Нарушение световой и цветовой чувствительности. Развитие восприятия цвета


О разделе

Этот раздел содержит статьи, посвященные феноменам или версиям, которые так или иначе могут быть интересны или полезны исследователям необъясненного.
Статьи разделены по категориям:
Информационные. Содержат полезную для исследователей информацию из различных областей знаний.
Аналитические. Включают аналитику накопленной информации о версиях или феноменах, а также описания результатов проведенных экспериментов.
Технические. Аккумулируют информацию о технических решениях, которые могут найти применение в сфере изучения необъясненных фактов.
Методики. Содержат описания методик, применяемых участниками группы при расследовании фактов и исследовании феноменов.
Медиа. Содержат информацию об отражении феноменов в индустрии развлечений: фильмах, мультфильмах, играх и т.п.
Известные заблуждения. Разоблачения известных необъясненных фактов, собранные в том числе из сторонних источников.

Тип статьи:

Информационные

Особенности восприятия человека. Зрение

Человек не может видеть в полной темноте. Для того, чтобы человек увидел предмет, необходимо, чтобы свет отразился от предмета и попал на сетчатку глаза. Источники света могут быть естественные (огонь, Солнце) и искусственные (различные лампы). Но что представляет собой свет?

Согласно современным научным представлениям, свет представляет собой электромагнитные волны определенного (достаточно высокого) диапазона частот. Эта теория берет свое начало от Гюйгенса и подтверждается многими опытами (в частности, опытом Т. Юнга). При этом в природе света в полной мере проявляется карпускулярно-волновой дуализм , что во многом определяет его свойства: при распространении свет ведет себя как волна, при излучении или поглощении – как частица (фотон). Таким образом, световые эффекты, происходящие при распространении света (интерференция , дифракция и т.п.), описываются уравнениями Максвелла , а эффекты, проявляющиеся при его поглощении и излучении (фотоэффект , эффект Комптона) – уравнениями квантовой теории поля .

Упрощенно, глаз человека представляет собой радиоприемник, способный принимать электромагнитные волны определенного (оптического) диапазона частот. Первичными источниками этих волн являются тела, их излучающие (солнце, лампы и т.п.), вторичными – тела, отражающие волны первичных источников. Свет от источников попадает в глаз и делает их видимыми человеку. Таким образом, если тело является прозрачным для волн видимого диапазона частот (воздух, вода, стекло и т.п.), то оно не может быть зарегистрировано глазом. При этом глаз, как и любой другой радиоприемник, «настроен» на определенный диапазон радиочастот (в случае глаза это диапазон от 400 до 790 терагерц), и не воспринимает волны, имеющие более высокие (ультрафиолетовые) или низкие (инфракрасные) частоты. Эта «настройка» проявляется во всем строении глаза – начиная от хрусталика и стекловидного тела, прозрачных именно в этом диапазоне частот, и заканчивая величиной фоторецепторов, которые в данной аналогии подобны антеннам радиоприемников и имеют размеры, обеспечивающие максимально эффективный прием радиоволн именно этого диапазона.

Все это в совокупности определяет диапазон частот, в котором видит человек. Он называется диапазоном видимого излучения.

Видимое излучение - электромагнитные волны, воспринимаемые человеческим глазом, которые занимают участок спектра с длиной волны приблизительно от 380 (фиолетовый) до 740 нм (красный). Такие волны занимают частотный диапазон от 400 до 790 терагерц. Электромагнитное излучение с такими частотами также называется видимым светом, или просто светом (в узком смысле этого слова). Наибольшую чувствительность к свету человеческий глаз имеет в области 555 нм (540 ТГц), в зелёной части спектра.

Белый свет, разделённый призмой на цвета спектра

При разложении луча белого цвета в призме образуется спектр, в котором излучения разных длин волн преломляются под разным углом. Цвета, входящие в спектр, то есть такие цвета, которые могут быть получены световыми волнами одной длины (или очень узким диапазоном), называются спектральными цветами. Основные спектральные цвета (имеющие собственное название), а также характеристики излучения этих цветов, представлены в таблице:

Чем человек видит

Благодаря зрению мы получаем 90% информации об окружающем мире, поэтому глаз - один из важнейших органов чувств.
Глаз можно назвать сложным оптическим прибором. Его основная задача - "передать" правильное изображение зрительному нерву.

