Как называется звук низкой частоты. Опыты и демонстрации

Мы сталкиваемся со звуком каждый день. По сути, наши уши ни когда не слышали тишины, потому как в естественных условиях её практически не существует (примеры тишины и источников громких звуков). Однако, что такое звук?

Звук – это колебательный процесс, возникающий в воздухе (или другой упругой среде) под действием каких либо колеблющихся предметов.

Источниками звука могут быть, например, голосовые связки человека, струны музыкальных инструментов или любой другой вибрирующий предмет, заставляющий колебаться окружающие его частицы. При этом плотность воздуха (или другой среды) начинает то увеличиваться, то уменьшаться в соответствии с этими колебаниями. Воздух является упругой средой и оказывает некоторое обратное сопротивление колебательному процессу, именно таким образом происходит сжатие и разряжение воздушного пространства.

Звуки образованные синусоидальными сигналами называются простыми, «чистыми», к ним можно отнести камертон и флейту. Звуки других инструментов (голосов, шумов) имеют более сложные по форме колебания и могут содержать в себе целое созвучие простых тонов.

Однако чтоб понять принцип воздействия звука на наши слуховые ощущения достаточно рассмотреть элементарный звук. Его можно описать графиком изменения во времени давления воздуха в определенной точке. При этом в фазу сжатия среды принято называть положительной, а фазу разряжения – отрицательной.

Распределяясь в стороны со скоростью ~340 м/сек. звуковые колебания образуют звуковую волну.

Эта волна воздействует на барабанную перепонку уха, приводит её в движение, которые передаются далее по внутреннему уху, вызывая слуховые ощущения.

Звук ограничен рамками пространства – стенами, преградами. Воздух состоит из частиц, которые тоже являются преградой на пути следования звука. Энергия, передаваемая этими частицами со временем угасает, таким образом, ограничивая пространство в котором звучит тот или иной объект. Чтобы достичь наибольшего пространства звучания необходима бо́льшая энергия его источника. Таким образом появляется некое «звуковое поле» звучания того или иного источника (гром, комар)

Звуковое поле – это область распределения звуковых волн.

Полный цикл изменения звукового давления называется периодом. Количество этих периодов в одну секунду определяет частоту звука, которая измеряется в Герцах (Гц).

Другими словами это наименьшее расстояние между точками с одинаковыми фазами колебания, длину которого можно измерить в метрах на условной оси распределения звука.

Формула длины звуковой волны: ,(м.)

(пример применения значений длин волн, λ=340/100=3,4 м.)

Понятие о длине звуковой волны поможет в дальнейшем объяснить закономерности интерференции (сложении) и дифракции (распределении) звуковых волн в пространстве, помещении студий залов и т.д. Так же необходимо понимать каким размером должен обладать источник звука, что бы создавать, достаточное для восприятия, звуковое давление.

Однако стоит помнить том, что звук в воздушной среде совершенно отличается от звука в воде, в разряженном воздухе. Частицы окружающего пространства передают энергию, строго подчиняясь законам физики. Чем плотнее среда, тем лучше происходит передача звука, чем разреженней пространство, тем меньше передается энергия. Например, в вакууме звук не распространяется, в воде передается со скоростью 1485 м/сек., а в твердых телах скорость звука составляет 2000-6500 м/с.

Источники звука.

Наиболее простым источником звука является камертон небольшой источник точно и ясно издающий звук определённой высоты . Его усы, колеблясь, в пространстве вызывают простые, синусоидальные колебания. Обычно частота издаваемого камертоном звука 440 Гц, что соответствует ноте «ля» первой октавы.

Струна – весьма распространенный источник звука, однако следует учесть, что звук изданный струной почти не слышим нашими ушами, это объясняется её толщиной. Плоскость струны настолько мала, что колебаний воздушной среды не достаточно, чтобы возникло возбуждение барабанной перепонки и слуховых ощущений. Для того что бы звук струны был слышим необходим значительный по размерам резонатор, который предоставляет струне большую плоскость, тем самым усиливая громкость звучания. Частота звука струны определяется её длиной, это её собственная частота возбуждения. При наличии механизмов и устройств, способных сократить струну (лады на гитаре, кулачки в арфе) на определенный отрезок, появляется возможность изменить частоту её возбуждения (примеры).

Звук (звуковая волна ) –это упругая волна, воспринимаемая органом слуха человека и животных . Иначе говоря, звук представляет собой распространение колебаний плотности (или давления) упругой среды, возникающих при взаимодействии частиц среды друг с другом.

Атмосфера (воздух) является одной из упругих сред. Распространение звука в воздухе подчиняется общим законам распространения акустических волн в идеальных газах, а также имеет особенности, обусловленные непостоянством плотности, давления, температуры и влажности воздуха. Скорость звука определяется свойствами среды и вычисляется по формулам для скорости упругой волны.

Существуют искусственные и естественные источники звука. К искусственным относятся излучатели на основе:

Колебаний твёрдых тел (струны и деки музыкальных инструментов, диффузоры громкоговорителей, мембраны телефонов, пьезоэлектрические пластины);

Колебаний воздуха в ограниченном объёме (органные трубы., свистки);

Удара (клавиши рояля, колокол);

Электрического тока (электроакустические преобразователи).

