Санитарная оценка чистоты воздуха. Анализ воздуха в квартире: когда это необходимо

А. Е. Федотов, д.т.н., президент АСИНКОМ, генеральный директор ООО «Инвар-проект», председатель технического комитета по стандартизации ТК 458 «Производство и контроль качества лекарственных средств».

Внутрибольничные инфекции являются серьезной инере-шенной проблемой. В статье рассматриваются этапы борьбы с внутрибольничны-ми инфекциями, источники загрязнений и перекрестных загрязнений, роль гигиены и чистотывоздуха, името-ды зашиты от инфекций, предусмотренные россий-ским национальным стан-дартом ГОСТ Р52539-2006 «Чистота воздуха влечебных учреждениях. Общие тре-бования», за публикацию о котором автор по лучил престижную премию На-учного общества в области фармации и здравоохране-ния ThePharmaceutical and Healthc are Sciences Society(PHSS) Великобритании за 2008 г.

Статья подготовлена по ма-териалам выступлений автора на конференциях в Англии, Японии, Швеции, Италии и других странах в 2006-2011 г.

1. Больница — опасное место

Больницы инфицированы патогенными микроорганизмами, и пребывание в них опасно для человека. Внутрибольнич-ные инфекции убивают множество людей и обходятся очень дорого в материальном выражении. Здоровый человек, попав слу-чайно в больницу, рискует получить неиз-лечимое инфекционное заболевание, о су-ществовании которого он не подозревал.

Великобритания

В этой стране ежегодно умирает от вну-трибольничных инфекций более 5000 че-ловек. Ущерб от них составляет 1 млрд фунтов стерлингов в год и превышает по-тери от дорожно-транспортных происше-ствий. Около 8% пациентов получают ин-фекции во время пребывания на лечении в больницах (данные проф. Р. Джеймса) .

Франция

Ежегодно 60000-100 000 человек ин-фицируются при нахождении в больницах, что составляет 6-10% от общего числа па-циентов. От 5 000 до 10 000 человек умира-ет каждый год из-за инфекций в больницах. Эти цифры сопоставимы с числом жертв на дорогах .

Россия

По данным нашего ведущего торакаль-ного хирурга проф. Ю.В. Бирюкова (Рос-сийский национальный центр хирургии), причиной половины смертей после операций являются инфекции .

2. Защита от внутрибольничных инфекций: факты истории

Проблема внутрибольничных инфек-ций имеет очень длинную историю и оста-ется нерешенной, несмотря на множество усилий. Эта история имеет свою логику и может быть разделена на три периода.

Доантисептический период

Известно, что до середины XIX века из-за инфекций, полученных при ампута-циях конечностей, умирало до половины больных. Было замечено, что проведе-ние операций в небольших больницах, в домашних и полевых условиях менее опасно. Высокая концентрация больных в одном месте приводила к перекрестным загрязнениям и распространению инфек-ций. Свежий воздух и отсутствие других людей резко улучшало обстановку.

Эра антисептики

Английский хирург Дж. Листер пред-ложил технологию антисептики,которая предусматривала смачивание инструмен-тов и других материалов в карболовой кислоте. Это позволило снизить смерт-ность после операций с 40% до 15% в пе-риод с 1864 to1866 .

Это был прорыв вперед. Он означал начало эпохи антисептики в хирургии. Началось широкое применение принципов гигиены. В то же время было замечено, что эффективность методов антисептики ограничена.

Американский хирург Дж. Брюэр ввел стерилизацию инструментов и других материалов в автоклавах, и применение перчаток. Это позволило снизить процент полученных инфекций с 39% до 3,2% в пе-риод с 1895 по 1899.

Чистый воздух и принципы асептики

Для дальнейшего снижения риска по-лучения инфекций потребовалось обеспе-чение чистоты воздуха.

Благотворное влияние свежего воздуха было известно давно. В XIX веке было понято, что одной из причин инфекций яв-ляются загрязнения в воздухе. Листер был передовым и проницательным человеком, и понимал это. Но отсутствие средств обе-спечения чистоты воздуха не позволяло двигаться вперед. Попытки Листера рас-пылять карболовую кислоту не дали ре-зультата, поскольку относительно большие капельки в аэрозоле не могли обеспечить инактивацию значимого количества микро-организмов

Известен метод борьбы с микроорга-низмами на микроуровне, применявшийся в то время. Мелко нарезанный лук снижал риск инфекций. Лук — натуральное дезинфицирующее средство. Он выделяет соединения, убивающие бактерии на молекулярном уровне. Диффузия этих соединений в воздухе снижала риск инфекций.

Следующий шаг был сделан в се-редине XX века. В то время в ме-дицине произошла хирургическая революция, суть которой состоит в следующем.

1. Широкое распространение по-лучили новые виды операций (эн-допротезирование тазобедренных и коленных суставов, кардиохирур-гия и т.д.), которые выполняются в течение длительного времени

4-8 часов), и раны при операции имеют большие размеры. Это резко увеличивало риск попадания ин-фекции прямо в рану.

2. Хирургия стала массовой, уве-личилась концентрация пациентов в больницах и размеры самих боль-ниц. Таким образом, опасность пере-крестных загрязнений и инфициро-вания больных и персонала больниц резко возросла;

3.Благодаря антибиотикам был.делан прорыв в защите пациентов

т инфекций, но в то же время появи-лись микроорганизмы, устойчивые к антибиотикам и колонизировавшие больницы. Человек, который никогда их не имел, стал заражаться ими при попадании в больницу без шанса избавиться от них. Метициллин — . тойчивые микроорганизмы, напри-мер. золотистый стафиллокок, стали бичом больниц. Синдром больных зданий, зараженных аспергиллами, слтубил проблему.

Пребывание в больницах стало еше более опасным, чем во времена Листера.

Это потребовало новых, асепти-ческих методов защиты, основанных на применении техники чистых по-мещений с высокоэффективными фильтрами очистки воздуха (НЕРА- ф юьтрами), однонаправленными (ла-минарными) потоками воздуха и пр.

Центральная идея асептической технологии состоит не в уничтоже-нии бактерий, а в том, чтобы не до-пустить их в помещение или в зону, где находится больной.

Число частиц в воздухе (Таблица 1)

В начале 1960-х годов английский хирург сэр Джон Чарнлей стал при-менять подачу вертикального потока чистого воздуха в зону операционно-го стола при операциях эндопротези-рования тазобедренных суставов. Это дало зримый результат: инфекции по-сле операций снизились с 9% to1,3% . Использование однонаправлен-ного потока воздуха дало еще более убедительные результаты.

Казалось бы, проблема близка к своему решению.

Но это не так! Технология чи-стого воздуха до сих пор не стала достоянием очень многих больниц. Нет общего понимания причин вну-трибольничных инфекций и методов борьбы с ними.

3. Частицы и микроорганизмы в воздухе

Частицы являются носителями микроорганизмов (таблица 1).

Какова связь между концентраци-ей частиц и микроорганизмов?