Строение глаза человека

Роговица - прозрачная оболочка, покрывающая переднюю часть глаза. В ней отсутствуют кровеносные сосуды, она имеет большую преломляющую силу. Входит в оптическую систему глаза. Роговица граничит с непрозрачной внешней оболочкой глаза - склерой.

Передняя камера глаза - это пространство между роговицей и радужкой. Она заполнена внутриглазной жидкостью.

Радужка - по форме похожа на круг с отверстием внутри (зрачком). Радужка состоит из мышц, при сокращении и расслаблении которых размеры зрачка меняются. Она входит в сосудистую оболочку глаза. Радужка отвечает за цвет глаз (если он голубой - значит, в ней мало пигментных клеток, если карий - много). Выполняет ту же функцию, что диафрагма в фотоаппарате, регулируя светопоток.

Зрачок - отверстие в радужке. Его размеры обычно зависят от уровня освещенности. Чем больше света, тем меньше зрачок.

Хрусталик - "естественная линза" глаза. Он прозрачен, эластичен - может менять свою форму, почти мгновенно "наводя фокус", за счет чего человек видит хорошо и вблизи, и вдали. Располагается в капсуле, удерживается ресничным пояском. Хрусталик, как и роговица, входит в оптическую систему глаза. Прозрачность хрусталика глаза человека превосходна - пропускается большая часть света с длинами волн между 450 и 1400 нм. Свет с длиной волны выше720 нм не воспринимается. Хрусталик глаза человека почти бесцветен при рождении, но приобретает желтоватый цвет с возрастом. Это предохраняет сетчатку глаза от воздействия ультрафиолетовых лучей.

Стекловидное тело - гелеобразная прозрачная субстанция, расположенная в заднем отделе глаза. Стекловидное тело поддерживает форму глазного яблока, участвует во внутриглазном обмене веществ. Входит в оптическую систему глаза.

Сетчатка - состоит из фоторецепторов (они чувствительны к свету) и нервных клеток. Клетки-рецепторы, расположенные в сетчатке, делятся на два вида: колбочки и палочки. В этих клетках, вырабатывающих фермент родопсин, происходит преобразование энергии света (фотонов) в электрическую энергию нервной ткани, т.е. фотохимическая реакция.

Склера - непрозрачная внешняя оболочка глазного яблока, переходящая в передней части глазного яблока в прозрачную роговицу. К склере крепятся 6 глазодвигательных мышц. В ней находится небольшое количество нервных окончаний и сосудов.

Сосудистая оболочка - выстилает задний отдел склеры, к ней прилегает сетчатка, с которой она тесно связана. Сосудистая оболочка ответственна за кровоснабжение внутриглазных структур. При заболеваниях сетчатки очень часто вовлекается в патологический процесс. В сосудистой оболочке нет нервных окончаний, поэтому при ее заболевании не возникают боли, обычно сигнализирующие о каких-либо неполадках.

Зрительный нерв - при помощи зрительного нерва сигналы от нервных окончаний передаются в головной мозг.

Человек не рождается с уже развитым органом зрения: в первые месяцы жизни происходит формирование мозга и зрения, и примерно к 9 месяцам они способны почти моментально обрабатывать поступающую зрительную информацию. Для того чтобы видеть, необходим свет.

Световая чувствительность человеческого глаза

Способность глаза воспринимать свет и распознавать различной степени его яркости называется светоощущением, а способность приспосабливаться к разной яркости освещения - адаптацией глаза; световая чувствительность оценивается величиной порога светового раздражителя.
Человек с хорошим зрением способен разглядеть ночью свет от свечи на расстоянии нескольких километров. Максимальная световая чувствительность достигается после достаточно длительной темновой адаптации. Её определяют под действием светового потока в телесном угле 50° при длине волны 500 нм (максимум чувствительности глаза). В этих условиях пороговая энергия света около 10−9 эрг/с, что эквивалентно потоку нескольких квантов оптического диапазона в секунду через зрачок.
Вклад зрачка в регулировку чувствительности глаза крайне незначителен. Весь диапазон яркостей, которые наш зрительный механизм способен воспринять, огромен: от 10−6 кд м² для глаза, полностью адаптированного к темноте, до 106 кд м² для глаза, полностью адаптированного к свету Механизм такого широкого диапазона чувствительности кроется в разложении и восстановлении фоточувствительных пигментов в фоторецепторах сетчатки - колбочках и палочках.
В глазу человека содержатся два типа светочувствительных клеток (рецепторов): высоко чувствительные палочки, отвечающие за сумеречное (ночное) зрение, и менее чувствительные колбочки, отвечающие за цветное зрение.