К естественным источникам относятся:

Взрыв, обвал;

Обтекание препятствий потоком воздуха (обдувание ветром угла здания, гребня морской волны).

Также существуют искусственные и естественные приёмники звука:

Электроакустические преобразователи (микрофон в воздухе, гидрофон в воде, геофон в земной коре) и другие приборы;

Слуховой аппарат человека и животных.

При распространении звуковых волн возможны явления, характерные для волн любой природы:

Отражение от препятствия,

Преломление на границе двух сред,

Интерференция (сложение),

Дифракция (огибание препятствий),

Дисперсия (зависимость скорости звука в веществе от частоты звука);

Поглощение (уменьшение энергии и интенсивности звука в среде вследствие необратимого превращения энергии звука в теплоту).

      Объективные характеристики звука

Частота звука

Частота звука, слышимого человеком, лежит в пределах от 16 Гц до16 - 20 кГц . Упругие волны с частотой ниже слышимого диапазона называют инфразвуком (в т. ч. сотрясение), сболее высокой частотойультразвуком , а самые высокочастотные упругие волны –гиперзвуком .

Весь частотный диапазон звука можно разделить на три части (табл. 1.).

Шум имеет сплошной спектр частот (или длин волн) в области низкочастотного звука (табл. 1, 2). Сплошной спектр означает, что частоты может иметь любое значение из данного интервала.

Музыкальные , или тональные , звуки обладают линейчатым спектром частот в области среднечастотного и частично высокочастотного звука. Оставшуюся часть высокочастотного звука занимает свист. Линейчатый спектр означает, что музыкальные частоты имеют лишь строго определённые (дискретные) значения из указанного интервала.

Кроме того, интервал музыкальных частот делят на октавы. Октава – это интервал частот, заключённый между двумя граничными значениями, верхняя из которых вдвое больше нижней (табл. 3)

Общепринятые октавные полосы частот

Октавные полосы частот

min , Гц

max , Гц

ср , Гц

Примеры интервалов частот звука, создаваемого человеческим голосовым аппаратом и воспринимаемого человеческим слуховым аппаратом, приведены в табл.4.

Контральто, альт

Меццо-сопрано

Колоратурное сопрано

Примеры частотных диапазонов некоторых музыкальных инструментов приведены в таблице 5. Они охватывают не только звуковой диапазон, но и ультразвуковой.

Музыкальный инструмент

Частота, Гц

Саксофон

Животные, птицы и насекомые создают и воспринимают звук других частотных диапазонов, нежели человек (табл. 6).

В музыке каждую синусоидальную звуковую волну называют простым тоном, или тоном. Высота тона зависит от частоты: чем больше частота, тем выше тон. Основным тоном сложного музыкального звука называют тон, соответствующий наименьшей частоте в его спектре. Тоны, соответствующие остальным частотам, называются обертонами . Если обертоны кратны частоте основного тона, то обертоны называются гармоническими . Обертон с наименьшей частотой называется первой гармоникой, со следующей - второй и т.л.

Музыкальные звуки с одним и тем же основным тоном могут различаться тембром. Тембр зависит от состава обертонов, их частот и амплитуд, характера их нарастания в начале звучания и спада в конце.

Скорость звука

Для звука в различных средах справедливы общие формулы (22) – (25). При этом следует учесть, что формула (22) применима в случае сухого атмосферного воздуха и с учётом числовых значений коэффициента Пуассона, молярной массы и универсальной газовой постоянной может быть записана в виде:

Однако, реальный атмосферный воздух всегда имеет влажность, которая влияет на скорость звука. Это обусловлено тем, что коэффициент Пуассона зависит от отношения парциального давления водяного пара (p пар ) к атмосферному давлению (p ). Во влажном воздухе скорость звука определяют по формуле:

.

Из последнего уравнения видно, что скорость звука о влажном воздухе скорость звука немного больше, чем в сухом.

Численные оценки скорости звука, учитывающие влияние температур и влажности атмосферного воздуха, можно осуществлять по приближённой формуле:

Эти оценки показывают, что при распространении звука вдоль горизонтального направления (0 x ) с увеличением температуры на1 0 C скорость звука возрастает на0,6 м/с . Под влиянием водяного пара с парциальным давлением не более10 Па скорость звука возрастает менее чем на0,5 м/с . А в целом, при максимально возможном парциальном давлении водяного пара у поверхности Земли, скорость звука увеличивается не более чем1 м/с .

Звуковое давление

При отсутствии звука атмосфера (воздух) является невозмущённой средой и имеет статическое атмосферное давление (
).

При распространении звуковых волн к этому статическому давлению добавляется дополнительное переменное давление, обусловленное сгущениями и разрежениями воздуха. В случае плоских волн можно записать:

где p зв, max – амплитуда звукового давления, - циклическая частота звука,k– волновое число. Следовательно, атмосферное давление в фиксированной точке в данный момент времени становится равным сумме этих давлений:

Звуковое давление – это переменное давление, равное разности мгновенного фактического атмосферного давления в данной точке при прохождении звуковой волны и статического атмосферного давления при отсутствии звука :

Звуковое давление в течение периода колебаний меняет своё значение и знак.