На этот вопрос дают ответ иссле-дования NASA: (Национальное агентство по исследованию космоса США):

В чистом помещении класса 5 ИСО в 1 м 3 воздуха находятся менее 3,5 микроорганизмов;

В чистом помещении класса 8 ИСО в 1 м 3 воздуха находятся менее 88 микроорганизмов;

Находящиеся в воздухе частицы оседают на поверхностях, попадают в рану и т. д.

Скорость осаждения на 1 м 2 по-верхности оценивается следующими цифрами:

Класс 5 ИСО — 80 микроорганизмов в час

Класс 8 ИСО — 2000 микроорганизмов в час

Это приближенная оценка, но она дает представление о картине в целом.

Примерно 2 000 микроорганизмов могут осесть на 1 м 2 поверхности чи-стого помещения класса 8 ИСО. Если рана имеет размеры 20×20 см = 0,04 м 2 , то в течение операции длительно-стью 6 ч. в рану попадут 480 микро-организмов. Для помещений без филь-трации воздуха эта цифра составит

5000-10000 микроорганизмов. При операции в зоне с однонаправленным потоком воздуха в рану попадет менее 20 микроорганизмов. Это не идеал, но эффект от применения однонаправ-ленного воздуха очевиден.

Зависимость между числом частиц и числом микроорганизмов в воздухе

Для чего мы стремимся понять эту зависимость? Мы делаем это, поскольку:

Для оценки чистоты воздуха по ча-стицам есть давно разработанные и апробированные стандарты;

Задание класса чистоты помеще-нию или зоне дает ясные требова-ния к проектированию, монтажу и испытаниям;

Счет частиц ведется быстро, в ре-альном масштабе времени, в от-личие от оценки микробных за-грязнений.

4. Источники микробного загрязнения

Причины и пути распростране-ния инфекций в больницах показаны в таблице 2.

Из таблицы видно, насколько велика доля загрязнений в воздухе во всем комплексе мер по предупре-ждению инфекций. Особую опас-ность представляют перекрестные загрязнения. Пути их распростране-ния неочевидны и в этом, вероятно, состоит причина того, что многие специалисты в области гигиены не воспринимают их всерьез.

Источники инфекций и методы борьбы (Таблица 2)

5. Меры защиты

Гигиена

Под гигиеной понимается со-держание в чистоте рук, тела, упо-требление чистых продуктов пита-ния, использование чистой одежды и т. д. Эти меры защищают больного от прямыхзагрязнений. Они — обя-зательны и эффективны, но они недо-статочны.

Маски для лица

В чем реальный эффект маски?

Люди выделяют частицы и ка-пельки изо рта и носа. При дыхании и разговорах эти выделения рас-пространяются на 2-4 м от челове-ка в направлении, куда он смотрит и говорит. При кашле и чихании загрязнения распространяются зна-чительно дальше.

Поверхности

Частицы оседают на поверхно-стях. Чистая поверхность быстро ста-новится загрязненной, если загрязнен воздух. Частая и эффективная убор-ка поверхностей снижает уровень загрязнений в воздухе, поскольку частицы из воздуха быстро оседают на чистых поверхностях. Уборка по-верхностей — обязательное условие. Но оно не является решающим в обе-спечении чистоты воздуха.

Фильтрация воздуха и чистые помещения

Фильтрация воздуха является наи-более эффективным методом борьбы с аэрозольными частицами. В соче-тании с другими условиями она дает требуемый уровень чистоты и защи-ты от инфекций.

Концентрация как живых, так и неживых частиц в воздухе может быть снижена за счет фильтрации воз-духа, интенсивного воздухообмена, применения однонаправленного по-тока воздуха и других методов техно-логии чистоты. Это — обязательное условие.

На рис. 1 и рис. 2 показано влия-ние фильтрации воздуха на его за-грязненность.

Пора прекратить споры о том, что главнее: методы гигиены или методы технологии чистоты. Эти споры от-носятся к категории казуистических дискуссий — что важнее: рельсы или колеса. Оба фактора необходимы и служат одной цели.

6. Стандарт на чистоту воздуха

Основные требования к чистоте воздуха и методы ее обеспечения установлены ГОСТ Р 52539-2006 «Чистота воздуха в лечебных учреж-дениях. Общие требования» . Разработчик — Общероссийская общественная организация «Ас-социация инженеров по контролю микрозагрязнений» (АСИНКОМ). Стандарт соответствует требованиям нормативных документов Франции. Германии и Швейцарии и недавно введенному комплексу стандартов ИСО 14644 по технике чистых по-мещений.

Стандарт устанавливает пять групп помещений в зависимости от требований к чистоте. (Таблица 3)

Классификация помещений лечебных учрежденй (Таблица 3)

Наведите курсор для увеличения

Наведите курсор для увеличения

Основные требования к чистоте воздуха в оснащенном состоянии (Таблица 4)

Виды потолков воздуха и классы фильтров (Таблица 5)

Эти требования нужно выполнять и нужно знать, как выполнять:

a) для операционной группы 1 пло-щадь поперечного сечения одно-направленного потока воздуха должна быть не менее 9 кв. м, он должен накрывать операционный стол, бригаду хирургов и стол для инструментов, фильтры должны иметь класс Н14, скорость потока воздуха должна быть в пределах 0,24 до 0,3 м/с;

b) в палатах интенсивной терапии (группа 2) зона с однонаправлен-ным потоком должна накрывать постель больного, скорость потока воздуха 0,24-0,3 м/с;

c) в операционных группы 3 могут предусматриваться зоны с одно-направленным потоком меньшего сечения — 3,0^,0 м2;

d) в помещениях группы 4, как прави-ло, предусматривается естествен-ная вентиляция.

В действующих больницах при отсутствии средств на капитальный ремонт следует применять автономные устройства очистки воздуха (рис. 3).

Рис. 3 Применение автономного устройства очистки воздуха в помещениях групп 3 и 4. Lп — расход приточного воздуха; Lэ — расход воздуха за счет фильтрации.

Устройство должно иметь фильтр пред-варительной очистки (предфильтр) и НЕРА-фильтр. Главное, нужно приоб-ретать эффективные устройства хоро-ших фирм и не идти на поводу постав-щиков сомнительных изделий, к тому же опасных в виду образования озона из-за электростатического эффекта.

Нужно понимать, что создание чистых помещений требует про-фессионализма и принятия далеко неочевидных технических решений, оформляемых в виде проекта.

Бичом строительства новых боль-ниц и реконструкции действующих является безграмотность проектов. Каков проект, таков и объект, во вся-ком случае, не лучше. К сожалению, существующая система конкурсов и госзакупок позволяет выигрывать тендеры кому угодно, а проекты про-ходят экспертизу только на соответ-ствие показателям безопасности. Со-ответствие назначению по современ-ным нормам не проверяется никем.

Критический вопрос — это выбор грамотной проектной организации, хорошего оборудования и профес-сиональных монтажников. На рынке сплошь и рядом по очень высоким

ценам идут негодные проекты и пло-хое оборудование.

Чистые помещения должны соот-ветствовать ГОСТ Р 52539 и ГОСТ Р ИСО 14644-4, их испытания следует проводить по ГОСТ Р 52539 и ГОСТ Р ИСО 14644-3 .

7. Что делать?

