Школьная энциклопедия. Основные виды деформаций

Подробности Категория: Молекулярно-кинетическая теория Опубликовано 17.11.2014 18:20 Просмотров: 9656

Под воздействием внешних сил твёрдые тела меняют свою форму и объем, т.е. деформируются.

В результате действия приложенных к телу сил частицы, из которых оно состоит, перемещаются. Изменяются расстояния между атомами, их взаимное расположение. Это явление называют деформацией .

Если после прекращения действия силы тело возвращает свою первоначальную форму и объём, то такая деформация называется упругой , или обратимой . В этом случае атомы снова занимают положение, в котором они находились до того, как на тело начала действовать сила.

Если мы сожмём резиновый мячик, он изменит форму. Но тут же восстановит её, как только мы его отпустим. Это пример упругой деформации.

Если же в результате действия силы атомы смещаются от положений равновесия на такие расстояния, что межатомные связи на них уже не действуют, они не могут вернуться в первоначальное состояние и занимают новые положения равновесия. В этом случае в физическом теле происходят необратимые изменения.

Сдавим кусочек пластилина. Свою первоначальную форму он не сможет вернуть, когда мы прекратим воздействовать на него. Он деформировался необратимо. Такую деформацию называют пластичной , или необратимой .

Необратимые деформации могут также происходить постепенно с течением времени, если на тело воздействует постоянная нагрузка, или под влиянием различных факторов в нём возникает механическое напряжение. Такие деформации называются деформациями ползучести .

Например, когда детали и узлы каких-то агрегатов во время работы испытывают серьёзные механические нагрузки, а также подвергаются значительному нагреву, в них со временем наблюдается деформация ползучести.

Под воздействием одной и той же силы тело может испытывать упругую деформацию, если сила приложена к нему на короткое время. Но если эта же сила будет воздействовать на это же тело длительно, то деформация может стать необратимой.

Величина механического напряжения, при которой деформация тела всё ещё будет упругой, а само тело восстановит свою форму после снятия нагрузки, называется пределом упругости . При значениях выше этого предела тело начнёт разрушаться. Но разрушить твёрдое тело не так-то просто. Оно сопротивляется. И это его свойство называется прочностью .

Когда два автомобиля, соединённые буксировочным тросом, начинают движение, трос подвергается деформации. Он натягивается, а его длина увеличивается. А когда они останавливаются, натяжение ослабевает, и длина троса восстанавливается. Но если трос недостаточно прочный, он просто разорвётся.

Типы деформации

В зависимости от того, как приложена внешняя сила, различают деформации растяжения-сжатия, сдвига, изгиба, кручения.

Деформация растяжения-сжатия

Деформация растяжения-сжатия вызывается силами, которые приложены к концам бруса параллельно его продольной оси и направлены в разные стороны.

Под действием внешних сил частицы твёрдого вещества, колеблющиеся относительно своего положения равновесия, смещаются. Но этому процессу пытаются помешать внутренние силы взаимодействия между частицами, старающиеся удержать их в исходном положении на определённом расстоянии друг от друга. Силы, препятствующие деформации, называются силами упругости .

Деформацию растяжения испытывают натянутая тетива лука, буксировочный трос автомобиля при буксировке, сцепные устройства железнодорожных вагонов и др.

Когда мы поднимается по лестнице, ступеньки под действием нашей силы тяжести деформируются. Это деформация сжатия. Такую же деформацию испытывают фундаменты зданий, колонны, стены, шест, с которым прыгает спортсмен.

Деформация сдвига

Если приложить внешнюю силу по касательной к поверхности бруска, нижняя часть которого закреплена, то возникает деформация сдвига . В этом случае параллельные слои тела как бы сдвигаются относительно друг друга.

Представим себе расшатанный табурет, стоящий на полу. Приложим к нему силу по касательной к его поверхности, то есть, попросту потянем верхнюю часть табурета на себя. Все его плоскости, параллельные полу, сместятся друг относительно друга на одинаковый угол.

Такая же деформация происходит, когда лист бумаги разрезается ножницами, пилой с острыми зубьями распиливается деревянный брус и др. Деформации сдвига подвергаются все крепёжные детали, соединяющие поверхности, - винты, гайки и др.

Деформация изгиба

Такая деформация возникает, если концы бруса или стержня лежат на двух опорах. В этом случае на него действуют нагрузки, перпендикулярные его продольной оси.

