Особенности слуховых и осязательных ощущений.

Звук является объектом слухового ощущения. Он оценивается человеком субъективно. Все субъективные характеристики слухового ощущения связаны с объективными (физическими) характеристиками звуковой волны.

Воспринимаемые звуки человек различает их по тембру, высоте, громкости.

Тембр – « окраска» звука и определяется его гармоническим спектром. Различные акустические спектры соответствуют разному тембру, даже в том случае, когда основной тон у них одинаков. Тембр – это качественная характеристика звука.

Высотатона – субъективная оценка звукового сигнала, зависящая от частоты звука и его интенсивности. Чем больше частота, главным образом, основного тона, тем больше высота воспринимаемого звука. Чем больше интенсивность, тем ниже высота воспринимаемого звука.

Громкость – также субъективная оценка, характеризующая уровень интенсивности.

Громкость главным образом зависит от интенсивности звука. Однако восприятие интенсивности зависит от частоты звука. Звук большей интенсивности одной частоты может восприниматься как менее громкий, чем звук меньшей интенсивности другой частоты.

Опыт показывает, что для каждой частоты в области слышимых звуков

(16 – 20 . 10 3 Гц) имеется так называемый порог слышимости. Это минимальная интенсивность, при которой ухо еще реагирует на звук. Кроме того, для каждой частоты имеется так называемый порог болевых ощущений, т.е. то значение интенсивности звука, которое вызывает боль в ушах. Совокупности точек, отвечающих порогу слышимости, и точек, соответствующих порогу болевых ощущений, образуют на диаграмме (L,ν) две кривые (рис.1), которые пунктиром экстраполированы до пересечения.

Кривая порога слышимости (а), кривая порога боли (б).

Область, ограниченная этими кривыми, называется областью слышимости. Из приведенной диаграммы, в частности, видно, что менее интенсивный звук, соответствующий точке А, будет восприниматься более громким, чем звук более интенсивный, соответствующий точке В, так как точка А более удалена от порога слышимости, чем точка В.

4. Закон Вебера-Фехнера .

Громкость может быть оценена количественно путем сравнения слуховых ощущений от двух источников.

В основе создания шкалы уровней громкости лежит психофизический закон Вебера-Фехнера. Если увеличивать раздражение в геометрической прогрессии (т.е. в одинаковое число раз), то ощущение этого раздражения возрастает в арифметической прогрессии (т.е. на одинаковое значение).

Применительно к звуку это формулируется так: если интенсивность звука принимает ряд последовательных значений, например, а I 0 , а 2 I 0,

а 3 I 0 ,….(а - некоторый коэффициент, а > 1) и т.д., то им соответствуют ощущения громкости звука Е 0 , 2 Е 0 , 3 Е 0 ….. Математически это означает, что уровень громкости звука пропорционален десятичному логарифму интенсивности звука. Если действуют два звуковых раздражителя с интенсивностями I и I 0, причем I 0 – порог слышимости, то согласно закону Вебера-Фехнера уровень громкости Е и интенсивность I 0 связаны следующим образом:



Е= k lg (I / I 0),

где k – коэффициент пропорциональности.

Если бы коэффициент k был постоянным, то следовало бы, что логарифмическая шкала интенсивностей звука соответствует шкале уровней громкостей. В этом случае уровень громкости звука так же, как и интенсивность, выражалась бы в белах или децибелах. Однако сильная зависимость k от частоты и интенсивности звука не позволяет измерение громкости свести к простому использованию формулы: Е= k lg(I / I 0).

Условно считают, что на частоте 1 кГц шкалы уровней громкости и интенсивности звука полностью совпадают, т.е. k = 1 и Е Б = lg (I / I 0). Чтобы различить шкалы громкости и интенсивности звука, децибелы шкалы уровней громкости называют фонами (фон).

Е ф = 10 k lg(I / I 0)

Громкость на других частотах можно измерить, сравнивая исследуемый звук

со звуком частотой 1 кГц.

Кривые равной громкости. Зависимость громкости от частоты колебаний в системе звуковых измерений определяется на основании экспериментальных данных при помощи графиков (рис. 2), которые называются кривыми равной громкости. Эти кривые характеризуют зависимость уровня интенсивности L от частоты ν звука при постоянном уровне громкости. Кривые равной громкости называют изофонамим.

Нижняя изофона соответствует порогу слышимости (Е = 0 фон). Верхняя кривая показывает верхний предел чувствительности уха, когда слуховое ощущение переходит в ощущение боли (Е = 120 фон).