Ответ на этот вопрос предельно ясен:

Нужны современные нормативные документы, следование которым позволит решить проблему с вну-трибольничными инфекциями;

Нужно выполнять эти нормы на практике;

Нужно проверять соответствие по-мещений больниц этим нормам.

Начало решению первой задачи положено.

Сравнение отдельных фрагментов ГОСТ Р 52538 и СанПин (Таблица 6)

Наведите курсор для увеличения

Введен в действие ГОСТ Р 52539-2006 «Чистота воздуха в ле-чебных учреждениях. Общие требо-вания», соответствующий мировому уровню.

Почему только начало?

Обязательные требования к чистоте воздуха в больницах установлены СанПиН 2.1.3.2630-10 «Санитарно-эпидемиологические требования к организациям, осуществляющим медицинскую деятельность», приложение 3 «Класс чистоты, рекомендуемый воздухообмен, допустимая и расчетная температура».

Сравним требования стандарта и этих норм к операционным и палатам интенсивной терапии (таблица 6).По данным ООО «Криоцентр», микробная загрязненность воздуха в роддомах Москвы колеблется от 104 до 195 КОЕ/м3, причем последняя цифра относится к роддому, куда привозят бомжей. Это лучше, чем в операционных по СанПиНу. Воздух московского метро содержит примерно 700 КОЕ/м3. Это лучше, чем в «палатах для лечения пациентов в асептических условиях, в том числе для иммунокомпрометированных» по СанПиНу.
СанПиН установил заведомо плохие нормы, под которые можно подвести самые плохие помещения больниц, содержащиеся в плохом и антисанитарном состоянии. Но СанПиН — нормативный правовой документ. Он обязателен при проектировании и строительстве новых, реконструкции и капительном ремонте старых больниц.

Правительство России вкладывает в здравоохранение очень большие средства — на ближайшие годы — более 300 млрд руб. На эти сред-ства можно реконструировать все основные больницы России по ГО-СТу, то есть по передовому в мире уровню, гарантирующему защиту больных от инфекций. Денег хватит, еще и останутся.

Почему создан и утвержден этот СанПиН, очевидно ущербный?

Наверное, есть несколько причин, действующих одновременно:

Некомпетентность и безнадежная отсталость его создателей;

Полное их равнодушие к здоровью людей, для заботы о котором они занимают свои места;

Лоббирование заведомо неэффек-тивных решений.

Выделяемые правитель-ством средства можно «списать» на строительство и реконструкцию по ущербному СанПиНу, потратив их на негодные решения с низкой себестоимостью. Куда пойдет раз-ница? Для страны, где коррупция приобрела ужасающий размах, ответ очевиден.

Основное возражение против введения западных стандартов — «нет денег». Это неправда. Деньги есть. Но идут они не туда, куда надо. Десятилетний опыт аттестации по-мещений больниц силами нашей лаборатории испытаний чистых по-мещений показал, что фактическая стоимость операционных и палат ин-тенсивной терапии превышает порой в несколько раз затраты на объекты, выполненные по ГОСТу и оснащен-ные западным оборудованием. При этом объекты не соответствуют со-временному уровню.

Для нас, потребителей услуг здра-воохранения, такая картина абсолют-но неприемлема.

Хотелось бы услышать коммента-рий этому от человека, утвердившего СанПиН — главного санитарного врача России Г. Г. Онищенко.

История с ГОСТ Р 52539 и Сан-ПиН — не случайность. Она отражает общий системный дефект в организа-ции разработки норм, когда за основу берется старый документ и совер-шенствуется исходя из понимания сотрудников отраслевого института, взявшихся за его разработку. Этот путь дает постоянную работу «научным» сотрудникам, но никогда не выведет нас на передовой в мире уровень.

Чтобы выйти из тупика, нужно при разработке норм исходить из пе-редового в мире уровня. И если вно-сить какие-то отличия, то нужно ясно об этом сказать, объяснить почему и спросить у общества, согласно ли оно с этим.

Список литературы

1.R. James. Superbugs: media type or a threat to healthcare systems?— Presentation at Cleanroom Europe Conference in Stuttgart. 24 March 2009.

2.Dorchies F. France: standard on air cleanli-ness in hospitals— Cleanroom Technology, April 2005.

3.Бируков E В. Надежное средство предупре-ждения инфекций и послеоперационных осложнений— «Технология чистоты», № 1, 2006.

4.Anna Hambraeus «Prevention of postopera-tive infections— Hygienic measures and ven-tilation» — Proceedings of R3 Nordic 40th Sym-posium, 2009, Gothenburg, Sweden,p. 229-235.

5.Cleanroom design. Edited by W. White, pub-lished by John Wiley and sons, 1992.

6.Чистые помещения, под ред. А. Е. Федотова, М., 2003.

7.ГОСТ Р52539-2006 «Чистота воздуха в лечеб-ных учреждениях. Общие требования».

8.ГОСР Р ИСО 14644-4-2002 «Чистые помеще-ния и связанные с ними контролируемые среды. Часть 4. Проектирование, строитель-ство и ввод в эксплуатацию».

9. ГОСТ Р ИСО 14644-3-2006 «Чистые помеще-ния и связанные с ними контролируемые среды. Часть 3. Методы испытаний».

Атмосферный воздух всегда содержит какие-либо загрязнения, связанные с различными природными процессами на нашей планете (эрозия почвы, вулканические загрязнения и т.п.). Более существенным фактором загрязнения атмосферы являются техногенные факторы - последствия жизнедеятельности людей. Они проявляются в росте автомобильного парка, влекущего увеличение выбросов выхлопных газов, особенно в больших городах, а также увеличение промышленных выбросов в атмосферу, вызванных ростом производства в различных странах. Продуктами этих процессов являются загрязнения атмосферного воздуха пылью, мелкодисперсными аэрозолями, а также молекулярными (газообразными) загрязнениями.

Все это создает предпосылки необходимости очистки (фильтрации) воздуха перед его подачей в помещение.

Частью инженерных систем зданий являются системы вентиляции и кондиционирования воздуха. Эти системы обеспечивают забор атмосферного воздуха, его обработку и подачу в помещения. Обработка воздуха включает его нагрев (охлаждение) увлажнение (осушка) и очистку.

Классификация чистоты воздуха

Классификации загрязненности атмосферного воздуха и чистота воздуха в помещения регламентируется ГОСТ Р ЕН 13779-2007 «Вентиляция в нежилых зданиях» аналогичного Европейскому стандарту EN 13779 .

В стандарте также приведены примеры некоторых средних значений загрязненности наружного воздуха (табл. 1) для различных районов.

Вышеупомянутый стандарт ввел условное деление загрязненности наружного воздуха (табл. 2) на 5 классов и чистоты внутреннего воздуха помещений на 4 класса (табл. 3).

Введенные классификации носят условный характер, и точное определение каждого класса зависит от характера источника загрязнений и от их воздействий. Например, источники загрязнений могут быть:

  • локализованными или распространенными по всему зданию;
  • непрерывными или перекрывающимися;
  • выделяющими частицы (неорганические, жизнеспособные или другие органические) или газы (пары) - органические или неорганические.