Звуковое давление практически всегда намного меньше атмосферного

Оно становится велико и соизмеримо с атмосферным при возникновении ударных волн во время мощных взрывов или при прохождении реактивного самолета.

Единицами измерения звукового давления служат следующие:

- паскаль в СИ
,

- бар в СГС
,

- миллиметр ртутного столба ,

- атмосфера .

На практике приборы измеряют не мгновенное значение звукового давления, а так называемое эффективное (илидействующее )звуковое давление . Оно равноквадратному корню из среднего значения квадрата мгновенного звукового давления в данной точке пространства в данный момент времени

(44)

и поэтому называется также среднеквадратическим звуковым давлением . Подставляя выражение (39) в формулу (40), получим:

. (45)

Звуковое сопротивление

Звуковым (акустическим) сопротивлением называют отношение амплитуд звукового давления и колебательной скорости частиц среды:

. (46)

Физический смысл звукового сопротивления : оно численно равно звуковому давлению, вызывающему колебания частиц среды с единичной скоростью:

Единица измерения звукового сопротивления в СИ – паскаль-секунда на метр :

.

В случае плоской волны скорость колебаний частиц равна

.

Тогда формула (46) примет вид:

. (46*)

Существует также и другое определение звукового сопротивления, как произведение плотности среды и скорости звука в этой среде:

. (47)

Тогда его физический смысл состоит в том, что оно численно равно плотности среды, в которой распространяется упругая волна с единичной скоростью:

.

Кроме акустического сопротивления в акустике используется понятие механическое сопротивление (R м ). Механическое сопротивление представляет собой отношение амплитуд периодической силы и колебательной скорости частиц среды:

, (48)

где S – площадь поверхности излучателя звука. Механическое сопротивление измеряется вньютон-секундах на метр :

.

Энергия и сила звука

Звуковая волна характеризуется теми же энергетическими величинами, что и упругая волна.

Каждый объем воздуха, в котором распространяются звуковые волны, обладает энергией, складывающейся из кинетической энергии колеблющихся частиц и потенциальной энергии упругой деформации среды (см. формулу (29)).

Интенсивность звука принято называть силой звука . Она равна

. (49)

Поэтому физический смысл силы звука аналогичен смыслу плотности потока энергии: численно равна среднему значению энергии, которая переносится волной за единицу времени через поперечную поверхность единичной площади.

Единица измерения силы звука – ватт на квадратный метр:

.

Сила звука пропорциональна квадрату эффективного звукового давления и обратно пропорциональна звуковому (акустическому) давлению:

, (50)

или, учитывая выражения (45),

, (51)

где R ак акустическое сопротивление.

Звук можно также характеризовать звуковой мощностью. Звуковая мощность – это общее количество звуковой энергии, излучаемой источником в течение определённого времени через замкнутую поверхность, окружающую источник звука :

, (52)

или, учитывая формулу (49),

. (52*)

Звуковая мощность, как и любая другая, измеряется в ваттах :

.

Происходящий в газообразных, жидких и твердых средах, который при достижении органов слуха человека воспринимается им как звук. Частота этих волн лежит в пределах от 20 до 20 000 колебаний в секунду. Приведем формулы для звуковой волны и рассмотрим подробнее ее свойства.

Почему появляется звуковая волна?

Многие люди задаются вопросом, что такое звуковая волна. Природа звука заключается в возникновении возмущения в упругой среде. Например, когда в некотором объеме воздуха происходит возмущение давления в виде сжатия, то данная область стремится распространиться в пространстве. Этот процесс приводит к сжатию воздуха в соседних от источника областях, которые также стремятся расшириться. Данный процесс охватывает все большую и большую часть пространства до тех пор, пока не достигнет какого-либо приемника, например, уха человека.

Общая характеристика звуковых волн

Рассмотрим вопросы, что такое звуковая волна и как она воспринимается человеческим ухом. Звуковая волна является продольной, она при попадании в раковину уха вызывает колебания ушной перепонки с определенной частотой и амплитудой. Также можно представлять эти колебания как периодические изменения давления в микрообъеме воздуха, прилегающего к перепонке. Сначала оно увеличивается относительно нормального атмосферного давления, а затем уменьшается, подчиняясь математическим законам гармонического движения. Амплитуда изменений сжатия воздуха, то есть разница максимального или минимального прессинга, создаваемого звуковой волной, с атмосферным давлением пропорционально амплитуде самой звуковой волны.

Многие физические эксперименты показали, что максимальные давления, которые может воспринимать человеческое ухо без нанесения ему вреда, составляют 2800 мкН/см 2 . Для сравнения скажем, что атмосферное давление вблизи поверхности земли равно 10 млн мкН/см 2 . Учитывая пропорциональность давления и амплитуды колебаний, можно сказать, что последняя величина даже для самых сильных волн является незначительной. Если говорить о длине звуковой волны, то для частоты в 1000 колебаний в секунду она будет составлять тысячную долю сантиметра.