Каждая кривая соответствует одинаковой громкости, но разной интенсивности, которые при определенных частотах вызывают ощущение этой громкости.

Звуковые измерения . Для субъективной оценки слуха применяется метод пороговой аудиометрии.

Аудиометрия – метод измерения пороговой интенсивности восприятия звука для разных частот. На специальном приборе (аудиометре) определяется порог слухового ощущения на разных частотах:

L п = 10 lg (I п /I 0),

где I п – пороговая интенсивность звука, которая приводит к возникновению слухового ощущения у испытуемого. Получают кривые – аудиограммы, которые отражают зависимость порога восприятия от частоты тона, т.е. это спектральная характеристика уха на пороге слышимости.

Сравнивая аудиограмму пациента (рис. 3, 2) с нормальной кривой порога слухового ощущения (рис. 3, 1), определяют разность уровней интенсивности ∆L=L 1 –L 2 . L 1 – уровень интенсивности на пороге слышимости нормального уха. L 2 - уровень интенсивности на пороге слышимости исследуемого уха. Кривая для ∆L (рис3, 3) называется потерей слуха.

Аудиограмма в зависимости от характера заболевания имеет вид, отличный от аудиограммы здорового уха.

Шумомеры – приборы для измерения уровня громкости. Шумомер снабжен микрофоном, который превращает акустический сигнал в электрический. Уровень громкости регистрируется стрелочным или цифровым измерительным прибором.

5. Физика слуха: звукопроводящая и звукопринимающая части слухового аппарата. Теории Гельмгольца и Бекеши.

Физика слуха связана с функциями наружного (1,2 рис.4), среднего (3, 4, 5, 6 рис.4) и внутреннего уха (7-13 рис. 4).

Схематическое представление основных элементов слухового аппарата человека: 1 – ушная раковина, 2 – наружный слуховой проход, 3 – барабанная перепонка, 4, 5, 6 – система косточек, 7 – овальное окно (внутреннего уха), 8 – вестибулярная лестница, 9 – круглое окно, 10 – барабанная лестница, 11 – геликотрема, 12 - улитковый канал, 13 - основная (базилярная) мембрана.

По выполняемым функциям в слуховом аппарате человека можно выделить звукопроводящую и звукопринимающую части, основные элементы которых представлены на рис.5.

1 – ушная раковина, 2 – наружный слуховой проход, 3 – барабанная перепонка, 4– система косточек, 5 – улитка, 6 – основная (базилярная мембрана, 7 – рецепторы, 8 – разветвление слухового нерва.

Основная мембрана весьма интересная структура, она обладает частотно-избирательными свойствами. На это обратил внимание еще Гельмгольц, который представлял основную мембрану аналогично ряду построенных струн пианино. По Гельмгольцу, каждый участок базилярной мембраны резонировал на определенную частоту. Лауреат Нобелевской премии Бекеши установил ошибочность этой резонансной теории. В работах Бекеши было показано, что основная мембрана является неоднородной линией передачи механического возбуждения. При воздействии акустическим стимулом по основной мембране распространяется волна. В зависимости от частоты эта волна по-разному затухает. Чем меньше частота, тем дальше от овального окна (7 рис.4) распространяется волна по основной мембране, прежде чем она начнет затухать. Так, например, волна с частотой 300 Гц до начала затухания распространяется приблизительно на 25 мм от овального окна, а волна с частотой 100 Гц достигает своего максимума вблизи 30 мм.

Согласно современным представлениям восприятие высоты тона определяется положением максимума колебаний основной мембраны. Эти колебания, воздействуя на рецепторные клетки кортиева органа, вызывают возникновение потенциала действия, который по слуховым нервам передается в кору головного мозга. Головной мозг окончательно обрабатывает поступающие сигналы.

Особое значение слуха у человека связано с тем, что он служит для восприятия речи и музыки.

Слуховые ощущения являются отражением воздействующих на слуховой рецептор звуковых волн, которые порождаются звучащим телом и представляют собой переменное сгущение и разрежение воздуха.

Звуковые волны обладают, во-первых, различной амплитудой колебания. Под амплитудой колебания разумеют наибольшее отклонение звучащего тела от состояния равновесия или покоя. Чем больше амплитуда колебания, тем сильнее звук, и, наоборот, чем меньше амплитуда, тем звук слабее. Сила звука прямо пропорциональна квадрату амплитуды. Эта сила зависит также от расстояния уха от источника звука и от той среды, в которой распространяется звук. Для измерения силы звука существуют специальные приборы, дающие возможность измерять её в единицах энергии.