Влияние качества воздуха может быть различным, например, для людей с разной степенью адаптации, или влиянием на здоровье, например, влияние на слизистые поверхности, наличие токсичного эффекта, аллергических реакций или фактора канцерогенности. Это влияние может иметь индивидуальный характер, например, для здоровья взрослых и детей или больных в лечебных учреждениях.

Таблица 1. Примеры содержания загрязнений в наружном воздухе

Примечание . Приведенные значения являются среднегодовыми. Их не следует использовать при проектировании, поскольку максимальные концентрации будут выше. Для более подробной информации следует выполнить оценку загрязнений на месте или пользоваться соответствующими руководствами или статистическими данными мониторинга Росгидромета.

Таблица 2. Классификация наружного воздуха

Таблица 3. Классификация воздуха в помещениях

Классификация воздушных фильтров

Необходимо отметить, что все воздушные фильтры для систем вентиляции и кондиционирования воздуха делятся на две большие группы: воздушные фильтры общего назначения и высокоэффективные фильтры специального назначения . Первые делятся на 2 группы (табл. 4) и подразделяются на 9 классов чистоты от G1 до F9, в соответствии с ГОСТ Р 51251-99 и ГОСТ Р EN 779 (аналог Евростандарта EN779). Вторые - классифицируются от класса Н10 до U17 по проекту ГОСТ Р - ЕН 1822 (аналог Евростандарта EN1822) и также делятся на две группы (табл. 5.).

Таблица 4. Классификация воздушных фильтров общего назначения

* Определеяется по синтетической пыли.
** Определеяется для частиц 0,4 мкм.

Таблица 5. Классификация высоко- (НЕРА) и сверхвысокоэффективных (ULPA) воздушных фильтров

Рекомендации применения воздушных фильтров общего назначения

Наличие большого разнообразия фильтров по эффективности очистки, т.е. по классам, а также по конструктивным особенностям требуют рекомендаций по их использованию (табл. 6). В таблице для разных классов наружного воздуха и разного уровня (классов) чистоты воздуха в помещении предлагаются различные схемы одно- и многоступенчатой очистки воздуха. Необходимо отметить, что рекомендации (см. табл. 4), даны с учетом загрязненности воздуха характерного для большинства европейских стран. Для нашей страны необходимо вводить некоторые корректировки с учетом более высоких уровней загрязненности атмосферного воздуха, связанного в первую очередь с техногенными факторами (менее жесткие требования к выбросам автомобилей и более слабый контроль вентвыбросов промышленных предприятий).

*GF - газовый (угольный) и (или) химический фильтр.

Переводя предлагаемую схему многоступенчатой очистки на практический язык, ее можно проиллюстрировать на следующих примерах.

Если необходимо очистить воздух, подаваемый в производственные помещения без каких-либо специальных требований, например, подача приточного воздуха в помещения сборочно-сварочных цехов, металлургических предприятий, где чистота приточного воздуха определяется только гигиеническими требованиями достаточно установки одноступенчатой системы очистки фильтров грубой очистки класса G3, G4, в качестве которых могут быть использованы выпускаемые ООО «НПП «Фолтер» панельные фильтры ФяП класса G3, гофрированные фильтры ФяГ классов G3, G4 или карманные фильтры ФяК грубой очистки классов G3, G4 (рис. 1).

Рис. 1. Воздушные фильтры общего назначения

Фильтры ФяП или ФяГ используются в условиях габаритных ограничений для их размещения, поскольку они имеют глубину 20–48 мм для (ФяП) и 48 и 100 мм для ФяГ. Малые габаритные размеры по глубине являются также и недостатком этих фильтров, не позволяя существенно развивать фильтрующую поверхность, что сказывается на их сроке службы.

В этом смысле предпочтение имеют карманные фильтры ФяК, которые изготавливаются для классов G3, G4 с глубиной 300 мм, а для увеличения ресурса целесообразно использовать фильтры ФяК с глубиной 600 мм. С экономической точки зрения, предпочтительнее использование фильтров с большой глубиной, т.к. это более чем в два раза увеличивает ресурс работы, снижает вдвое затраты связанные с заменой фильтров при увеличении стоимости только на 30–40 %.

Для очистки больших объемов воздуха карманные фильтры ФяК могут устанавливаться в специальные фильтрующие камеры-секции карманных фильтров (рис. 2), что позволяет очищать воздух объемом до 120 тыс. м 3 /ч.

Рис. 2. Секция карманного фильтра СКФ

1-я ступень (как правило фильтры грубой очистки) системы фильтрации атмосферного воздуха обеспечивает защиту технообменных аппаратов от загрязнений, т.к. фильтры 1-й ступени устанавливаются, как правило, на воздухозаборе, т.е. на входе в приточные установки или кондиционеры. Защита технообменных аппаратов влечет и экономический эффект, связанный с исключением дополнительных затрат на их промывку (при отсутствии фильтров) и поддержание заданного коэффициента теплопередачи в отсутствии загрязнения теплоотдающей поверхности.

Другим общим случаем очистки приточного воздуха является необходимость обеспечения более высоких требований чистоты воздуха, как, например, в 4-х и 5-ти звездочных отелях, офисных помещениях высокого уровня (категория А), спортивных сооружениях и т.п. В этом случае требуемый уровень может быть достигнут использованием фильтров класса F7–F9. При невысокой запыленности атмосферного воздуха такие фильтры могут быть установлены в одну ступень, без предварительной очистки (см.табл. 6).

Однако, как правило, запыленность городов является высокой, что требует установки перед фильтрами класса F7–F9 фильтров предварительной очистки классов G4–F5, т.е. применение 2-х ступенчатой системы очистки приточного воздуха.

1-я ступень очистки призвана защитить вторую более дорогую ступень от загрязнений крупными пылевыми частицами размером 5–10 мкм, что может увеличивать ресурс работы 2-й ступени более чем в 2 раза.

Для применения в качестве 2-й ступени фильтров классов F7–F9 ООО «НПП «Фолтер» производит широкую номенклатуру воздушных фильтров: ФяК, ФяС-F, ФяС-К, ФяС-F-МП, ФяС-F-ПМП (рис. 3).

Рис. 3. Фильтры 2-й ступени очистки

Применение фильтров 2-й ступени очистки из вышеперечисленных типов определяется конструктивными и экономическими ограничениями в каждом конкретном случае. Экономически более оправданным является использование карманных фильтров ФяК (F7–F9), т.к. по сравнению со всеми другими фильтрами их отличает невысокая стоимость. К недостатку можно отнести необходимость использования фильтрующий камер большей глубины 600–800 мм. При очистке больших объемов воздуха для установки и герметизации фильтров ФяК применяются секции карманных фильтров СКФ.

При ограничении по глубине могут быть использованы фильтры Фяс-К, ФяС-F, ФяС-F-МП, ФяС-F-ПМП.

Фильтры ФяС-К, ФяС-F, ФяС-F-МП имеют глубину 292 мм, а фильтр ФяС-F-ПМП от 28 до 100 мм.