Нормализованные графики светочувствительности колбочек человеческого глаза S, M, L. Пунктиром показана сумеречная, «чёрно-белая» восприимчивость палочек.

В сетчатке глаза человека есть три вида колбочек, максимумы чувствительности которых приходятся на красный, зелёный и синий участки спектра. Распределение типов колбочек в сетчатке неравномерно: «синие» колбочки находятся ближе к периферии, в то время как «красные» и «зеленые» распределены случайным образом. Соответствие типов колбочек трём «основным» цветам обеспечивает распознавание тысяч цветов и оттенков. Кривые спектральной чувствительности трёх видов колбочек частично перекрываются, что способствует явлению метамерии. Очень сильный свет возбуждает все 3 типа рецепторов, и потому воспринимается, как излучение слепяще-белого цвета.

Равномерное раздражение всех трёх элементов, соответствующее средневзвешенному дневному свету, также вызывает ощущение белого цвета.

За цветовое зрение человека отвечают гены, кодирующие светочувствительные белки опсины. По мнению сторонников трёхкомпонентной теории, наличие трёх разных белков, реагирующих на разные длины волн, является достаточным для цветового восприятия.

У большинства млекопитающих таких генов только два, поэтому они имеют черно-белое зрение.

Чувствительный к красному свету опсин кодируется у человека геном OPN1LW.
Другие опсины человека кодируют гены OPN1MW, OPN1MW2 и OPN1SW, первые два из них кодируют белки, чувствительные к свету со средними длинами волны, а третий отвечает за опсин, чувствительный к коротковолновой части спектра.

Поле зрения

Поле зрения - пространство, одновременно воспринимаемое глазом при неподвижном взоре и фиксированном положении головы. Оно имеет определенные границы, соответствующие переходу оптически деятельной части сетчатки в оптически слепую.
Поле зрения искусственно ограничивается выступающими частями лица - спинкой носа, верхним краем глазницы. Кроме того, его границы зависят от положения глазного яблока в глазнице. Кроме этого, в каждом глазу здорового человека существует область сетчатки, не чувствительная к свету, которая называется слепым пятном. Нервные волокна от рецепторов к слепому пятну идут поверх сетчатки и собираются в зрительный нерв, который проходит сквозь сетчатку на другую её сторону. Таким образом, в этом месте отсутствуют световые рецепторы.

На этом конфокальном микроснимке диск зрительного нерва показан черным, клетки, выстилающие кровеносные сосуды - красным, а содержимое сосудов - зеленым. Клетки сетчатки отобразились синими пятнами.

Слепые пятна в двух глазах находятся в разных местах (симметрично). Этот факт, а так же то, что мозг корректирует воспринимаемое изображение, объясняет почему при нормальном использовании обоих глаз они незаметны.

Чтобы наблюдать у себя слепое пятно, закройте правый глаз и левым глазом посмотрите на правый крестик, который обведён кружочком. Держите лицо и монитор вертикально. Не сводя взгляда с правого крестика, приближайте (или отдаляйте) лицо от монитора и одновременно следите за левым крестиком (не переводя на него взгляд). В определённый момент он исчезнет.

Этим способом можно также оценить приблизительный угловой размер слепого пятна.

Прием для обнаружения слепого пятна

Выделяют также парацентральные отделы поля зрения. В зависимости от участия в зрении одного или обоих глаз, различают монокулярное и бинокулярное поле зрения. В клинической практике обычно исследуют монокулярное поле зрения.