Звуковые волны различаются, во-вторых, по частоте или продолжительности периода колебаний. Длина волны обратно пропорциональна числу колебаний и прямо пропорциональна периоду колебаний источника звука. Волны различного числа колебаний в 1 сек. или в период колебания дают звуки, различные по высоте: волны с колебаниями большой частоты (и малого периода колебаний) отражаются в виде высоких звуков, волны с колебаниями малой частоты (и большого периода колебания) отражаются в виде низких звуков.

Звуковые волны, вызываемые звучащим телом, источником звука, различаются, в-третьих, формой колебаний, т. е. формой той периодической кривой, в которой абсциссы пропорциональны времени, а ординаты - удалениям колеблющейся точки от своего положения равновесия. Форма колебаний звуковой волны отражается в тембре звука - том специфическом качестве, которым звуки той же высоты и силы на различных инструментах (рояль, скрипка, флейта и т. д.) отличаются друг от друга.

Зависимость между формой колебания звуковой волны и тембром не однозначна. Если два тона имеют различный тембр, то можно определённо сказать, что они вызываются колебаниями различной формы, но не наоборот. Тоны могут иметь совершенно одинаковый тембр, и, однако, форма колебаний их при этом может быть различна. Другими словами, формы колебаний разнообразнее и многочисленнее, чем различаемые ухом тоны.

Слуховые ощущения могут вызываться как периодическими колебательными процессами, так и непериодическими с нерегулярно изменяющейся неустойчивой частотой и амплитудой колебаний. Первые отражаются в музыкальных звуках, вторые - в шумах.

Кривая музыкального звука может быть разложена чисто математическим путём по методу Ж. Б. Фурье на отдельные, наложенные друг на друга синусоиды. Любая звуковая кривая, будучи сложным колебанием, может быть представлена как результат большего или меньшего числа синусоидальных колебаний, имеющих число колебаний в секунду, возрастающее, как ряд целых чисел 1, 2, 3, 4. Наиболее низкий тон, соответствующий 1, называется основным. Он имеет тот же период, как и сложный звук. Остальные простые тоны, имеющие вдвое, втрое, вчетверо и т. д. более частые колебания, называются верхними гармоническими или частичными (парциальными), или обертонами.

В зависимости от сложности акустического сигнала воспринимаемые звуки могут быть простыми или сложными. Простые звуки возникают в ответ на синусоидальное колебание воздуха, физическими параметрами которого являются число колебаний в секунду или частота в герцах и амплитуда или интенсивность, измеряемая в децибелах (см. стр. 77).

Человек способен воспринимать звуковые колебания, частота которых находится в пределах от 20 до 20 000 герц (рис. 81). Колебания с частотой ниже 16--20 герц называются инфразвуком. Ранее уже отмечалось, что они воспринимаются не ухом, а костью, как вибрационные ощущения (см. стр. 54). В случае колебаний, частота которых превышает 20 000 герц, говорят об ультразвуке. Внутри зоны подлинных ощущений акустическая частота определяет прежде всего высоту воспринимаемого звука: чем больше частота, тем более высоким кажется нам воспринимаемый сигнал. На высоту звука влияет также и интенсивность раздражителя (см. стр. 181).

Из классических теорий восприятия высота звука наиболее известна резонансная теория Г. Гельмгольца. Согласно этой теории отдельные волокна основной мембраны представляют собой физические резонаторы, каждый из которых настроен на определенную частоту звукового колебания. Высокочастотные раздражители вызывают колебания участков мембраны вблизи овального окошка, где она наиболее узка (0,08 мм), а низкочастотные -- в области верхушки улитки, на участках с максимальной шириной основной мембраны (0,4 мм). Волосковые клетки и связанные с ними нервные волокна передают в мозг информацию о том, какой участок основной мембраны возбужден, а следовательно, и о частоте звукового колебания. В пользу этой гипотезы говорят факты о возможности путем хирургического удаления отдельных участков основной мембраны вызывать избирательную глухоту на определенные частоты. Однако эти же эксперименты показали, что практически невозможно найти участок мембраны, связанный с восприятием низких тонов.

Рис. 81.

Теория Г. Гельмгольца была поставлена под сомнение венгерским физиком Г. Бекеши, который показал, что основная мембрана не натянута и ее волокна не могут резонировать на подобие струн. По Бекеши, колебания перепонки овального окна передаются эндолимфе и распространяются на основной мембране в виде бегущей волны, вызывая ее максимальное смещение на большем или меньшем расстоянии от верхушки улитки в зависимости от частоты. Таким образом, было предложено новое объяснение активации различных по положению рецепторных элементов, но принцип связи высоты звука и акустической частоты через место раздражения сохранился.