При ограничении объемов для размещения фильтров целесообразно использовать высокопроизводительные фильтры ФяС-F-МП, пропускная способность которых выше обычных фильтров почти на 40 %.

Для очистки больших объемов воздуха фильтры ФяС-К могут устанавливаться и надежно герметизироваться в секции карманных фильтров СКФ, а фильтры ФяС-F, ФяС-F-МП в секции складчатых фильтров ССФ.

Все вышеописанные фильтры обеспечивают очистку воздуха от пылевых частиц и мелкодисперсных аэрозолей. Атмосферный воздух всегда содержит помимо пылевых частиц и газообразные загрязнения (см. табл.1).

В тех случаях, когда концентрации газообразных загрязнений превышают допустимые санитарные нормы или когда к приточному воздуху предъявляются повышенные требования класс IDA1 и IDA2 (см. табл.6), то в дополнение к пылевым фильтрам необходимо устанавливать газовые фильтры способные очищать воздух от молекулярных загрязнений газов и паров (рис. 4, 5).

Рис. 4. Ионообменный фильтр карманный ИФК

Рис. 5. Фильтр ячейковый складчатый сорбиционный ФяС-С

Фильтры ИФК способны очищать воздух от газообразных, кислотных (окиси азота, диоксид серы, сероводород и т.п.) или щелочных (пары щелочей, аммиак и т.п.) загрязнений.

Угольные фильтры ФяС-С имеют более широкий спектр улавливаемых веществ, так помимо вышеуказанных неорганических соединений они могут улавливать и органические газообразные соединения, которыми сопровождаются автомобильные выхлопы.

При очистке больших объемов воздуха фильтры ИФК могут устанавливаться в секции карманных фильтров СКФ, а фильтры ФяС-К - в секции складчатых фильтров ССФ.

В тех случаях, когда атмосферный воздух имеет повышенную загрязненность (районы больших городов, автомагистралей, промышленных зон и т.п.), то целесообразно в приточных системах вентиляции устанавливать угольные фильтры типа СУФ (рис. 6).

Рис. 6. Секция угольного фильтра СУФ

В многоступеньчатой системе очистки угольные фильтры СУФ следует устанавливать перед последней ступенью очистки.

Классификация чистых производственных помещений

Третьим случаем требований чистоты приточного воздуха являются сверхвысокие требования к чистым помещениям, несвязанные с условиями гигиены или с высокой комфортностью, а являющиеся неотъемлемыми условиями высокого качества выпускаемой продукции (фармация, микроэлектроника, пищевая промышленность и т.д.) или создания стерильных условий чистоты приточного воздуха в лечебных учреждениях.

Классификация чистых помещений производится в соответствии с количеством частиц определенно размера в единице объема воздуха и регламентируется международным стандартом ГОСТ ИСО 14644-1 (табл. 7).

Таблица 7. Предельно допустимое число частиц в 1 м 3 воздуха в зависимости от их размеров и класса чистоты помещения

Сравнение современного международного стандарта с аналогичными (ранее действовавшими) стандартами России и США приведено в табл. 8.

Таблица 8. Классификация чистых помещений по различным стандартам

Классификация чистых помещений в фармацевтической промышленности регламентируется ГОСТ Р 52249-2004 «Правила производства и контроля лекарственных средств». Эта классификация аналогична требованиям Европейских норм GMP (табл. 9).

Таблица 9. Предельно допустимое число частиц в 1 м 3 воздуха в зависимости от их размеров и класса чистоты помещения

В лечебных учреждениях помещения делятся на классы по чистоте воздуха согласно ГОСТ ИСО 1444-1 и предлагается классификация в соответствии с ГОСТ Р 52539-2006. «Чистота воздуха в лечебных учреждениях. Общие требования» (табл. 10 и 11).

Таблица 10. Классификация помещений лечебных учреждений

Таблица 11. Основные требования к чистоте воздуха в помещениях лечебных учреждений в оснащенном состоянии

* При наличии зоны с однонаправленным потоком воздуха требования к ней соответствуют требованиям к чистоте воздуха в зоне операционного стола.
** КОЕ - колониеобразующая единица: совокупность микробных клеток, выросших в виде изолированного скопления колоний на питательной среде.

Приведенные выше классификации чистых помещений описывают основное многообразие требований в различных отраслях. Обеспечение этих требований достигается применением многоступенчатой системы фильтрации рекомендуемой нами (табл. 12).

Таблица 12. Фильтры для чистых помещений

Предложенная схема многоступенчатой очистки приведена для условий высокой начальной запыленности, соответствующей категории ODA4 и ODA5 по ГОСТ EH 13779. В случае нахождения предприятий в условиях начальной запыленности соответствующей классу ODA3 и выше (см. табл. 6) фильтры 1-й ступени очистки могут не устанавливаться.

В представленной многоступенчатой схеме фильтрации приточного воздуха каждая из ступеней защищает последующую, как правило, более дорогую, от крупных аэрозолей, которые эта ступень эффективно может улавливать.

Задачу обеспечения заданного условия чистоты воздуха обеспечивает последняя финишная ступень высокоэффективные HEPA-фильтры классов Н10–Н14 и сверхвысокоэффективные ULPA- фильтры классов U15–U17.

Среди номенклатуры фильтров выпускаемых нашим предприятием к HEPA-фильтрам относятся фильтры ФяС и ФяС-МП.

Конструктивно НЕРА-фильтры ФяС выпускаются двух типов, с алюминиевыми и нитевыми сепараторами (рис. 7, 8).

Рис. 7. Фрагмент фильтра с нитевыми сепараторами
1 - фильтрующий материал; 2 - платиновая нить

Рис. 8. Фильтр с алюминиевыми сепараторами
1 - корпус; 2 - фильтрующий материал; 3 - сепараторы из алюминиевой фольги; 4 - специальный герметик

Корпус фильтра может быть изготовлен из специального алюминиевого профиля, алюминиевого или нержавеющего листа или шлифованной фанеры. Фильтры из алюминиевого профиля могут изготавливаться глубиной 78, 150 и 300 мм. В тех случаях, когда корпус фильтра изготавливается из фанеры, алюминиевого или нержавеющего листа, глубина фильтров может быть отличной от указанной выше. Фильтрующий материал, включающий алюминиевые или нитяные сепараторы, герметизируется в корпусе путем заливки по всему периметру специальным герметиком 4 . Корпус фильтра по всему периметру образует фланец (прижимную поверхность), размер которого для нержавеющего листа 18 мм. На этот фланец наклеивается резиновое уплотнение (с одной или с двух сторон).

Необходимо отметить, что при выборе фильтров, устанавливаемых в конструкции самого чистого помещения (потолок, стены), через которые осуществляется подача воздуха в ламинарном режиме (скорость в фильтре не более 0,45 м/с), целесообразна установка фильтров с нитевыми сепараторами.

Выбор фильтра ФяС с учетом его характеристик

Фильтры ФяС с алюминиевыми сепараторами производятся с основными размерами по глубине 150 и 300 (292) мм. Эти фильтры изготавливаются в двух вариантах:

  • базовый, с количеством фильтрующего материала (см. табл. 5);
  • экономичный, в котором увеличение площади фильтрующей поверхности по сравнению с базовым фильтром глубиной 150 мм составляет около 1,3 раза, а для фильтров глубиной 300 (292) мм - 1,5 раза.