Бинокулярное и Стереоскопическое зрение

Зрительный анализатор человека в нормальных условиях обеспечивает бинокулярное зрение, то есть зрение двумя глазами с единым зрительным восприятием. Основным рефлекторным механизмом бинокулярного зрения является рефлекс слияния изображения - фузионный рефлекс (фузия), возникающий при одновременном раздражении функционально неодинаковых нервных элементов сетчатки обоих глаз. Вследствие этого возникает физиологическое двоение предметов, находящихся ближе или дальше фиксируемой точки (бинокулярная фокусировка). Физиологичное двоение (фокус) помогает оценивать удалённость предмета от глаз и создает ощущение рельефности, или стереоскопичности, зрения.

При зрении одним глазом восприятие глубины (рельефной удалённости) осуществляется гл. обр. благодаря вторичным вспомогательным признакам удаленности (видимая величина предмета, линейная и воздушная перспективы, загораживание одних предметов другими, аккомодация глаза и т. д..).

Проводящие пути зрительного анализатора
1 - Левая половина зрительного поля, 2 - Правая половина зрительного поля, 3 - Глаз, 4 - Сетчатка, 5 - Зрительные нервы, 6 - Глазодвигательный нерв, 7 - Хиазма, 8 - Зрительный тракт, 9 - Латеральное коленчатое тело, 10 - Верхние бугры четверохолмия, 11 - Неспецифический зрительный путь, 12 - Зрительная кора головного мозга.

Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв, хиазму, зрительные тракты в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим. Все эти органы и составляют наш зрительный анализатор или зрительную систему.

Изменение зрения с возрастом

Элементы сетчатки начинают формироваться на 6–10 неделе внутриутробного развития, окончательное морфологическое созревание происходит к 10–12 годам. В процессе развития организма существенно меняются цветоощущения ребенка. У новорожденного в сетчатке функционируют только палочки, обеспечивающие черно-белое зрение. Количество колбочек невелико и они еще не зрелы. Распознавание цветов в раннем возрасте зависит от яркости, а не от спектральной характеристики цвета. По мере созревания колбочек дети сначала различают желтый, потом зеленый, а затем красный цвета (уже с 3 месяцев удавалось выработать условные рефлексы на эти цвета). Полноценно колбочки начинают функционировать к концу 3 года жизни. В школьном возрасте различительная цветовая чувствительность глаза повышается. Максимального развития ощущение цвета достигает к 30 годам и затем постепенно снижается.

У новорожденного диаметр глазного яблока составляет 16 мм, а его масса – 3,0 г. Рост глазного яблока продолжается после рождения. Интенсивнее всего оно растет первые 5 лет жизни, менее интенсивно – до 9-12 лет. У новорожденных форма глазного яблока более шаровидная, чем у взрослых, в результате в 90 % случаев у них отмечается дальнозоркая рефракция.

Зрачок у новорожденных узкий. Из-за преобладания тонуса симпатических нервов, иннервирующих мышцы радужной оболочки, в 6–8 лет зрачки становятся широкими, что увеличивает риск солнечных ожогов сетчатки. В 8–10 лет зрачок сужается. В 12–13 лет быстрота и интенсивность зрачковой реакции на свет становятся такими же, как у взрослого человека.

У новорожденных и детей дошкольного возраста хрусталик более выпуклый и более эластичный, чем у взрослого, его преломляющая способность выше. Это позволяет ребенку четко видеть предмет на меньшем расстоянии от глаза, чем взрослому. И если у младенца он прозрачный и бесцветный, то у взрослого человека хрусталик имеет легкий желтоватый оттенок, интенсивность которого с возрастом может усиливаться. Это не отражается на остроте зрения, но может повлиять на восприятие синего и фиолетового цветов.

Сенсорные и моторные функции зрения развиваются одновременно. В первые дни после рождения движения глаз несинхронны, при неподвижности одного глаза можно наблюдать движение другого. Способность фиксировать взглядом предмет формируется в возрасте от 5 дней до 3–5 месяцев.

Реакция на форму предмета отмечается уже у 5-месячного ребенка. У дошкольников первую реакцию вызывает форма предмета, затем его размеры и уже в последнюю очередь – цвет.
Острота зрения с возрастом повышается, улучшается и стереоскопическое зрение. Стереоскопическое зрение к 17–22 годам достигает своего оптимального уровня, причем с 6 лет у девочек острота стереоскопического зрения выше, чем у мальчиков. Поле зрения интенсивно увеличивается. К 7 годам его размер составляет приблизительно 80 % от размера поля зрения взрослого.