На ином принципе кодирования частоты колебания в высоту звука основана теория американского физиолога Э. Уивера. В его экспериментах непосредственно от слухового нерва кошки отводились потенциалы действия и через усилитель подавались на телефонную аппаратуру. Оказалось, что в диапазоне от 20 до 1000 герц рисунок нервной активности полностью воспроизводит частоту раздражителя, так что по телефону можно было слышать произносимые в помещении фразы. В последствии были найдены и другие доказательства в пользу предположения, что кодирование высоты звука осуществляется по принципу частоты. В настоящее время большинство исследователей считает, что высокочастотные колебания воспринимаются по принципу места, а низкочастотные -- по принципу частоты. В среднем диапазоне частот от 400 до 4000 герц работают оба механизма (П. Линдсей и Д. Н. Норман, 1972).

В определении воспринимаемой громкости звука главную роль играет интенсивность звукового колебания. Важной, однако, является и его частота, что сказывается уже на порогах слышимости: если для частоты 1000 герц нижний абсолютный порог равен 0 дб, то для частоты 400 герц он поднимается до 25 дб (рис. 81). Верхний абсолютный порог или болевой порог громкости лежит в области 120--140 дб.

Кодирование интенсивности звуковых сигналов осуществляется в улитке за счет активации различных по своему положению и порогам наружных и внутренних волосковых клеток (рис. 78). Важные преобразования информации о громкости осуществляются на более высоких уровнях слуховой системы. Об этом свидетельствуют сильное сжатие шкалы громкостей (экспонента соответствующей степенной функции равна 0,6), а также феномен константности воспринимаемой громкости. Последний заключается в том, что громкость звукового сигнала не меняется или меняется очень слабо от того, подается ли он на одно или на оба уха (по Е. Н. Соколову).

Иногда, помимо высоты и громкости, выделяют еще два качества простых звуков, определяемые частотой и интенсивностью акустического сигнала. Это синестезические ощущения объемности и плотности звука. Объемностью называется ощущение полноты звука, в большей или меньшей степени "заполняющего" окружающее пространство. Так, низкие звуки кажутся более объемными, чем высокие. Под плотностью понимают качество звука, позволяющее различить "плотный" и рассеянный диффузный звук. Звук кажется тем плотнее, чем он выше; плотность возрастает также с увеличением громкости. Связь всех четырех качество простых звуков с частотой и интенсивностью видна из рис. 82. Каждая кривая показывает, каким образом надо менять физические параметры чистого тона, чтобы его высота, громкость, плотность или объемность остались неизменными.

Чистые тона или простые синусоидальное колебания, при всем их значении для лабораторных исследований звуковых ощущений, практически отсутствуют в повседневном жизни. Естественные звуковые раздражители имеют значительно более сложную структуру, отличаясь друг от друга по десяткам параметров. Это и делает возможным столь широкое использование акустических сигналов в деятельности, включая восприятие музыки и речи.

Сложность состава звукового колебания выражается прежде всего в той, что к основной или ведущей частоте, обладающей амплитудой, привешиваются дополнительные колебания, имеющие меньшую амплитуду. Дополнительные колебания, частота которых превышает частоту основного колебания в кратное число раз, называются гармониками. Типичным примером слухового восприятия акустического сигнала, все дополнительные колебания которого представляют собой гармоники ведущей частоты, является музыкальный тон. В зависимости от доли отдельных гармоник одного и того же ведущего колебания в звуковом разделителе он приобретает различный акустический оттенок или тембр. Одинаковые по высоте и интенсивности звуки скрипки, виолончели и фортепиано отличаются друг от друга своим тембром. К группе тембральных тонов относятся также и гласные звуки языка (рис. 83).

Рис. 82.

Каждая кривая показывает, как надо менять частоту и интенсивность, чтобы высота, громкость, плотность или объемность не отличались от соответствующих качеств стандартного тона частотой 500 гц и интенсивностью 60 дб.

От тембральных тонов отличаются звуки, называемые шумами. Это очень важный класс звуков. Примерами шума могут быть уличные шумы, шум машины, листвы и, наконец, согласные звуки языка. Энергия более или менее равномерно распределена между колебаниями, приводящими к восприятию шума, а их частоты находятся в нерегулярных отношениях друг к другу. Вследствие этого шум не имеет выраженной высоты. В акустике часто употребляется термин "белый шум" для обозначения шума, состоящего, подобно белому свету, из всего спектра слышимых частот.