Самые слабые звуки создают колебания давления порядка 0,001мкН/см 2 , соответствующая амплитуда колебаний волны для частоты 1000 Гц составляет 10 -9 см, при этом средний диаметр молекул воздуха составляет 10 -8 см, то есть ухо человека является чрезвычайно чувствительным органом.

Понятие интенсивности звуковых волн

С геометрической точки зрения звуковая волна представляет собой колебания определенной формы, с физической же - главным свойством звуковых волн является их способность переносить энергию. Самым важным примером переноса энергии волной является солнце, излученные электромагнитные волны которого обеспечивают энергией всю нашу планету.

Интенсивность звуковой волны в физике определяется как количество энергии, переносимой волной через единицу поверхности, которая перпендикулярна распространению волны, и за единицу времени. Говоря более коротко, интенсивность волны - это ее мощность, переносимая через единицу площади.

Силу звуковых волн принято измерять в децибелах, которые основываются на логарифмической шкале, удобной для практического анализа результатов.

Интенсивность различных звуков

Следующая шкала в децибелах дает представление о значении различной и ощущениях, которые она вызывает:

  • порог неприятных и некомфортных ощущений начинается со 120 децибел (дБ);
  • клепальный молоток создает шум в 95 дБ;
  • скоростной поезд - 90 дБ;
  • улица с интенсивным автомобильным движением - 70 дБ;
  • громкость обычного разговора между людьми - 65 дБ;
  • современный автомобиль, движущийся с умеренными скоростями, создает шум в 50 дБ;
  • средняя громкость радиоприемника - 40 дБ;
  • тихий разговор - 20 дБ;
  • шум листвы деревьев - 10 дБ;
  • минимальный порог звуковой чувствительности человека близок к 0 дБ.

Чувствительность человеческого уха зависит от частоты звука и составляет максимальное значение для звуковых волн с частотой 2000-3000 Гц. Для звука, находящегося в этом интервале частот, нижний порог чувствительности человека составляет 10 -5 дБ. Более высокие и более низкие частоты, чем указанный интервал, приводят к увеличению нижнего порога чувствительности таким образом, что близкие к 20 Гц и к 20 000 Гц частоты человек слышит только при их интенсивности в несколько десятков дБ.

Что касается верхнего порога интенсивности, после которого звук начинает вызывать неудобства для человека и даже болевые ощущения, то следует сказать, что он практически не зависит от частоты и лежит в пределах 110-130 дБ.

Геометрические характеристики звуковой волны

Реальная звуковая волна представляет собой сложный колебательный пакет продольных волн, который можно разложить на простые гармонические колебания. Каждое такое колебание описывается с геометрической точки зрения следующими характеристиками:

  1. Амплитуда - максимальное отклонение каждого участка волны от равновесия. Для этой величины принято обозначение A.
  2. Период. Это время, за которое простая волна совершает свое полное колебание. Через это время каждая точка волны начинает повторять свой колебательный процесс. Период принято обозначать буквой T и измерять в секундах в системе СИ.
  3. Частота. Это физическая величина, которая показывает, сколько колебаний данная волна совершает за секунду. То есть по своему смыслу она является величиной, обратной к периоду. Обозначается она f. Для частоты звуковой волны формула ее определения через период выглядит следующим образом: f = 1/T.
  4. Длина волны - это расстояние, которое она пробегает за один период колебаний. Геометрически длина волны представляет собой расстояние между двумя ближайшими максимумами или двумя ближайшими минимумами на синусоидальной кривой. Длина колебаний звуковой волны - это расстояние между ближайшими областями сжатия воздуха или ближайшими местами его разрежения в пространстве, где движется волна. Обозначается она обычно греческой буквой λ.
  5. Скорость распространения звуковой волны - это расстояние, на которое распространяется область сжатия или область разряжения волны за единицу времени. Обозначается эта величина буквой v. Для скорости звуковой волны формула имеет вид: v = λ*f.

Геометрия чистой звуковой волны, то есть волны постоянной чистоты, подчиняется синусоидальному закону. В общем случае формула звуковой волны имеет вид: y = A*sin(ωt), где y - значение координаты данной точки волны, t - время, ω = 2*pi*f - циклическая частота колебаний.

Апериодический звук

Многие источники звука можно считать периодическими, например, звук от таких музыкальных инструментов, как гитара, пианино, флейта, но также существует большое количество звуков в природе, которые являются апериодическими, то есть звуковые колебания изменяют свою частоту и форму в пространстве. Технически такой вид звука называется шумом. Яркими примерами апериодического звука является городской шум, шум моря, звуки от ударных инструментов, например, от барабана и другие.

Среда распространения звуковых волн

В отличие от электромагнитного излучения, фотоны которого для своего распространения не нуждаются в какой-либо вещественной среде, природа звука такова, что для его распространения нужна определенная среда, то есть, согласно законам физики, звуковые волны не могут распространяться в вакууме.

Звук может распространяться в газах, в жидкостях и в твердых телах. Основными характеристиками распространяющейся в среде звуковой волны являются следующие:

  • волна распространяется линейно;
  • она распространяется одинаково по всем направлениям в гомогенной среде, то есть от источника звук расходится, образуя идеальную сферическую поверхность.
  • независимо от амплитуды и частоты звука, его волны распространяются с одинаковой скоростью в данной среде.

