими в рекомбинации и сегрегации гомологичных хромосом.

На 90% СК состоит из белков. Выделяют 5-10 мажорных белков с молекулярной массой от 26 до 190 кДа. У млекопитающих хорошо изучены 3 белка СК - SCP1, SCP2, CSP3 (synaptonemalcomplexprotein). Белки СК дрожжей назвали Zip1, Zip2, Red1, Hop1.

Белок SCP1 - основной белок поперечных филаментов СК. С-концы этого белка «заякорены» на латеральных элементах СК и взаимодействуют здесь с ДНК, N-концы достигают центрального пространства СК и соединяют противоположные латеральные элементы СК с помощью белок-белковых взаимодействий.

У дрожжей белок Zip1 является основным белком поперечных филаментов СК. Белок Zip2 действует как инициатор синапсиса, образуя центры полимеризации белка Zip1.

Белки SCP2, SCP3- белки латеральных элементов СК. Совместно локализуются вдоль осевых элементов хромосом и латеральных элементов СК. После диплотены концентрируются в центромерах хромосом, хотя небольшое их количество обнаруживается вдоль плеч хромосом. Т.о. эти белки участвуют в сцеплении - когезии сестринских хроматид. К белкам когезинам относятся и митоз-специфические белки - Smc1p, Smc3p, Scc1p, Scc3p.

У дрожжей белок Red1 образует центры формирования осевых элементов. Он взаимодействует с белком Hop1, который тоже является компонентом латеральных элементов СК у дрожжей.

Основа протяженных латеральных элементов-- комплекс из четырех белков когезинов. Накануне мейоза в хромосомах появляется специфичный белок когезин Rec8, который заменяет соматический когезин Rad21. Затем к нему присоединяются три других белка-когезина, присутствующие и в соматических клетках, новместо соматического когезина SMC1 появляется специфический для мейоза белок SMC1b (его N-конец на 50% отличается от N-конца соматического белка SMC1). Этот когезиновый комплекс располагается внутри хромосомы между двумя сестринскими хроматидами, удерживая их вместе. Скомплексом когезинов связываются мейоз-специфичные белки, которые становятся мажорными белками хромосомных осей и превращают их в латеральные элементы синаптонемного комплекса.

Регуляция сборки белков в СК происходит с помощью фосфорилирования-дефосфорилирования. Многие белки СК содержат по несколько сайтов фосфорилирования протеин-киназой р34.

В составе СК выделяют рекомбинационные узелки: ранние - на стадии лептотены и зиготены, локализуются в боковых элементах СК на участках инициации рекомбинации. В состав ранних рекомбинационных узелков входят ферменты, которые необходимы для инициации двунитевых разрывов в ДНК и формирования однонитевых концов. Например белок Spo11p (топоизомераза) - основная мейоз-специфичная эндонуклеаза, которая осуществляет двойные разрывы в ДНК. Поздние рекомбинационные узелки обнаружены на стадии пахитены, локализуются в центральном элементе СК. Обнаружена связь между числом и распределением поздних рекомбинационных узелков и числом и распределением хиазм в биваленте. Таким образом, поздние узелки - мультиферментные комплексы, катализирующие кроссинговер.

Инициация формирования СК у дрожжей и растений происходит в нескольких точках по всей длине бивалента (6 сайтов инициации у кукурузы, до 36 у лилии); у животных формирование СК начинается с теломер и распространяется по типу застежки «молнии». Завершение формирования СК - пахитена, его разрушение - диплотена.

Функции СК: - удерживает гомологичные хромосомы строго напротив друг друга;

препятствует слипанию гомологичных хромосом - обратимая конъюгация;

обязательная предпосылка для кроссинговера.

У мутантов с отсутствием конъюгации отсутствует и кроссинговер.

Генетический контроль конъюгации

Рожь. 3 группы рецессивных мутаций, нарушающих формирование СК.

мутации сильногоасинапсиса. Мутации блокируют конъюгацию хромосом при переходе от лептотены к зиготене.

Мутации слабогоасинапсиса или десинапсиса - самая многочисленная группа. У ржи данные мутации нарушают конъюгацию в 1-3 парах хромосом из 7. Наблюдаются как диваленты, так и униваленты; подавление формирования СК на концах хромосом; внутренние участки асинапсиса или десинапсиса. Снижается частота появления хиазм, частота кроссинговера.

Мутации индискриминантного синапсиса - одновременное присутствие гомологичного и негомологичного синапсиса, что приводит к появлению мультивалентов и унивалентов. Латеральные элементы СК могут сформировать складки из-за синапсиса «на себя».

Синапсис Х и Y хромосом

У слепушонки (род полевок) Х и Y хромосомы формируют короткий СК в ранней пахитене (конъюгируют короткими плечами), в диплотене происходит десинапсис и половые хромосомы становятся унивалентами.

Для ХY-бивалента большинства млекопитающих характерна концевая конъюгация половых хромосом (длинные плечи Х и Y хромосом), отсутствие которой нарушает расхождение половых хромосом в мейозе. Конъюгируют Х и Y хромосомы за счет гомологичного участка, содержащего такие гены как ген общей цветовой слепоты, пигментной ксеродермы, геморрагического диатеза.

ХY-бивалент выключается из метаболизма клетки путем образования полового пузырька, внутри которого неконъюгированные участки хромосом находятся в конденсированном состоянии.

Х хромосома может ассоциироваться с аберрантными хромосомами (транслоцированными, инверсионными). Это защитный механизм - если Х хромосома тесно ассоциирована с аберрантной, то вокруг полового бивалента не образуется половой пузырек. Это служит сигналом для остановки мейоза на стадии пахитены. Это предотвращает попадание поврежденных хромосом в половые клетки.