Преимуществами экономичного фильтра является меньшее начальное аэродинамическое сопротивление, а так же увеличенный ресурс работы, который по опыту эксплуатации для фильтров глубиной 150 мм может быть больше в 1,5–1,7 раза, а для фильтров глубиной 300 (292) мм в 1,8–2,0 раза по сравнению с базовым вариантом.

Фильтры с нитевыми сепараторами выпускаются в настоящее время только в экономичном варианте с глубиной корпуса 78, а также аналогичный фильтрующий пакет может быть установлен в корпусе глубиной 150 мм для замены фильтров с алюминиевыми сепараторами в экономичном варианте исполнения.

Фильтры ФяС устанавливают непосредственно в конструкции чистого помещения (потолок или стены) или в фильтрующих камерах, расположенных где-то ранее по ходу воздуха.

Для установки фильтров ФяС непосредственно в помещении могут использоваться специальные модули воздухораспределительные МВ, которые предназначены для встраивания в конструкцию потолка или стен чистого помещения. Модули имеют конструкцию способную размещать и уплотнять фильтр ФяС, они также оснащены штуцерами для контроля сопротивления фильтров в процессе эксплуатации с помощью микроманометров и двумя штуцерами для проверки надежной (герметичной) установки фильтров при монтаже. Конструкция МВ (рис. 9) предусматривает патрубок для подключения по вертикали или горизонтали, а также выпускается модуль МВ-ГЩ минимальной высоты, для случаев ограниченного межпотолочного пространства. На выходе из МВ может устанавливаться решетка, которая чаще всего используется для ламинарной подачи воздуха в чистые помещения или воздухораспределительная решетка, с раздачей воздуха в четыре стороны при турбулентной подачей воздуха в помещения.

Рис. 9. Модуль воздухораспеределительный МВ

Установка НЕРА-фильтров ФяС в модулях МВ чаще используется в связи с тем, что после фильтров очищенный воздух поступает непосредственно в чистое помещение, а не движется по каким-либо каналам перед выходом в помещение. В этом случае эти каналы должны иметь внутреннее покрытие, исключающее какую-либо генерацию аэрозольных частиц.

В ряде случаев возникает необходимость установки фильтров ФяС непосредственно в воздуховодах или фильтрующих камерах. При одиночной установке фильтров, в разрыв воздуховодов, чаще используется схема приведенная на рис. 10.

Рис. 10. Схема одиночной установки фильтров ФяС в воздуховоде
1 - диффузор; 2 - уплот ни тель ная про кладка (устанавливается при заказе фильтра); 3 - шпилька; 4 - фильтр ФяС; 5 - конфузор; 6 - фланцы диффузора и конфузор

При очистке больших объемов воздуха фильтры ФяС могут устанавливаться в секции складчатого фильтра ССФ, обеспечивающие очистку воздуха от 1 900 до 17 100 м 3 /ч. Секции ССФ оснащены специальными прижимами для надежного уплотнения фильтров ФяС в конструкции ССФ, а также штуцерами для подключения приборов контроля их сопротивления.

Выпускается также модифицированный вариант секции ССФ - ССФ(К), который дооснащен элементами для установки фильтров предварительной очистки ФяК с глубиной карманов не более 350 мм или фильтров ФяС-К.

Как указывалось выше, выпускаются также высокопроизводительные НЕРА-фильтры ФяС-МП (рис. 11), имеющие более высокоразвитую фильтрующую поверхность, за счет установки миниплиссированных фильтрующих пакетов в корпусе под острым углом к направлению воздушного потока. Эти фильтры применяются в стесненных условиях и могут также устанавливаться в секциях ССФ, с производительностью от 3 200 до 28 800 м 3 /ч.

Рис. 11. Высокопроизводительный фильтр ФяС-МП

Для создания сверхчистых помещений классов ИСО3 и ИСО2 применяются ULPA-фильтры ФяС-U (рис. 12). Конструктивно они изготавливаются с миниплиссированными фильтрующими пакетами с применением нитевых сепараторов. Эти фильтры устанавливаются непосредственно в чистом помещении или сверхчистых зонах в специальных потолочных конструкциях или модулях.

Рис. 12. Высокопроизводительный фильтр ФяС-U

Мноножество задач очистки приточного воздуха в системах вентиляции и кондиционирования создало широкий спектр воздушных фильтров различных конструкций и классов по эффективности очистки.

НПП «Фолтер» производит полную номенклатуру воздушных фильтров, позволяющих решать любые задачи очистки воздуха - от самых простейших до самых сложных. Каталог оборудования «Фильтры воздушные и пылеуловители» вы можете посмотреть на нашем сайте (www.folter.ru /продукция/полный каталог).

Ваши запросы вы можете направлять на e-mail:

Столица России - один из самых больших городов на планете. Разумеется, в ней присутствуют все проблемы мегаполисов. Главная из них - это загрязнение воздуха в появилась больше десятилетия назад и с каждым годом только усугубляется. Это может стать причиной настоящей техногенной

Норма чистого атмосферного воздуха

Естественный атмосферный воздух - это смесь газов, основными из которых считаются азот и кислород. Их объем составляет 97-99 % в зависимости от местности и атмосферного давления. Также в небольших количествах в воздухе содержатся водород, инертные газы, пары воды. Такой состав считается оптимальным для жизнедеятельности. В результате этого происходит постоянный круговорот газов в природе.

Но деятельность человека вносит в него существенные изменения. К примеру, просто в закрытом помещении без растений один человек за несколько часов может изменить процентное соотношение кислорода, углекислого газа и паров воды только за счет того, что он будет там дышать. Представьте только, каким может быть загрязнение воздуха в Москве сегодня, где живут миллионы людей, ездят тысячи машин и работают огромные промышленные предприятия?

Главные вредные примеси

По данным исследований, больше всего концентрация в атмосфере над городом у фенола, углекислого и бензапирена, формальдегида, диоксидов азота. Следовательно, увеличение процентного количества этих газов влечет за собой снижение концентрации кислорода. На сегодня можно констатировать, что уровень загрязнения воздуха в Москве превысил допустимые нормы в 1,5-2 раза, что становится крайне опасно для проживающих на этой территории людей. Ведь мало того, что они недополучают необходимый им кислород, так еще и травят организм опасными ядовитыми и канцерогенными газами, которые имеют огромную концентрацию в московском воздухе даже в закрытых помещениях.

Источники загрязнения воздуха в Москве

Почему же с каждым годом в столице России становится все труднее дышать? По данным последних исследований, главной причиной загрязнения воздуха в Москве выступают автомобили. Они заполнили столицу на каждой большой автостраде и маленькой улочке, на проспектах и во дворах. 83 % поступает в атмосферу именно вследствие работы двигателей внутреннего сгорания.

На территории столицы есть несколько крупных промышленных предприятий, которые также выступают источниками, вызывающими загрязнение воздуха в Москве. Хотя на большинстве из них и стоят современные очистительные системы, в атмосферу все же попадают опасные для жизни газы.