Скорость звуковых волн в различных средах

Скорость распространения звука зависит от двух основных факторов: от среды, в которой движется волна, и от температуры. В общем случае действует следующее правило: чем более плотной является среда, и чем выше ее температура, тем быстрее в ней движется звук.

Например, скорость распространения в воздухе звуковой волны вблизи поверхности земли при температуре 20 ℃ и влажности 50% составляет 1235 км/ч или 343 м/с. В воде же при данной температуре звук движется быстрее в 4,5 раза, то есть около 5735 км/ч или 1600 м/с. Что касается зависимости скорости звука от температуры в воздухе, то она увеличивается на 0,6 м/с с увеличением температуры на каждый градус Цельсия.

Тембр и тон

Если позволить струне или металлической пластине вибрировать свободно, то она будет производить звуки различной частоты. Очень редко можно встретить тело, которое бы издавало звук одной конкретной частоты, обычно звук какого-либо объекта обладает набором частот в некотором интервале.

Тембр звука определяется количеством гармоник, присутствующих в нем, и их соответствующими интенсивностями. Тембр является субъективной величиной, то есть это восприятие звучащего объекта конкретным человеком. Тембр обычно характеризуют следующими прилагательными: высокий, блестящий, звучный, мелодичный и так далее.

Тон является звуковым ощущением, которое позволяет его классифицировать как высокий или низкий. Данная величина является также субъективной и не может быть измерена каким-либо инструментом. Тон связан с объективной величиной - частотой звуковой волны, но между ними не существует однозначной связи. Например, для одночастотного звука постоянной интенсивности тон растет при увеличении частоты. Если же частота звука остается постоянной, а увеличивается его интенсивность, то тон становится более низким.

Форма источников звука

В соответствии с формой тела, которое совершает механические колебания и тем самым порождает волн бывают трех основных типов:

  1. Точечный источник. Он создает звуковые волны сферической формы, которые быстро убывают при удалении от источника (приблизительно на 6 дБ, если расстояние от источника увеличивается вдвое).
  2. Линейный источник. Он создает волны цилиндрической формы, интенсивность которых убывает медленнее, чем от точечного источника (при каждом увеличении расстояния вдвое относительно источника интенсивность уменьшается на 3 дБ).
  3. Плоский или двумерный источник. Он порождает волны только в определенном направлении. Примером такого источника может быть поршень, двигающийся в цилиндре.

Электронные источники звука

Для создания звуковой волны электронные источники используют специальную мембрану (динамик), которая совершает механические колебания за счет явления электромагнитной индукции. К таким источникам можно отнести следующие:

  • проигрыватели различных дисков (CD, DVD и другие);
  • кассетные магнитофоны;
  • радиоприемники;
  • телевизоры и некоторые другие.

В статье вы узнаете, что такое звук, каков его смертельный уровень громкости, а также скорость в воздухе и других средах. Также поговорим про частоту, кодирование и качество звука.

Еще рассмотрим дискретизацию, форматы и мощность звука. Но сначала дадим определение музыки, как упорядоченному звуку — противоположность неупорядоченному хаотическому, который мы воспринимаем, как шум.

— это звуковые волны, которые образуются в результате колебаний и изменения атмосферы, а также объектов вокруг нас.

Даже при разговоре вы слышите своего собеседника потому, что он воздействует на воздух. Также, когда вы играете на музыкальном инструменте, бьете ли вы по барабану или дергаете струну, вы производите этим колебания определенной частоты, которой в окружающем воздухе производит звуковые волны.

Звуковые волны бывают упорядоченные и хаотические . Когда они упорядоченные и периодические (повторяются через какой-то промежуток времени), мы слышим определенную частоту или высоту звука.

То есть мы можем определить частоту, как количество повторения события в заданный промежуток времени. Таким образом, когда звуковые волны хаотичны, мы воспринимаем их как шум .

Но когда волны упорядочены и периодически повторяются, то мы можем измерить их количеством повторяющихся циклов в секунду.

Частота дискретизации звука

Частота дискретизации звука — это количество измерений уровня сигнала за 1 секунду. Герц (Гц) или Hertz (Hz) — это научная единица измерения, определяющая количество повторений какого-то события в секунду. Эту единицу мы будем использовать!

Частота дискретизации звука

Наверное, вы очень часто видели такую аббревиатуру — Гц или Hz. Например, в плагинах эквалайзеров. В них единицами измерения являются герцы и килогерцы (то есть 1000 Гц).

Обычно человек слышит звуковые волны от 20 Гц до 20 000 Гц (или 20 кГц). Все, что меньше 20 Гц — это инфразвук . Все, что больше 20 кГц — это ультразвук .

Давайте я открою плагин эквалайзера и покажу вам как это выглядит. Вам, наверное, знакомы эти цифры.


Частоты звука

С помощью эквалайзера вы можете ослаблять или усиливать определенные частоты в пределах слышимого человеком диапазона.

Небольшой пример!

Здесь у меня запись звуковой волны, которая была сгенерирована на частоте 1000 Гц (или 1 кГц). Если увеличить масштаб и посмотреть на ее форму, то мы увидим, что она правильная и повторяющиеся (периодическая).