Деформацию изгиба испытывают все горизонтальные поверхности, положенные на вертикальные опоры. Самый простой пример - линейка, лежащая на двух книгах одинаковой толщины. Когда мы поставим на неё сверху что-то тяжёлое, она прогнётся. Точно так же прогибается деревянный мостик, перекинутый через ручей, когда мы идём по нему.

Деформация кручения

Кручение возникает в теле, если приложить пару сил к его поперечному сечению. В этом случае поперечные сечения будут поворачиваться вокруг оси тела и относительно друг друга. Такую деформацию наблюдают у вращающихся валов машин. Если вручную отжимать (выкручивать) мокрое бельё, то оно также будет подвергаться деформации кручения.

Закон Гука

Наблюдения за различными видами деформации показали, что величина деформации тела зависит от механического напряжения, возникающего под действием приложенных к телу сил.

Эту зависимость описывает закон, открытый в 1660 г. английским учёным Робертом Гуком , которого называют одним из отцов экспериментальной физики.

Виды деформации удобно рассматривать на модели бруса. Это тело, один из трёх размеров которого (ширина, высота или длина), гораздо больше двух других. Иногда вместо термина «брус» употребляют термин «стержень». У стержня длина намного превышает его ширину и высоту.

Рассмотрим эту зависимость для деформации растяжения-сжатия.

Предположим, что стержень первоначально имеет длину L . Под действием внешних сил его длина изменится на величину ∆l . Она называется абсолютным удлинением (сжатием) стержня .

Для деформации растяжения-сжатия закон Гука имеет вид:

F - сила, сжимающая или растягивающая стержень; k - коэффициент упругости.

Сила упругости прямо пропорциональна удлинению тела до некого предельного значения.

Е - модуль упругости первого рода или модуль Юнга . Его величина зависит от свойств материала. Это теоретическая величина, введённая для характеристики упругих свойств тел.

S - площадь поперечного сечения стержня.

Отношение абсолютного удлинения к первоначальной длине стержня называют относительным удлинением или относительной деформацией .

При растяжении его величина имеет положительное значение, а при сжатии отрицательное.

Отношение модуля внешней силы к площади поперечного сечения стержня называется механическим напряжением .

Тогда закон Гука для относительных величин будет выглядеть так:

Напряжение σ прямо пропорционально относительной деформации ε .

Считается, что сила, стремящаяся удлинить стержень, является положительной (F ˃ 0 ), а сила, укорачивающая его, имеет отрицательное значение (F ˂ 0 ).

Измерение деформации

При проектировании и эксплуатации различных механизмов, технических объектов, зданий, мостов и других инженерных сооружений очень важно знать величину деформации материалов.

Так как упругие деформации имеют маленькую величину, то измерения должны проводиться с очень высокой точностью. Для этого используют приборы, называемые тензометрами .

Тензометр состоит из тензометрического датчика и индикаторов. В него также может быть включено регистрирующее устройство.

В зависимости от принципа действия тензометры бывают оптические, пневматические, акустические, электрические и рентгеновские.

В основу оптических тензометров положено измерение деформации нити из оптоволокна, приклеенной к объекту исследования. Пневматические тензометры фиксируют изменение давления при деформации. В акустических тензометрах с помощью пьезоэлектрических датчиков проводятся измерения величин, на которые изменяются скорость звука и акустическое затухание при деформации. Электрические тензометры вычисляют деформацию на основе изменений электрического сопротивления. Рентгеновские определяют изменение межатомных расстояний в кристаллической решётке исследуемых металлов.

Вплоть до 80-х годов ХХ века сигналы датчиков регистрировались самописцами на обыкновенной бумажной ленте. Но когда появились компьютеры и начали бурно развиваться современные технологии, стало возможным наблюдать деформации на экранах мониторов и даже подавать управляющие сигналы, позволяющие изменить режим работы тестируемых объектов.

Изгибом называется деформация, при которой ось стержня и все его волокна, т. е. продольные линии, параллельные оси стержня, искривляются под действием внешних сил. Наиболее простой случай изгиба получается тогда, когда внешние силы будут лежать в плоскости, проходящей через центральную ось стержня, и не дадут проекций на эту ось. Такой случай изгиба называют поперечным изгибом. Различают плоский изгиб и косой.