Рис. 83.

Участки А, В, С и Д соответствуют гласным звукам. Видно наличие основной и одной или двух дополнительных частот

Особый класс звуков образуют щелчки, продолжающиеся иногда всего лишь тысячные доли секунды. Щелчки близки к шумам

по невозможности выделить в них ведущую частоту.

Воспринимаемые нами звуки не всегда бывают единичными. Часто они объединяются в одновременные или последовательные группы. В музыке одновременный комплекс звуков называетсяаккордом. Если частоты колебаний, составляющих акустический сигнал, находятся в кратных отношениях друг к другу, то аккорд воспринимается как благозвучный или консонантный. В противном случае аккорд теряет свою благозвучность, и говорят о диссонансе.

Звуки могут объединяться не только в одновременные комплексы, но и в последовательные серии или ряды. Типичным примером этого служат ритмические структуры. В такой простой ритмической структуре, как азбука Морзе, звуки отличаются только длительностью. В более сложных ритмических структурах еще одной варьируемой переменной оказывается интенсивность. К ним относятся, например, прозодические структуры: ямб, хорей, дактиль, -- применяемые в стихосложении. Наиболее сложны музыкальные мелодии, в которых ритмические структуры звуков разной продолжительности имеют также и различную высоту.

Сложные акустические эффекты возникают, когда частоты раздражителей одновременно действующих на слуховую систему, оказываются различными. Если это различие невелико, то слушатель воспринимает единый звук, громкость которого меняется с частотой, равной разности частот акустических сигналов. Эти изменения громкости называют биениями. При увеличении различий до 30 герц и выше появляются разнообразные комбинационные тона, частота которых равна сумме или разности частот раздражителей.

Одновременное присутствие одного звука оказывает влияние на пороги обнаружения другого. Как правило, они возрастают. Вследствие этого говорят о маскировке одного звука другим. Эффект маскировки тем выраженнее, чем ближе физические характеристики двух сигналов.

Слуховые ощущения, подобно зрительным, сопровождаются слуховыми последовательными образами. Высота и длительность слухового последовательного образа соответствует частоте и длительности раздражителя (И. С. Балонов, 1972).

Слуховые ощущения являются отражением воздействующих на слуховой рецептор звуковых волн, т.е. продольных колебаний частиц воздуха, распространяющихся во все стороны от колеблющегося тела, которое служит источником звука.

Все звуки, которые воспринимает человеческое ухо, могут быть разделены на две группы: музыкальные (звуки пения, звуки музыкальных инструментов и др.) и шумы (всевозможные скрипы, шорохи, стуки и т.д.). Строгой границы между этими группами звуков нет, так как музыкальные звуки содержат шумы, а шумы могут содержать элементы музыкальных звуков. Человеческая речь, как правило, одновременно содержит звуки обеих групп.

Основными качествами слуховых ощущений являются: а) громкость, б) высота, в) тембр, г) длительность, д) пространственное определение источника звука. Каждое из этих качеств слуховых ощущений отражает определенную сторону физической природы звука.

В ощущении громкости отражается амплитуда колебаний. Амплитудой колебаний является наибольшее отклонение звучащего тела от состояния равновесия или покоя. Чем больше амплитуда колебания, тем сильнее звук, и, наоборот, чем меньше амплитуда, тем звук слабее.

Сила звука и громкость — понятия неравнозначные. Сила звука объективно характеризует физический процесс независимо от того, воспринимается он слушателем или нет; громкость — качество воспринимаемого звука. Если расположить громкости одного и того же звука в виде ряда, возрастающего в том же направлении, что и сила звука, и руководствоваться воспринимаемыми ухом ступенями прироста громкости (при непрерывном увеличении силы звука), то окажется, что громкость вырастает значительно медленнее силы звука.

Для измерения силы звука существуют специальные приборы, дающие возможность измерять ее в единицах энергии. Единицами измерения громкости звука являются децибелы.

Громкость обычной человеческой речи на расстоянии 1 метра составляет 16-22 децибел, шум на улице (без трамвая) — до 30 децибел, шум в котельной — 87 децибел.

В ощущении высоты звука отражается частота колебаний звуковой волны (а, следовательно, и длины ее волны). Длина волны обратно пропорциональна числу колебаний и прямо пропорциональна периоду колебаний источника звука.

Высота звука измеряется в герцах, т.е. в количестве колебаний звуковой волны в секунду. Чем больше частота, тем более высоким кажется нам воспринимаемый сигнал. Человек способен воспринимать звуковые колебания, частота которых находится в пределах от 20-20 000 герц, причем у отдельных людей чувствительность уха может давать различные индивидуальные отклонения.