После 40 лет наблюдается падение уровня периферического зрения, то есть происходит сужение поля зрения и ухудшение бокового обзора.
Примерно после 50 лет сокращается выработка слезной жидкости, поэтому глаза увлажняются хуже, чем в более молодом возрасте. Чрезмерная сухость может выражаться в покраснении глаз, рези, слезотечении под действием ветра или яркого света. Это может не зависеть от обычных факторов (частые напряжения глаз или загрязненность воздуха).

С возрастом человеческий глаз начинает воспринимать окружающее более тускло, с понижением контрастности и яркости. Также может ухудшиться способность распознавать цветовые оттенки, особенно близкие в цветовой гамме. Это напрямую связано с сокращением количества клеток сетчатой оболочки, воспринимающих оттенки цвета, контрастность, яркость.

Некоторые возрастные нарушения зрения обусловлены пресбиопией, которая проявляется нечеткостью, размытостью картинки при попытке рассмотреть предметы, расположенные близко от глаз. Возможность фокусировки зрения на небольших предметах требует аккомодацию около 20 диоптрий (фокусировка на объекте в 50 мм от наблюдателя) у детей, до 10 диоптрий в возрасте 25 лет (100 мм) и уровни от 0,5 до 1 диоптрии в возрасте 60 лет (возможность фокусировки на предмете в 1-2 метрах). Считается, что это связано с ослаблением мышц, которые регулируют зрачок, при этом так же ухудшается реакция зрачков на попадающий в глаз световой поток. Поэтому возникают трудности с чтением при тусклом свете и увеличивается время адаптации при перепадах освещенности.

Так же с возрастом начинает быстрее возникать зрительное утомление и даже головные боли.

Восприятие цвета

Психология восприятия цвета - способность человека воспринимать, идентифицировать и называть цвета.

Ощущение цвета зависит от комплекса физиологических, психологических и культурно-социальных факторов. Первоначально исследования восприятия цвета проводились в рамках цветоведения; позже к проблеме подключились этнографы, социологи и психологи.

Зрительные рецепторы по праву считаются «частью мозга, вынесенной на поверхность тела». Неосознаваемая обработка и коррекция зрительного восприятия обеспечивает «правильность» зрения, и она же является причиной «ошибок» при оценке цвета в определенных условиях. Так, устранение «фоновой» засветки глаза (например, при разглядывании удаленных предметов через узкую трубку) существенно меняет восприятие цвета этих предметов.

Одновременное рассматривание одних и тех же несамосветящихся предметов или источников света несколькими наблюдателями с нормальным цветовым зрением, в одинаковых условиях рассматривания, позволяет установить однозначное соответствие между спектральным составом сравниваемых излучений и вызываемыми ими цветовыми ощущениями. На этом основаны цветовые измерения (колориметрия). Такое соответствие однозначно, но не взаимно-однозначно: одинаковые цветовые ощущения могут вызывать потоки излучений различного спектрального состава (метамерия).

Определений цвета, как физической величины, существует много. Но даже в лучших из них с колориметрической точки зрения часто опускается упоминание о том, что указанная (не взаимная) однозначность достигается лишь в стандартизованных условиях наблюдения, освещения и т. д., не учитывается изменение восприятия цвета при изменении интенсивности излучения того же спектрального состава (явление Бецольда - Брюкке), не принимается во внимание т. н. цветовая адаптация глаза и др. Поэтому многообразие цветовых ощущений, возникающих при реальных условиях освещения, вариациях угловых размеров сравниваемых по цвету элементов, их фиксации на разных участках сетчатки, разных психофизиологических состояниях наблюдателя и т. д., всегда богаче колориметрического цветового многообразия.

Например, в колориметрии одинаково определяются некоторые цвета (такие, как оранжевый или жёлтый), которые в повседневной жизни воспринимаются (в зависимости от светлоты) как бурый, «каштановый», коричневый, «шоколадный», «оливковый» и т. д. В одной из лучших попыток определения понятия Цвет, принадлежащей Эрвину Шрёдингеру, трудности снимаются простым отсутствием указаний на зависимость цветовых ощущений от многочисленных конкретных условий наблюдения. По Шредингеру, Цвет есть свойство спектрального состава излучений, общее всем излучениям, визуально не различимым для человека.