Плоский изгиб – такой случай, когда изогнутая ось стержня расположена в той же плоскости, в которой действуют внешние силы.

Косой (сложный) изгиб – такой случай изгиба, когда изогнутая ось стержня не лежит в плоскости действия внешних сил.

Работающий на изгиб стержень обычно называют балкой.

При плоском поперечном изгибе балок в сечении с системой координат у0х могут возникать два внутренних усилия – поперечная сила Q у и изгибающий момент М х; в дальнейшем для них вводятся обозначения Q и M. Если в сечении или на участке балки поперечная сила отсутствует (Q=0), а изгибающий момент не равен нулю или М – const, то такой изгиб принято называть чистым .

Поперечная сила в каком-либо сечении балки численно равна алгебраической сумме проекций на ось у всех сил (включая опорные реакции), расположенных по одну сторону (любую) от проведенного сечения.

Изгибающий момент в сечении балки численно равен алгебраической сумме моментов всех сил (включая и опорные реакции), расположенных по одну сторону (любую) от проведенного сечения относительно центра тяжести этого сечения, точнее, относительно оси, проходящей перпендикулярно плоскости чертежа через центр тяжести проведенного сечения.

Сила Q представляет равнодействующую распределенных по сечению внутренних касательных напряжений , а момент М сумму моментов вокруг центральной оси сечения Х внутренних нормальных напряжений.

Между внутренними усилиями существует дифференциальная зависимость

которая используется при построении и проверке эпюр Q и M.

Поскольку часть волокон балки растягивается, а часть сжимается, причем переход от растяжения к сжатию происходит плавно, без скачков, в средней части балки находится слой, волокна которого только искривляются, но не испытывают ни растяжения, ни сжатия. Такой слой называют нейтральным слоем . Линия, по которой нейтральный слой пересекается с поперечным сечением балки, называется нейтральной линие й или нейтральной осью сечения. Нейтральные линии нанизаны на ось балки.

Линии, проведенные на боковой поверхности балки перпендикулярно оси, остаются плоскими при изгибе. Эти опытные данные позволяют положить в основу выводов формул гипотезу плоских сечений. Согласно этой гипотезе сечения балки плоские и перпендикулярные к ее оси до изгиба, остаются плоскими и оказываются перпендикулярными изогнутой оси балки при ее изгибе. Поперечное сечение балки при изгибе искажается. За счет поперечной деформации размеры поперечного сечения в сжатой зоне балки увеличиваются, а в растянутой сжимаются.

Допущения для вывода формул. Нормальные напряжения

1) Выполняется гипотеза плоских сечений.

2) Продольные волокна друг на друга не давят и, следовательно, под действием нормальных напряжений линейные растяжения или сжатия работают.

3) Деформации волокон не зависят от их положения по ширине сечения. Следовательно, и нормальные напряжения, изменяясь по высоте сечения, остаются по ширине одинаковыми.

4) Балка имеет хотя бы одну плоскость симметрии, и все внешние силы лежат в этой плоскости.

5) Материал балки подчиняется закону Гука, причем модуль упругости при растяжении и сжатии одинаков.

6) Соотношения между размерами балки таковы, что она работает в условиях плоского изгиба без коробления или скручивания.

При чистом изгибе балки на площадках в ее сечении действуют только нормальные напряжения , определяемые по формуле:

где у – координата произвольной точки сечения, отчитываемая от нейтральной линии — главной центральной оси х.

Нормальные напряжения при изгибе по высоте сечения распределяются по линейному закону . На крайних волокнах нормальные напряжения достигают максимального значения, а в центре тяжести сечения равны нулю.

Характер эпюр нормальных напряжений для симметричных сечений относительно нейтральной линии

Характер эпюр нормальных напряжений для сечений, не обладающих симметрией относительно нейтральной линии

Опасными являются точки, наиболее удаленные от нейтральной линии.

Выберем некоторое сечение

Для любой точки сечения,назовем ее точкой К , условие прочности балки по нормальным напряжениям имеет вид:

, где н.о. — это нейтральная ось

это осевой момент сопротивления сечения относительно нейтральной оси. Его размерность см 3 , м 3 . Момент сопротивления характеризует влияние формы и размеров поперечного сечения на величину напряжений.