речевых и музыкальных звуков (по Р. Шошолю, 1966)

Верхняя граница слуха у детей — 22 000 герц. К старости эта граница понижается до 15 000 герц и ниже. Поэтому пожилые люди часто не слышат высоких звуков, например стрекотание кузнечиков.

У животных верхняя граница слуха значительно выше, чем у человека (у собаки она доходит до 38 000 Гц.) При повышении интенсивности высоких звуков возникает ощущение неприятного щекотания в ухе (осязание звука), а затем чувство боли.

В ощущении тембра звука отражается форма звуковой волны. В самом простом случае форма звукового колебания будет соответствовать синусоиде. Такие звуки получили название «простых». Их можно получить только с помощью специальных приборов. Близким и простому звуку является звучание камертона — прибора, используемого для настройки музыкальных инструментов. Окружающие нас звуки состоят из различных звуковых элементов, поэтому форма их звучания, как правило, не соответствует синусоиде. Но тем не менее музыкальные звуки возникают при звуковых колебаниях, имеющих форму строгой периодической последовательности, а у шумов — наоборот.

Таким образом, сочетание простых звуков в одном сложном придает своеобразие форме звукового колебания и определяет тембр звучания. Тембр звучания зависит от степени слияния звуков. Чем проще форма звукового колебания, тем приятнее звучание. Поэтому принято выделять приятное звучание — консонанс и неприятное звучание — диссонанс.

Тембром называется то специфическое качество, которое отличает друг от друга звуки одной и той же высоты и интенсивности, издаваемые разными источниками (рояль, скрипка, флейта). Очень часто о тембре говорят как об «окраске» звука.

Тембровая окраска приобретает особенное богатство благодаря так называемому вибрато (К.Сишор, 1935), придающему звуку человеческого голоса, скрипки большую эмоциональную выразительность. Вибрато отражает периодические изменения (пульсации) высоты, интенсивности и тембра звука. Вибрато специально изучалось К.Сишором с помощью фотоэлектрических снимков. По его данным, вибрато, будучи выражением чувства в голосе, не дифференцировано для различных чувств. Вибрато играет значительную роль в музыке и пении; оно представлено и в речи, особенно эмоциональной. Хорошее вибрато порождает впечатление приятной гибкости, полноты, мягкости и богатства.

Продолжительность действия звука и временные отношения между отдельными звуками отражаются в виде той или иной длительности слуховых ощущений.

Слуховое ощущение относит звук к его источнику, звучащему в определенной среде, т.е. определяет местоположение звука. В лаборатории Павлова было обнаружено, что после рассечения мозолистого тела собаки исчезает способность определения местоположения источника звука. Таким образом, пространственная локализация звука определяется парной работой больших полушарий.

Каждое слуховое ощущение представляет собой взаимосвязь между основными качествами слуха, которые отражают взаимосвязь акустических и временно-пространственных свойств предметов и среды распространения исходящих от них звуковых волн.

Слух обеспечивает головной мозг богатством звуков, обилием информации, недоступной другим органам чувств. Слух собирает информацию, поступающую от всего, что окружает тело. Зрение, при всех его достоинствах, ограничено стимулами, находящимися перед глазами. Звуковые волны – ритмичные движения молекул воздуха создаются любым вибрирующим объектом: музыкальным инструментом, голосовыми связками и т.д. Другие среды – жидкости и твердые тела тоже могут передавать звук, но в вакууме звук не распространяется. Частота звуковых волн (количество волн в секунду) соответствует воспринимаемой высоте звука (повышенному или пониженному тону). Амплитуда звуковой волны соответствует количеству энергии, содержащемуся в ней, – ощущаемая громкость звука.

Ушная раковина действует подобно воронке, концентрирующей звуки. Попадая в ухо, звуковые волны наталкиваются на барабанную перепонку – тонкую мембрану внутри звукового прохода. Звуковые волны приводят барабанную перепонку в движение, она заставляет вибрировать слуховые косточки, соединяющие ее с улиткой – органом, образующим внутреннее ухо. Средне ухо заполнено вязкой жидкостью, а на его поверхности расположены нервные окончания – волосковые нервные клетки - именно они кодируют полученную информацию в нервный импульс и передают в мозг.