Повторяющиеся (периодическая) звуковая волна

В одной секунде здесь происходит тысяча повторяющихся циклов. Для сравнения, давайте посмотрим на звуковую волну, которую мы воспринимаем как шум.


Неупорядоченный звук

Тут нет какой-то конкретной повторяющейся частоты. Также нет определенного тона или высоты. Звуковая волна не упорядочена. Если мы взглянем на форму этой волны, то увидим, что в ней нет ничего повторяющегося или периодического.

Давайте перейдем в более насыщенную часть волны. Мы увеличиваем масштаб и видим, что она не постоянная.


Неупорядоченная волна при масштабировании

Из-за отсутствия цикличности мы не в состоянии услышать какую-то определенную частоту в этой волне. Поэтому мы воспринимаем ее как шум.

Смертельный уровень звука

Хочу немного упомянуть про смертельный уровень звука для человека. Он берет свое начало от 180 дБ и выше.

Стоит сразу сказать, что по нормативным нормам, безопасным уровнем громкости шума считается не более 55 дБ (децибел) днем и 40 дБ ночью. Даже при длительном воздействии на слух, этот уровень не нанесет вреда.

Уровни громкости звука
(дБ) Определение Источник
0 Совсем не лышно
5 Почти не слышно
10 Почти не слышно Тихий шелест листьев
15 Еле слышно Шелест листвы
20 — 25 Едва слышно Шепот человека на расстоянии 1 метр
30 Тихо Тиканье настенных часов (допустимый максимум по нормам для жилых помещений ночью с 23 до 7 часов )
35 Довольно слышно Приглушенный разговор
40 Довольно слышно Обычная речь (норма для жилых помещений днем с 7 до 23 часов )
45 Довольно слышно Разговор
50 Отчетливо слышно Пишущая машинка
55 Отчетливо слышно Разговор (европейская норма для офисных помещений класса А )
60 (норма для контор )
65 Громкий разговор (1м)
70 Громкие разговоры (1м)
75 Крик и смех (1м)
80 Очень шумно Крик, мотоцикл с глушителем
85 Очень шумно Громкий крик, мотоцикл с глушителем
90 Очень шумно Громкие крики, грузовой железнодорожный вагон (7м)
95 Очень шумно Вагон метро (в 7 метрах снаружи или внутри вагона)
100 Крайне шумно Оркестр, гром (по европейским нормам, это максимально допустимое звуковое давление для наушников )
105 Крайне шумно В старых самолетах
110 Крайне шумно Вертолет
115 Крайне шумно Пескоструйный аппарат (1м)
120-125 Почти невыносимо Отбойный молоток
130 Болевой порог Самолет на старте
135 — 140 Контузия Взлетающий реактивный самолет
145 Контузия Старт ракеты
150 — 155 Контузия, травмы
160 Шок, травма Ударная волна от сверхзвукового самолета
165+ Разрыв барабанных перепонок и легких
180+ Смерть

Скорость звука в км в час и метры в секунду

Скорость звука — это скорость распространения волн в среде. Ниже даю таблицу скоростей распространения в различных средах.

Скорость звука в воздухе намного меньше чем в твердых средах. А скорость звука в воде намного выше, чем в воздухе. Составляет она 1430 м/с. В итоге, распространение идет быстрее и слышимость намного дальше.

Мощность звука — это энергия, которая передается звуковой волной через рассматриваемую поверхность за единицу времени. Измеряется в (Вт). Бывает мгновенное значение и среднее (за период времени).

Давайте продолжим работать с определениями из раздела теория музыки!

Высота и нота

Высота — это музыкальный термин, который обозначает почти тоже самое, что и частота. Исключение составляет то, что она не имеет единицы измерения. Вместо того чтобы определять звук количеством циклов в секунду в диапазоне 20 — 20 000 Гц, мы обозначаем определенные значения частот латинскими буквами.

Музыкальные инструменты производят периодические звуковые волны правильной формы, которые мы называем тонами или нотами.

То есть другими словами, нота — это своего рода моментальный снимок периодической звуковой волны определенной частоты. Высота этой ноты говорит нам о том, насколько нота высока или низка по своему звучанию. При этом более низкие ноты имеют более длинные волны. А высокие, более короткие.

Давайте посмотрим на звуковую волну в 1 кГц. Сейчас я увеличу масштаб, и вы увидите каково расстояние между циклами.

Звуковая волна в 1 кГц

Теперь давайте взглянем на волну в 500 Гц. Тут частота в 2 раза меньше и расстояние между циклами больше.

Звуковая волна в 500 Гц

Теперь возьмем волну в 80 Гц. Тут будет еще шире и высота намного ниже.

Звук в 80 Гц

Мы видим взаимосвязь между высотой звука и формой его волны.

Каждая музыкальная нота основана на одной основополагающей частоте (основном тоне). Но помимо тона в музыке состоит и из дополнительных резонансных частот или обертонов.

Давайте я покажу вам еще один пример!

Ниже волна в 440 Гц. Это стандарт в мире музыке для настройки инструментов. Соответствует он ноте ля.