Условие прочности по нормальным напряжениям:

Нормальное напряжение равно отношению максимального изгибающего момента к осевому моменту сопротивления сечения относительно нейтральной оси.

Если материал неодинаково сопротивляется растяжению и сжатию, то необходимо использовать два условия прочности: для зоны растяжения с допускаемым напряжением на растяжение; для зоны сжатия с допускаемым напряжением на сжатие.

При поперечном изгибе балки на площадках в ее сечении действуют как нормальные , так и касательные напряжения.

ОПРЕДЕЛЕНИЕ

Деформацией в физике называют изменение размеров, объема и часто формы тела, если к телу приложена внешняя нагрузка, например, при растяжении, сжатии или (и) при изменении его температуры.

Деформация появляется в том случае, если разные части тела совершают разные перемещения. Так, например, если резиновый шнур тянуть за концы, то разные его части сместятся относительно друг друга, и шнур окажется деформированным (растянется, удлинится). При деформации изменяются расстояния между атомами или молекулами тел, поэтому появляются силы упругости.

Виды деформации твердого тела

Деформации можно разделить на упругие и неупругие. Упругой называют деформацию, которая исчезает при прекращении действия деформирующего воздействия. При таком виде деформации происходит возврат частиц из новых положений равновесия в кристаллической решетке в старые.

Неупругие деформации твердого тела называют пластическими. При пластической деформации происходит необратимая перестройка кристаллической решетки.

Кроме этого выделяют следующие виды деформации: растяжение (сжатие); сдвиг, кручение.

Одностороннее растяжение заключается в увеличении длины тела, при воздействии силы растяжения. Мерой такого вида деформации служит величина относительного удлинения ().

Деформация всестороннего растяжения (сжатия) проявляется в изменении (увеличении или уменьшении) объема тела. При этом форма тела не изменяется. Растягивающие (сжимающие) силы равномерно распределяются по всей поверхности тела. Характеристикой, такого вида деформации, является относительное изменение объема тела ().

Сдвиг - это вид деформации, при которой плоские слои твердого тела смещены параллельно друг другу. При этом виде деформации слои не изменяют свою форму и размер. Мерой данной деформации служит угол сдвига.

Деформация кручения состоит в относительном повороте параллельных друг другу сечений, перпендикулярных оси образца.

В теории упругости доказано, что все виды упругой деформации могут сводиться к деформациям растяжения или сжатия, которые происходят в один момент времени.

Закон Гука

Рассмотрим однородный стержень, имеющий длину l и площадь сечения S. К концам стержня приложены две силы равные по величине F, направленные по оси стержня, но в противоположные стороны. При этом длина стержня изменилась на величину .

Английским ученым Р. Гуком эмпирически было установлено, что для небольших деформаций относительное удлинение () прямо пропорционально напряжению ():

где E - модуль Юнга; - сила, которая действует на единичную площадь поперечного сечения проводника. Иначе закон Гука записывают как:

где k - коэффициент упругости. Для силы упругости, возникающей в стержне закон Гука имеет вид:

Линейная зависимость между и выполняется в узких пределах, при небольших нагрузках. При увеличении нагрузки зависимость становится нелинейной, а далее упругая деформация переходит в пластическую деформацию.

Примеры решения задач

ПРИМЕР 1

Задание Какова потенциальная энергия растянутого упругого стержня, если его абсолютное удлинение составляет , коэффициент упругости равен k? Считайте, что закон Гука при этом выполняется.
Решение Потенциальная энергия () упругого растянутого стержня равна работе (A), которую совершают внешние силы, вызывая деформацию:

где x - абсолютное удлинение стержня, которое при деформации изменяется от 0 до . В соответствии с законом Гука, мы имеем:

Подставим выражение (1.2) в формулу (1.1), имеем:

При действии на тело внешних сил появляются деформации, размер и форма тела изменяются. В теле, которое подвергается деформации, возникают силы упругости, которые уравновешивают внешние силы.

Виды деформации. Упругие и неупругие деформации

Деформации можно разделить на упругие и неупругие. Упругой называют деформацию, которая исчезает при прекращении действия деформирующего воздействия. Деформация перестает быть упругой, если внешняя сила становится больше определенной величины, которая носит название предела упругости. При таком виде деформации происходит возврат частиц из новых положений равновесия в кристаллической решетке в старые. Тело полностью восстанавливает свои размеры и форму после снятия нагрузки.