Для понимания механизма слуховых ощущений огромное значение имеет метод наблюдения клинического случая, а именно исследования расстройств слуха. Выделяют два вида глухоты. Глухота проводимости имеет место, когда ухудшена передача звуков от барабанной перепонки к внутреннему уху. Например, могут быть повреждены или обездвижены из-за болезни или травмы барабанные перепонки или слуховые косточки. Во многих случаях этот вид глухоты можно исправить при помощи слухового аппарата, который делает звуки более громкими и четкими. Нервная глухота является следствием повреждения волосковых клеток или слухового нерва. Слуховые аппараты в этом случае не помогают, т.к. сигналы блокируются и не достигают головного мозга. Особенно интересен такой вид нервной глухоты, как глухота раздражимости – имеет место, когда очень громкие звуки повреждают волосковые клетки в улитке. Как частный случай рассматривается охотничья глухота. Она возникает, если охотники не защищают органы слуха от звука выстрела. Слух сохраняется для всех звуков, кроме выстрела – он не воспринимается. Этот феномен позволил предположить, что за восприятие определенных звуков отвечают определенные рецепторы – волосковые нервные окончания.

Каждый из нас начинает жизнь примерно с 32000 волосковых клеток. Однако мы начинаем терять их уже в момент рождения. К 65 годам даже при бережном отношении к рецепторам слуха утрачивается почти 40% волосковых нервных окончаний. Если вы работаете в шумной обстановке или наслаждаетесь громкой музыкой, увлекаетесь мотоциклами и подобными развлечениями, вам может грозить глухота раздражимости (нервная). Волосковые клетки толщиной примерно с паутинку, они очень хрупкие и легко повреждаются. После их гибели их ничто не заменит. Угроза потери слуха зависит от громкости звука и от того, как долго он на вас воздействует. Ежедневное воздействие 85 децибелов и более может привести к хронической глухоте. Даже кратковременные воздействия звука громкостью 120 децибелов (рок-концерт) могут вызвать временное смещение порога (частичную обратимую потерю слуха). Кратковременное воздействие 150 дц. Реактивный самолет – может вызвать хроническую глухоту. Музыка и шум способны причинить вред, а танцы увеличивают этот риск, направляя кровяной поток от внутреннего уха к конечностям. Стереонаушники плеера также представляют опасность, достигая громкости примерно в 115 дц. Если вы слышите звук, идущий из наушников человека, находящегося радом, то скорее всего громкость причиняет необратимый вред ушам пользователя. Воздействие громких звуков, вызывающее шум в ушах, делает очень вероятным повреждение волосковых клеток. Если звуки, вызывающие это повреждение, будут повторяться, то вероятна хроническая тугоухость. Исследование людей, которые регулярно ходят на шумные концерты, показало, что 44% из них страдают от шума в ушах и у большинства отмечается частичная потеря слуха.


5.2.4. Ощущения обоняния и вкуса. Если вы не дегустатор, парфюмер или повар, то вы можете посчитать, что обоняние и вкус – второстепенные ощущения. Разумеется, человек может прожить без двух химических органов чувств, рецепторов, которые реагируют на молекулы химических веществ. Тем не менее, обоняние и вкус время от времени предотвращают отравления и делают нашу жизнь более приятной.

Рецепторы запаха реагируют главным образом на молекулы газообразных веществ. Когда воздух попадает к нам в нос, он проходит примерно поверх 5 миллионов нервных волокон, внедренных в покров носовых путей. Переносимые воздухом молекулы, проходя мимо оголенных нервных волокон, посылают нервные сигналы, которые направляются в головной мозг. Вопрос о том, как именно продуцируются определенные запахи, сегодня остается открытым. Одну из подсказок дает расстройство, называемое аносмией – обонятельная слепота. Аносмия позволяет предположить, что обонятельные волокна имеют рецепторы, чувствительные к специфическим запахам. Имеется по меньшей мере 100 видов рецепторов запаха. Каждый обонятельный рецептор чувствителен только к какой-то части структуры молекулы, посылая сигналы о выявлении определенных видов молекул, рецепторы дают возможность мозгу распознавать молекулярные отпечатки, указывающие на определенный запах. Эту теорию запаха называют теорией замка и ключа, т.к. можно предположить, что определенные обонятельные рецепторы воспринимают специфичные, только им предназначенные молекулы запаха по принципу мозаики. Запахи также частично идентифицируются местонахождением в носу рецепторов, активизирующих запах. И наконец, число активизированных рецепторов сообщает мозгу, насколько резок запах. Один широкомасштабный тест показал, что ощущать запахи неспособен один человек из 100. Люди с полной аносмией, как правило, обнаруживают, что обоняние далеко не второстепенное чувство. Если вы дорожите обонянием, то следите за тем, что вы вдыхаете. Опасность для обонятельных нервов представляют химические вещества, такие как аммиак, фотопроявители, средства для укладки волос, а также инфекции, аллергии и удары по голове, которые могут вызвать разрыв нервных волокон.