Чистая звуковая волна в 440 Гц

Мы слышим только основной тон (чистую звуковую волну). Если увеличить масштаб, то увидим, что она периодическая.

А теперь давайте посмотрим на волну той же частоты, но сыгранную на пианино.

Периодический звук пианино

Посмотрите, она тоже периодическая. Но в ней есть небольшие дополнения и нюансы. Все они в совокупности и дают нам понятие о том, как звучит пианино. Но помимо этого, обертона обуславливают и тот факт, что одни ноты будут иметь большее сродство к данной ноте чем другие.

Для примера можно сыграть туже ноту, но на октаву выше. По звучанию будет совсем иначе. Однако она будет родственной предыдущей ноте. То есть это та же нота, только сыгранная на октаву выше.

Такая родственная связь двух нот в разных октавах обусловлена наличием обертонов. Они постоянно присутствуют и определяют насколько близко или отдаленно определенные ноты связаны друг с другом.

Традиционной нотации высота ноты обуславливает ее расположение на нотном стане или на нотоносце.

Данный урок освещает тему «Звуковые волны». На этом уроке мы продолжим изучать акустику. Вначале повторим определение звуковых волн, затем рассмотрим их частотные диапазоны и познакомимся с понятием ультразвуковых и инфразвуковых волн. Мы также обсудим свойства, присущие звуковым волнам в различных средах, и узнаем, какие им присущи характеристики.

Звуковые волны – это механические колебания, которые, распространяясь и взаимодействуя с органом слуха, воспринимаются человеком (рис. 1).

Рис. 1. Звуковая волна

Раздел, который занимается в физике этими волнами, называется акустика. Профессия людей, которых в простонародье называют «слухачами», – акустики. Звуковая волна – это волна, распространяющаяся в упругой среде, это продольная волна, и, когда она распространяется в упругой среде, чередуются сжатие и разряжение. Передается она с течением времени на расстояние (рис. 2).

Рис. 2. Распространение звуковой волны

К звуковым волнам относятся такие колебания, которые осуществляются с частотой от 20 до 20 000 Гц. Для этих частот соответствуют длины волн 17 м (для 20 Гц) и 17 мм (для 20 000 Гц). Этот диапазон будет называться слышимым звуком. Эти длины волн приведены для воздуха, скорость распространения звука в котором равна .

Существуют еще такие диапазоны, которыми занимаются акустики, – инфразвуковые и ультразвуковые. Инфразвуковые – это те, которые имеют частоту меньше 20 Гц. А ультразвуковые – это те, которые имеют частоту больше 20 000 Гц (рис. 3).

Рис. 3. Диапазоны звуковых волн

Каждый образованный человек должен ориентироваться в диапазоне частот звуковых волн и знать, что если он пойдет на УЗИ, то картинка на экране компьютера будет строиться с частотой больше 20 000 Гц.

Ультразвук – это механические волны, аналогичные звуковым, но имеющие частоту от 20 кГц до миллиарда герц.

Волны, имеющие частоту более миллиарда герц, называют гиперзвуком .

Ультразвук применяется для обнаружения дефектов в литых деталях. На исследуемую деталь направляют поток коротких ультразвуковых сигналов. В тех местах, где дефектов нет, сигналы проходят сквозь деталь, не регистрируясь приемником.

Если же в детали есть трещина, воздушная полость или другая неоднородность, то ультразвуковой сигнал отражается от нее и, возвращаясь, попадает в приемник. Такой метод называют ультразвуковой дефектоскопией .

Другими примерами применения ультразвука являются аппараты ультразвукового исследования, аппараты УЗИ, ультразвуковая терапия.

Инфразвук – механические волны, аналогичные звуковым, но имеющие частоту менее 20 Гц. Они не воспринимаются человеческим ухом.

Естественными источниками инфразвуковых волн являются шторм, цунами, землетрясения, ураганы, извержения вулканов, гроза.

Инфразвук – тоже важные волны, которые используют для колебаний поверхности (например, чтобы разрушить какие-нибудь большие объекты). Мы запускаем инфразвук в почву – и почва дробится. Где такое используется? Например, на алмазных приисках, где берут руду, в которых есть алмазные компоненты, и дробят на мелкие частицы, чтобы найти эти алмазные вкрапления (рис. 4).

Рис. 4. Применение инфразвука

Скорость звука зависит от условий среды и температуры (рис. 5).

Рис. 5. Скорость распространения звуковой волны в различных средах

Обратите внимание: в воздухе скорость звука при равна , при скорость увеличивается на . Если вы исследователь, то вам могут пригодиться такие знания. Вы, может быть, даже придумаете какой-нибудь температурный датчик, который будет фиксировать расхождения температуры путем изменения скорости звука в среде. Мы уже знаем, что чем плотнее среда, чем более серьезное взаимодействие между частицами среды, тем быстрее распространяется волна. Мы в прошлом параграфе обсудили это на примере сухого и воздуха влажного воздуха. Для воды скорость распространения звука . Если создать звуковую волну (стучать по камертону), то скорость ее распространения в воде будет в 4 раза больше, чем в воздухе. По воде информация дойдет быстрее в 4 раза, чем по воздуху. А в стали и того быстрее: (рис. 6).