Неупругие деформации твердого тела называют пластическими. При пластической деформации происходит необратимая перестройка кристаллической решетки.

Закон Гука

Английский ученый Р. Гук установил, что при упругих деформациях удлинение деформированной пружины (x) прямо пропорционально приложенной к ней внешней силе (F). Этот закон можно записать как:

где - проекция силы на ось X; x- удлинение пружины по оси X; k - коэффициент упругости пружины (жесткость пружины). Если использовать понятие силы упругости () для деформированной пружины, то закон Гука записывают как:

где - проекция силы упругости на ось X. Жесткость пружины - это величина, зависящая от материала, размеров витка пружины и ее длины.

При деформировании однородных стержней растяжением или односторонним сжатием, они ведут себя как пружины. Это означает, что для них при небольших деформациях выполняется закон Гука. Упругие силы в стержне обычно описывают при помощи напряжения . Напряжение - это физическая величина равная модулю силы упругости на единицу площади сечения стержня. При этом считают, что сила распределяется равномерно по сечению и она перпендикулярна поверхности сечения.

Title="Rendered by QuickLaTeX.com" height="12" width="45" style="vertical-align: 0px;">, если происходит растяжение и при сжатии. Напряжение называют еще нормальным. Выделяют тангенциальное напряжение , которое равно:

где — сила упругости, которая действует вдоль слоя тела; S - площадь рассматриваемого слоя.

Изменение длины стержня () равно:

где E - модуль Юнга; l - длина стержня. Модуль Юнга характеризует упругие свойства материала.

Растяжение (сжатие), сдвиг, кручение

Одностороннее растяжение заключается в увеличении длины тела, при воздействии силы растяжения. Мерой такого вида деформации служит величина относительного удлинения, например для стержня ().

Деформация всестороннего растяжения (сжатия) проявляется в изменении (увеличении или уменьшении) объема тела. При этом форма тела не изменяется. Растягивающие (сжимающие) силы равномерно распределяются по всей поверхности тела. Характеристикой, такого вида деформации, является относительное изменение объема тела ().

И так, мы немного рассмотрели деформацию растяжения (сжатия), кроме этого выделяют сдвиг, кручение.

Сдвиг - это вид деформации, при которой плоские слои твердого тела смещены параллельно друг другу. При этом виде деформации слои не изменяют свою форму и размер. Мерой данной деформации служит угол сдвига () или величина сдвига () (смещение одного из оснований тела). Закон Гука для упругой деформации сдвига записывают как:

где G - модуль поперечной упругости (модуль сдвига), h — толщина деформируемого слоя; - угол сдвига.

Деформация кручения состоит в относительном повороте параллельных друг другу сечений, перпендикулярных оси образца. Момент сил (M), который закручивает однородный круглый стержень на угол , равен:

где C - постоянная кручения.

В теории упругости доказано, что все виды упругой деформации могут сводиться к деформациям растяжения или сжатия, которые происходят в один момент времени.

Примеры решения задач

ПРИМЕР 1

Задание Каково напряжение, которое возникает в стальной нити круглого сечения, если к одному из ее концов подвесили груз массой кг. Диаметр подвеса равен м.

Решение Сила тяжести (), приложенная к грузу вызывает возникновение силы упругости (), которая приложена к подвесу. По модулю эти силы равны:

Площадь поперечного сечения подвеса равна площади круга:

По определению натяжение равно:

Из контекста задачи ясно, что сила упругости перпендикулярная поверхности сечения нити, используя формулы (1.1), (1.2) и (1.3), получим:

Вычислим искомую величину напряжения:

Деформация твердого тела. Деформацией называется изменение формы или объема тела.

Деформация возникает в случае, когда различные части тела совершают неодинаковые перемещения. Так. например, если резиновый шнур растянуть за концы, то части шнура сместятся друг относительно друга, шнур окажется деформированным станет длиннее (и тоньше).

В § 4 было показано, что при деформации изменяются расстояния между частицами тела (атомами или молекулами), вследствие чего возникают силы упругости.

Деформации, которые полностью исчезают после прекращения действия внешних сил, называются упругими. Упругую деформацию испытывает, например, пружина, восстанавливающая свою первоначальную форму после снятия подвешенного к ее концу груза.