Существует по крайней мере четыре базовых ощущения вкуса: сладкого, соленого, кислого и горького. Мы наиболее чувствительны к горькому и кислому, менее к соленому, и в наименьшей степени к сладкому. Возможно этот порядок существует для предотвращения отравлений, поскольку горькие и кислые продукты бывают чаще всего несъедобными. Но, если существует 4 вкуса, то откуда такое богатство привкусов. Привкусы кажутся особенно разнообразными потому, что мы примешиваем к вкусу ощущения структуры материала, температуры, запаха и даже боли (обжигающий перец). Особенно влияет на вкус запах. Маленькие кусочки картофеля и яблок могут показаться совершенно одинаковыми на вкус, когда заложен нос. Рецепторы вкуса – вкусовые почки расположены главным образом на верхней стороне языка по его краям. Однако в небольшом количестве они находятся внутри ротовой полости. Когда растворенная пища попадает на вкусовые почки, она отправляет нервный импульс в головной мозг. Вкусовая чувствительность связана с тем, сколько вкусовых почек имеется на вашем языке, их может быть от 500 до 10 000. В последнем случае людям достаточно положить в кофе половину обычного количества сахара. Во многом подобно обонянию, сладкие и горькие вкусовые ощущения основываются на замково-ключевом соответствии между молекулами и имеющими замысловатую форму рецепторами.

5.2.5. Соместетические ощущения. Такие повседневные виды деятельности, как ходьба или бег, были бы невозможны без ощущений, идущих от тела, которые включают в себя кожные ощущения (прикосновение, давление, боль и температура), кинестетические ощущения (рецепторы в мышцах и суставах, определяющие положение движение тела) и вестибулярные ощущения (репторы внутреннего уха, отвечающие за равновесие, тяготение и ускорение).

Вестибулярная система известна, прежде всего, морской болезнью и другими разновидностями укачивания. Наполненные жидкостью мешочки вестибулярной системы (отолитовые органы) чувствительны к движению, ускорению и тяготению. Сильное гравитационное воздействие способно вызвать передвижение массы жидкости, которое в свою очередь сообщает раздражение волосковым рецепторным клеткам, позволяя ощущать силу тяготения. Вот почему инфекция внутреннего уха способна вызвать сильное головокружение. Наилучшим объяснением укачивания является теория сенсорного конфликта. Согласно ей, головокружение и тошнота имеют место, когда ощущения вестибулярной системы не соответствуют информации, получаемой от глаз и тела. На твердой поверхности информация, идущая от вестибулярной системы, органа зрения и кинестетической системы обычно совпадает, но в автомобиле, самолете, лодке эти сигналы могут иметь значительное расхождение. Многие яды также нарушают согласованность сведений вестибулярной системы и органов зрения и тела. Поэтому в процессе эволюции человечество научилось реагировать на сенсорный конфликт рвотными позывами, способствующими удалению яда.

Кожные рецепторы продуцируют по меньшей мере пять ощущений: легкого касания, давления, боли, холода и тепла. Рецепторы определенной формы специализируются на различных ощущениях, однако четкой специфики нет, так рецепторы температуры при очень сильном воздействии становятся рецепторами боли. В целом на поверхности тела находятся 200 тысяч нервных окончаний, реагирующих на температуру, 500 тысяч – на прикосновение и давление, 3 миллиона на боль. Количество рецепторов на каждом участке кожи различно. В среднем под коленом на кв. см. поверхности тела приходится около 232 болевых точек, на подушке большого пальца 60, на кончике носа –44. Фактически существует два вида боли – предаваемая большими нервными волокнами, она отличается резкостью, отчетливостью и быстродействием, ее передает предупреждающая система тела. И боль, передаваемая малыми нервными волокнами, – замедленная, ноющая, тупая, отличается широким распространением и очень неприятна – боль напоминающей системы. Она напоминает головному мозгу, что телу нанесено повреждение. Она вызывает сильную боль даже когда напоминание уже бесполезно – при неизлечимой форме рака, например.

Одной из важнейших характеристик сенсорных анализаторов является возможность адаптации. Чувствительность многих ощущений меняется на несколько порядков. Наименьшая степень адаптации свойственна боли, т.к. свидетельствует о нарушениях в организме, и быстрая адаптация к ней может грозить гибелью.