Рис. 6. Скорость распространения звуковой волны

Вы знаете из былин, что Илья Муромец пользовался (да и все богатыри и обычные русские люди и мальчики из РВС Гайдара), пользовались очень интересным способом обнаружения объекта, который приближается, но располагается еще далеко. Звук, который он издает при движении, еще не слышен. Илья Муромец, припав ухом к земле, может ее услышать. Почему? Потому что по твердой земле передается звук с большей скоростью, значит, быстрее дойдет до уха Ильи Муромца, и он сможет подготовиться к встрече неприятеля.

Самые интересные звуковые волны – музыкальные звуки и шумы. Какие предметы могут создать звуковые волны? Если мы возьмем источник волны и упругую среду, если мы заставим источник звука колебаться гармонически, то у нас возникнет замечательная звуковая волна, которая будет называться музыкальным звуком. Этими источниками звуковых волн могут быть, например, струны гитары или рояля. Это может быть звуковая волна, которая создана в зазоре воздушном трубы (органа или трубы). Из уроков музыки вы знаете ноты: до, ре, ми, фа, соль, ля, си. В акустике они называются тонами (рис. 7).

Рис. 7. Музыкальные тоны

У всех предметов, которые могут издавать тоны, будут особенности. Чем они различаются? Они различаются длиной волны и частотой. Если эти звуковые волны создаются не гармонически звучащими телами или не связаны в общую какую-то оркестровую пьесу, то такое количество звуков будет называться шумом.

Шум – беспорядочные колебания различной физической природы, отличающиеся сложностью временной и спектральной структуры. Понятие шума есть бытовое и есть физическое, они очень схожи, и поэтому мы его вводим как отдельный важный объект рассмотрения.

Переходим к количественным оценкам звуковых волн. Какие у музыкальных звуковых волн характеристики? Эти характеристики распространяются исключительно на гармонические звуковые колебания. Итак, громкость звука . Чем определяется громкость звука? Рассмотрим распространение звуковой волны во времени или колебания источника звуковой волны (рис. 8).

Рис. 8. Громкость звука

При этом, если мы добавили в систему не очень много звука (стукнули тихонечко по клавише фортепиано, например), то будет тихий звук. Если мы громко, высоко поднимая руку, вызовем этот звук, стукнув по клавише, получим громкий звук. От чего это зависит? У тихого звука амплитуда колебаний меньше, чем у громкого звука .

Следующая важная характеристика музыкального звука и любого другого - высота . От чего зависит высота звука? Высота зависит от частоты. Мы можем заставить источник колебаться часто, а можем заставить его колебаться не очень быстро (то есть совершать за единицу времени меньшее количество колебаний). Рассмотрим развертку по времени высокого и низкого звука одной амплитуды (рис. 9).

Рис. 9. Высота звука

Можно сделать интересный вывод. Если человек поет басом, то у него источник звука (это голосовые связки) колеблется в несколько раз медленнее, чем у человека, который поет сопрано. Во втором случае голосовые связки колеблются чаще, поэтому чаще вызывают очаги сжатия и разряжения в распространении волны.

Есть еще одна интересная характеристика звуковых волн, которую физики не изучают. Это тембр . Вы знаете и легко различаете одну и ту же музыкальную пьесу, которую исполняют на балалайке или на виолончели. Чем отличаются эти звучания или это исполнение? Мы попросили в начале эксперимента людей, которые извлекают звуки, делать их примерно одинаковой амплитуды, чтобы была одинакова громкость звука. Это как в случае оркестра: если не требуется выделения какого-то инструмента, все играют примерно одинаково, в одинаковую силу. Так вот тембр балалайки и виолончели отличается. Если бы мы нарисовали звук, который извлекают из одного инструмента, из другого, с помощью диаграмм, то они были бы одинаковыми. Но вы легко отличаете эти инструменты по звуку.

Еще один пример важности тембра. Представьте себе двух певцов, которые заканчивают один и тот же музыкальный вуз у одинаковых педагогов. Они учились одинаково хорошо на пятерки. Почему-то один становится выдающимся исполнителем, а другой всю жизнь недоволен своей карьерой. На самом деле это определяется исключительно их инструментом, который вызывает как раз голосовые колебания в среде, т. е. у них отличаются голоса по тембру.

Список литературы

  1. Соколович Ю.А., Богданова Г.С. Физика: справочник с примерами решения задач. - 2-е издание передел. - X.: Веста: издательство «Ранок», 2005. - 464 с.
  2. Перышкин А.В., Гутник Е.М., Физика. 9 кл.: учебник для общеобразоват. учреждений/А.В. Перышкин, Е.М. Гутник. - 14-е изд., стереотип. - М.: Дрофа, 2009. - 300 с.
  1. Интернет-портал «eduspb.com» ()
  2. Интернет-портал «msk.edu.ua» ()
  3. Интернет-портал «class-fizika.narod.ru» ()

Домашнее задание

  1. Как распространяется звук? Что может служить источником звука?
  2. Может ли звук распространяться в космосе?
  3. Всякая ли волна, достигшая органа слуха человека, воспринимается им?