Деформации, которые не исчезают после прекращения действия внешних сил, называются пластическими. Пластическую деформацию уже при небольших (но не кратковременных) усилиях испытывают воск, пластилин, глииа, свинец.

Любые деформации твердых тел можно свести к двум видам: растяжению (или сжатию) и сдвигу.

Деформация растяжения (сжатия). Если к однородному стержню, закрепленному на одним конце, приложить силу Г вдоль оси стержня в направлении от него (рис. 7.8), то стержень подвергнется деформации растяжения. Деформацию растяжения характеризуют абсолютным удлинением и относительным удлинением

где - начальная длина, а - конечная длина стержня.

Деформацию растяжения испытывают тросы, канаты, цепи в подъемных устройствах, стяжки между вагонами и т.

При малых растяжениях деформации большинства тел упругие

Если на закрепленный стержень подействовать силой направленной вдоль его оси к стержню (рис. 79), то стержень подвергнется сжатию. В этом случае относительная деформация отрицательна:

Деформацию сжатия испытывакл столбы, колонны, стены, фундаменты зданий и т. и.

При растяжении или сжатии изменяется площадь поперечного сечения тела. Это можно обнаружить, растягивая резиновую трубку, на которую предваригелыю надето металлическое кольцо. При достаточно сильном растяжении кольцо упадет. При сжатии, наоборот, плошадь поперечного сечения тела увеличивается. Впрочем, для большинства твердых тел эти эффекты малы.

Деформация сдвига. Возьмем резиновый брусок с начерченными на его поверхности горизонтальными и вертикальными линиями и закрепим на столе (рис. 80, а). Сверху к бруску прикрепим рейку и приложим к ней горизонтальную силу (рис. 80, б). Слои и т. д. бруска сдвинутся, оставаясь параллельными,

а вертикальные грани, оставаясь плоскими, наклонятся на угол у. Такого рода деформацию, при которой происходит смещение слоев тела друг относительно друга, называют деформацией сдвига.

Если силу увеличить в два раза, то и угол у увеличится в два раза. Опыты показывают, что при упругих деформациях угол сдвига у прямо пропорционален модулю приложенной силы.

Деформацию сдвига можно наглядно продемонстрировать на модели твердого тела, представляющей собой ряд параллельных пластин, соединенных между собой пружинами (рис. 81, а). Горизонтальная сила сдвигает Пластины друг относительно друга без изменения объема тела (рис. 81, б). При деформации сдвига у реальных твердых тел объем их также не меняется.

Деформации сдвига подвержены все балки в местах опор, заклепки (рис. 82) и болты, скрепляющие детали, и т. д. Сдвиг на большие углы может привести к разрушению тела - срезу. Срез происходит при работе ножниц, долота, зубила, зубьев пилы.

Деформация изгиба. Деформации изгиба подвергается стер жень, опирающийся концами на подставки и нагруженный посередине или закрепленный на одном конце и нагруженный на другом (рис. 83).

При изгибе одна сторона - выпуклая - подвергается растяжению, а другая - вогнутая - сжатию. Внутри изгибаемого тела расположен слой, не испытывающий ни растяжения, ни сжатия, называемый нейтральным (рис. 84).

Таким образом, изгиб - деформация, сводящаяся к растяжениям (сжатиям), различным в разных частях тела.

Вблизи нейтрального слоя тедо почти не испытывает деформаций. Следовательно, в этом слое малы и возникающие при деформации силы. Значит, площадь поперечного сечения изгибаемой детали в окрестности нейтрального слоя можно значительно уменьшить. В современной технике и в строительстве вместо стержней и сплошных брусьев повсеместно применяют трубы (рис. 85, а), двутавровые балки (рис. 85, б), рельсы (рис. 85, в), швеллеры (рис. 85, г), чем добиваются облегчения конструкций и экономии материала.

Деформация кручения. Если на стержень, один конец которого закреплен, действуют параллельные и противоположно направленные силы (рис. 86), лежащие в плоскости, перпендикулярной оси стержня, то возникает деформация, называемая кручением. При кручении отдельные слои тела, как и при сдвиге, остаются параллельными, но поворачиваются друг относительно друга на некоторый угол. Деформация кручения представляет собой неоднородный сдвиг.

Эта деформация возникает, например, при завинчивании гаек (рис. 87). Деформации кручения подвергаются также валы машин, сверла и т. д.