В силу природы глаза, свет, вызывающий ощущение одного и того же цвета (например белого), то есть одну и ту же степень возбуждения трёх зрительных рецепторов, может иметь разный спектральный состав. Человек в большинстве случаев не замечает данного эффекта, как бы «домысливая» цвет. Это происходит потому, что хотя цветовая температура разного освещения может совпадать, спектры отражённого одним и тем же пигментом естественного и искусственного света могут существенно отличаться и вызывать разное цветовое ощущение.

Человеческий глаз воспринимает множество различных оттенков, однако есть «запрещенные» цвета, недоступные для него. В качестве примера можно привести цвет, играющий и желтыми, и синими тонами одновременно. Так происходит потому, что восприятие цвета в глазе человека, как и многое другое в нашем организме, построено на принципе оппонентности. Сетчатка глаза имеет особые нейроны-оппоненты: некоторые из них активизируются, когда мы видим красный цвет, и они же подавляются зеленым цветом. То же самое происходит и с парой желтый-синий. Таким образом, цвета в парах красный-зеленый и синий-желтый оказывают противоположное воздействие на одни и те же нейроны. Когда источник излучает оба цвета из пары, их воздействие на нейрон компенсируется, и человек не может увидеть ни один из этих цветов. Мало того, человек не только не способен увидеть эти цвета в нормальных обстоятельствах, но и представить их.

Увидеть такие цвета можно только в рамках научного эксперимента. Например, ученые Хьюитт Крэйн и Томас Пьянтанида из Стенфордского института в Калифорнии создали специальные зрительные модели, в которых чередовались полосы «спорящих» оттенков, быстро сменяющих друг друга. Эти изображения, зафиксированные специальным прибором на уровне глаз человека, показывались десяткам добровольцев. После эксперимента люди утверждали, что в определенный момент границы между оттенками исчезали, сливаясь в один цвет, с которым раньше им никогда не приходилось сталкиваться.

Различия зрения человека и животных. Метамерия в фотографии

Человеческое зрение является трёхстимульным анализатором, то есть спектральные характеристики цвета выражаются всего в трех значениях. Если сравниваемые потоки излучения с разным спектральным составом производят на колбочки одинаковое действие, цвета воспринимаются как одинаковые.

В животном мире существуют четырёх- и даже пятистимульные цветовые анализаторы, поэтому цвета, воспринимаемые человеком одинаковыми, животным могут казаться разными. В частности, хищные птицы видят следы грызунов на тропинках к норам исключительно благодаря ультрафиолетовой люминесценции компонентов их мочи.
Похожая ситуация складывается и с системами регистрации изображений, как цифровыми, так и аналоговыми. Хотя в большинстве своём они являются трёхстимульными (три слоя эмульсии фотоплёнки, три типа ячеек матрицы цифрового фотоаппарата или сканера), их метамерия отлична от метамерии человеческого зрения. Поэтому цвета, воспринимаемые глазом как одинаковые, на фотографии могут получаться разными, и наоборот.

Источники

О. А. Антонова, Возрастная анатомия и физиология, Изд.: Высшее образование, 2006 г.

Лысова Н. Ф. Возрастная анатомия, физиология и школьная гигиена. Учеб. пособие / Н. Ф. Лысова, Р. И. Айзман, Я. Л. Завьялова, В.

Погодина А.Б., Газимов А.Х., Основы геронтологии и гериатрии. Учеб. Пособие, Ростов-на-Дону, Изд. Феникс, 2007 – 253 с.

Плеоптика — раздел офтальмологии, занимающийся способами и методами лечения функционального недоразвития органа зрения - , которая является одной из частых аномалий зрительного анализатора.

Амблиопия — термин, включающий собирательное понятие различных по этиопатогенезу ее видов. В настоящее время амблиопию принято разделять на:

  • Рефракционную.
  • Дисбинокулярную.
  • Анизометропическую.
  • Обскурационную.
  • При нистагме.
  • Смешанную.
  • Истерическую.