Третьим по величине загрязняющим источником являются большие ТЭС и котельные, которые работают на угле и мазуте. Они обогащают воздух мегаполиса большим количеством продуктов сгорания, таких как угарный и углекислый газы.

Факторы, повышающие концентрацию вредных веществ

Примечательно то, что количество вредных газов в воздухе столицы России не всегда и не всюду одинаково. Есть несколько факторов, которые способствуют его очищению или большему загрязнению.

По статистическим данным, на одного человека в Москве приходится примерно 7 квадратных метров зеленых насаждений. Это очень мало в сравнении с другими большими городами. В тех регионах, где концентрация парков больше, воздух намного чище, чем во всем остальном городе. Во время облачной погоды воздух не может сам очищаться, и у земли собирается большое количество газов, которые вызывают жалобы местного населения на плохое самочувствие. Повышенная влажность также удерживает у земли газы, вызывая загрязнение атмосферного воздуха в Москве. А вот морозная погода, наоборот, способна его временно очистить.

Самые загрязненные регионы

В столице самыми грязными регионами считаются промышленные Южный и Юго-Восточный округи. Особенно плохой воздух в Капотне, Люблино, Марьино, Бирюлево. Здесь располагаются крупные промышленные заводы.

Высок уровень загрязнения воздуха в Москве и непосредственно в центре. Здесь нет огромных предприятий, зато самая большая концентрация автомобилей. К тому же все помнят о знаменитых московских пробках. Именно в них машины вырабатывают больше всего вредных газов, поскольку двигатели работают не на полную мощность, и нефтепродукты не успевают сгореть полностью, образуя угарный газ.

ТЭС также больше всего в центральной части Москвы. Они сжигают уголь и мазут, обогащая воздух все теми же угарным и углекислым газами. Кроме того, они дают еще и опасные канцерогены, существенно влияющие на здоровье москвичей.

Чистый воздух в Москве

Есть в столице и относительно чистые регионы, в которых уровень вредных газов приближается к норме. Конечно, автомобили и небольшая промышленность оставляют и здесь свой негативный след, но по сравнению с промышленными регионами здесь довольно чисто и свежо. Географически это западные районы, особенно расположенные за МКАД. В Ясенево, Теплом Стане и Северном Бутово можно без опасений дышать полной грудью. В северной части города также есть несколько районов, которые относительно благоприятны для нормальной жизни, - это Митино, Строгино и Крылатское. Во всем остальном загрязнение воздуха в Москве сегодня можно назвать близким к критическому. Это особенно настораживает потому, что с каждым годом ситуация только ухудшается. Есть опасения, что скоро в городе не останется районов, где воздух будет более-менее чистым.

Болезни

Невозможность нормально дышать вызывает целый ряд неприятных ощущений и хронических заболеваний. Особенно к этому чувствительны дети и люди пожилого возраста.

Ученые констатируют, что загрязнение воздуха в Москве сейчас стало причиной наличия у каждого пятого астмы или астматического фактора. Дети в пять раз чаще болеют пневмонией, бронхитом, аденоидами и полипами верхних дыхательных путей.

Недостаток кислорода вызывает кислородное голодание мозга. Вследствие этого развиваются частые головные боли, мигрени, пониженный уровень Опасный угарный газ становится причиной сонливости и общей усталости. На фоне всего этого развиваются сердечно-сосудистые заболевания, диабет, неврозы.

Наличие большого количества пыли в воздухе не позволяет естественным фильтрам в носу всю ее задержать. Она попадает в легкие, оседает в них и сокращает их объем. Кроме того, пыль может содержать очень опасные вещества, которые, накапливаясь, вызывают раковые опухоли.

Когда москвичи попадают за город или в лес, у них начинается головокружение и мигрень. Так организм реагирует на непривычно большое количество кислорода, который поступает в кровь. Это ненормальное явление показывает реальное влияние загрязнения воздуха в Москве на здоровье человека.

Борьба за очищение воздуха

Ученые каждый год внимательно изучают причины, факторы и темпы загрязнения воздуха в Москве. 2014 год показал, что наблюдается тенденция к ухудшению, хотя постоянно принимаются меры по уменьшению вредных примесей в воздухе.

На заводах и ТЭС устанавливают фильтры, которые удерживают самые опасные продукты их деятельности. Для разгрузки автомобильного потока строятся новые развязки, мосты и тоннели. Чтобы воздух стал намного чище, постоянно увеличиваются площади зеленых насаждений. Ведь ничто так не очищает атмосферу, как деревья. Принимаются и административные меры наказания. За нарушение режима газообмена и выброс большего количества вредных газов штрафуются как владельцы частных автомобилей, так и крупные предприятия.

Но все равно результаты прогнозов неутешительные. Скоро в Москве чистый воздух может стать дефицитом, как это уже произошло в самых Чтобы этого не случилось завтра, нужно уже сегодня думать о том, стоит ли оставлять автомобиль с включенным двигателем на длительное время, пока вы ждете кого-то у подъезда.

В воздухе закрытых помещений могут содержаться загрязнения бактериальной и химической природы. Они являются следствием физиологических обменных процессов человека, бытовых действий (приготовления пищи и сжигания газа в бытовых приборах). В воздух помещений может поступать также комплекс продуктов деструкции полимерных отделочных материалов и др. Наконец, газовый состав воздуха закрытых помещений определяется газовым составом приточного атмосферного воздуха и химическими веществами-загрязнителями, выделяемыми внутри помещений.

Основная причина загрязнения воздуха помещений жилых и общественных зданий - накопление таких газообразных продуктов жизнедеятельности человека (антропоксины), как углерода диоксид, аммиак, аммонийные соединения, сероводород, летучие жирные кислоты, индол и др.

Обнаружено параллелизм между накоплением углекислого газа и других примесей в воздухе помещений. Он предложил судить о мере загрязнения воздуха по величине содержания в нем углерода диоксида. В настоящее время установлено, что содержание углерода диоксида в воздухе помещений до 0,7% и даже 1% само по себе не способно неблагоприятно влиять на организм человека и что его накопление не всегда происходит параллельно с накоплением вредных веществ и запахов.

Вместе с тем незначительные концентрации углерода диоксида не всегда свидетельствуют о чистоте воздуха в помещении. Концентрация углерода диоксида может оставаться низкой при существенном загрязнении воздуха пылью, бактериями и вредными химическими веществами. Особенно в том случае, если при строительстве используют синтетические материалы, концентрация которых не всегда возрастает одновременно с увеличением содержания углерода диоксида.

Следовательно, для оценки воздушной среды и эффективности вентиляции закрытых помещений знать содержания только углерода диоксида недостаточно. На данном этапе этот показатель не способен служить эталоном качества воздушной среды закрытых помещений.

Другим критерием, характеризующим качество воздушной среды, является содержание в воздухе аммиака и аммонийных соединений. В результате детального изучения вредного влияния измененного воздуха помещений на организм человека установлена высокая активность аммиака и аммонийных соединений, поступающих с поверхности кожи человека. При вдыхании аммонийных соединений, содержащихся в воздухе помещений, в течение нескольких часов у большинства людей появлялись головная боль, ощущение усталости, резко снижалась работоспособность. У некоторых даже отмечалось болезненное состояние, подобное отравлению. При этом физические свойства воздуха оставались в пределах гигиенических нормативов.

Аммиак и его соединения в концентрациях, наблюдаемых в жилых помещениях, влияют также на слизистые оболочки дыхательных путей. Однако определение содержания аммиака не приобрело существенного значения при гигиенической оценке качества воздуха. Этот показатель лишь относительно свидетельствует о наличии газообразных продуктов, загрязняющих воздух помещений.

Для определения уровня загрязнения воздуха был предложен интегральный показатель - окисляемость. Изучение уровня загрязнения воздуха органическими веществами показало, что по величине окисляемости можно судить о его чистоте. Органические вещества воздуха также задерживаются в дыхательных путях человека и всасываются. Для оценки загрязнения воздуха органическими веществами рекомендованы ориентировочные нормативы его окисля-емости. Так, чистым считается воздух, имеющих окисляемость до 6 мг кислорода в 1 м 3 , а загрязненным - от 10 до 20 мг кислорода в 1 м 3 .

Окисляемость является относительным показателем, так как в присутствии полимеров она также может изменяться. В то же время из-за широкого применения в строительстве полимерных покрытий (конструктивные, отделочные материалы) и их способности выделять в окружающую среду химические вещества, необходимо учитывать и этот фактор воздушной среды. Продукты выделения полимеров в большинстве случаев токсичны для человека.

Для ряда веществ, входящих в состав полимерных отделочных материалов и имеющих токсические свойства, разработаны ПДК. Этим регламентировано применение полимерных отделочных материалов в строительстве жилых и общественных зданий.

Воздушный куб. Во время вдыхания организм человека в течение 1 ч усваивает почти 0,057 м 3 кислорода, а во время выдоха выделяет 0,014 м 3 углерода диоксида. Если человек будет находиться в закрытом помещении, то естественно, что содержание кислорода уменьшается, а концентрация углерода диоксида возрастает. Но это положение справедливо лишь для герметически закрытых помещений. В обычных жилых и общественных зданиях за счет инфильтрации наружного воздуха через неплотно подогнанные окна и ограждения всегда происходит полуторакратный обмен воздуха. Однако, невзирая на обмен воздуха, человеку обычно бывает душно в закрытых помещениях. Жалобы на духоту, недостаток кислорода высказывают во время пребывания как в помещениях с естественным обменом воздуха, так и в домах, оборудованных разными системами вентиляции, включая, кондиционирование. Хотя содержание кислорода в закрытых помещениях отвечает естественному, воздух в них воспринимается человеком как несвежий. Возникает вопрос о причинах этого явления. Разве в закрытых помещениях недостаточно количество приточного свежего воздуха? Сколько вообще нужно человеку воздуха? Рекомендуемая величина объема свежего воздуха, которую следует подавать в помещения, определена на основании количества углерода диоксида, выделяемого в процессы дыхания человека за единицу времени. Эта начальная величина, входящая в расчеты объема вентиляционного воздуха, зависит от многих переменных составляющих: температуры воздуха помещений, возраста человека, его деятельности. При температуре воздуха в помещении 20 °С взрослый человек выделяет в среднем 21,6л углерода диоксида за 1 ч, находясь в состоянии относительного покоя. Необходимый объем вентиляционного воздуха для одного человека при этом будет составлять (при ПДК 0,1% по объему и содержанию углекислого газа в атмосферном воздухе 0,04%) 36 м 3 /ч. Если изменить любую из начальных величин, а именно, принять ПДК содержания углерода диоксида в воздухе жилых помещений за 0,07%, тогда необходимый объем вентиляции возрастет до 72 м 3 /ч.

В современных городах, где основными источниками С02 являются продукты сжигания топлива, норма, предложенная М. Петтенкофером (0,07%) еще в XIX в., теряет значение, так как повышение концентрации его при этих условиях лишь свидетельствуют о недостаточной вентиляции помещения. Тем не менее, содержание углерода диоксида как критерий качества воздуха сохраняет свое значение и его используют при расчетах необходимого объема вентиляции.

Отсутствие четко установленных и общепринятых нормативов допустимого содержания в воздухе различных помещений пыли и микроорганизмов не дает возможности широко применять эти показатели для нормирования воздухообмена.

Величины рекомендованного объема вентиляции очень вариабельны, так как на порядок отличаются между собой. Гигиенистами установлена оптимальная цифра -200 м 3 /ч, соответствующая строительным нормам и правилам, - не менее 20 м 3 /ч для общественных помещений, в которых человек находится беспрерывно не дольше 3 ч.

Cтраница 1


Чистота воздуха определяется отсутствием в зоне пребывания людей местного вредного и неприятного потока воздуха и застойных мест.  

Чистота воздуха зависит также от состояния полов. Поэтому очень важно, чтобы полы были гладкими, без швов и щелей, в которых легко может накапливаться пыль. Допускается только влажная уборка полов.  

Чистота воздуха в помещениях не может быть совершенной, если одновременно не поддерживается чистота территории, окружающей здания конденсаторного производства - Территория должна быть озеленена. В ее пределах и окрестностях атмосфера не должна содержать угольной пыли и вредных паров.  

Чистота воздуха в большой мере зависит от состояния полое. Поэтому очень важно, чтобы полы были гладкими, без швов и щелей, в которых легко может накапливаться пыль. Допускается только влажная уборка полов.  

Чистота воздуха в помещениях не может быть совершенной, если одновременно не поддерживается чистота территории, окружающей здания конденсаторного производства. Территория должна быть озеленена. В ее пределах и окрестностях атмосфера не должна содержать угольной пыли и вредных паров.  

Чистота воздуха в топке или газоходах должна быть подтверждена анализом.  

Чистота воздуха на промышленных площадках и вокруг них достигается устройством очистки выбрасываемого наружу воздуха, а также правильным выбором мест и высоты выброса.  

Чистота воздуха, поступающего в двигатель, имеет огромное значение для срока его службы и надежности работы.  

Чистота воздуха, подаваемого в маску или скафандр, должна контролироваться не реже одного раза в 10 дней.  

Чистота воздуха, подаваемого под маску или в скафандр, должна контролироваться не реже одного раза в 10 дней.  

Чистота воздуха имеет большое значение. Продукты, особенно охлажденные, выделяют различные летучие вещества, часть из которых имеет сильный запах. Эти вещества оказывают влияние на вкус продукта, придавая ему особый привкус. По воздушным каналам или через открытые двери запах может проникать в камеры с другими продуктами, например с маслом, маргарином, которые из-за этого приобретают посторонний привкус. Особенно сильный запах выделяют рыба, лук, капуста и фрукты. Эти продукты необходимо хранить в изолированных камерах.  

Чистота воздуха зависит не только от концентрации газообразных примесей, но и содержания пыли. Ее отрицательное воздействие в непроизводственных помещениях заключается в обсеменении частиц болезнетворными микробами. Поэтому в планировке помещений и их отделке предусматривают удобное пылеудаление, устраняют места аккумуляции пыли.