Каждый из видов амблиопии характеризуется своими клиническими и патологическими особенностями. Однако общим для всех клиническим признаком амблиопии можно считать функциональное снижение основной зрительной функции — центрального зрения. По степени поражения амблиопия может быть легкой, средней, тяжелой и очень тяжелой, когда острота зрения равна светоощущению с утерей способности зрительной фиксации. Вместе с тем, общим в патогенезе аномалии (исключая истерическую) можно считать депривацию ретинокортикальных элементов, присущих центральному зрению в сенситивной стадии развития зрительного анализатора. Эти общие проявления амблиопии и определяют принципы и способы плеоптического лечения любых ее видов.

Плеоптика получила свое интенсивное развитие в середины прошлого столетия, когда началось углубленное изучение содружественного , ведь амблиопия косящего глаза - это его постоянный и неизменный спутник. Проблема амблиопии и ее плеоптического лечения вот уже более полувека занимает обязательное место на страницах офтальмологической литературы, вследствие своей всевозрастающей актуальности. По данной теме опубликованы массивы фактических данных клиницистами, физиологами, нейрофизиологами.

Продолжительное время единственным способом лечения амблиопии считалось выключение хорошо видящего глаза из процесса зрения — прямая окклюзия, которая позволяет нормализовать и улучшить остроту зрения у детей младшего возраста (до 6 лет); окклюзия лучшего глаза у детей старшего возраста, имеющих амблиопию с неправильной фиксацией нередко только закрепляет ее.

В 60-е годы ушедшего века, в качестве лечения амблиопии при содружественном косоглазии стали применять — намеренное ухудшение остроты зрения для лучшего глаза, что достигалось гиперкоррекцией его, медикаментозным либо их сочетанием. Однако, данный метод тоже не обеспечивал излечения, осложненной неправильной фиксацией амблиопии.

Поиски путей восстановления центральной фиксации с нормализацией зрения привели к разработке плеоптических методов, характеризующихся прицельным воздействием стимула на ложнофиксирующий участок или ее центральную ямку. В 1953 году швейцарский офтальмолог A. Бангертер предложил амблиопию с неправильной фиксацией лечить методом скотомизирования или ослепления ложнофиксирующего участка сетчатой оболочки с последующим стимулированием зоны умеренным раздражителем. В 1956 году К. Купперс при восстановлении центральной фиксации применял последовательные зрительные образы, которые вызывались в центральной ямке сетчатки. А в 1968 году, советским ученым Э. С. Аветисовым был разработан метод лечения амблиопии с любыми видами фиксации посредством локального «слепящего» раздражения центральной ямки сетчатки. Все эти методы прицельного влияния стимула на сетчатую оболочку имели патофизиологическое обоснование, и в свое время широко применялись в практике, как наиболее передовые. Правда, все они имели довольно существенные недостатки, а именно, требовали медикаментозного мидриаза, который выключал аккомодацию, а также длительную экспозицию (20-30 с), что делало невозможным применение данных методов у младшего возраста детей.

Научно-технические достижения конца двадцатого века, сделали возможным создание современных высокоэффективных методов плеоптического лечения амблиопии с любыми видами зрительной фиксации. Появившиеся новые данные о процессах, происходящих в сетчатке и высших структурах зрительного анализатора, позволили внедрять новые патогенетические методы плеоптического лечения амблиопии, основой которых стало повышение зрительных функций и стимуляция ретино-кортикальных элементов в амблиопичном глазу.

Сегодня разработано и внедрено много разных методов стимулирования ретино-кортикальных составляющих амблиопичного глаза посредством адекватных раздражителей (хроматических, световых, лазерных), и не вполне адекватных (электромагнитная стимуляция, электростимуляция, вибромассаж, рефлексотерапия). Многие способы указанной стимуляции реализованы в широкой линейке медицинских устройств и аппаратов. Широкое распространение приобретают и компьютерные программы стимуляции.

Проводимые аппаратами-стимуляторами процедуры, при амблиопии с правильной, а также неправильной зрительной фиксацией выполняются не прицельно. В этом их явное преимущество, по сравнению с методами, которые требуют прицельного воздействия. Применение таких устройств проводится без расширения зрачка, необходимого для прицельного воздействия, что весьма важно для участия в процессе тренировки аккомодации и позволяет применять неприцельные методы у пациентов самого раннего возраста.

Особую популярность в нынешней плеоптике завоевала лазерная стимуляция, которая сегодня занимает ведущее место в ряду прочих методов плеоптического лечения.

Воздействие на орган зрения низкоинтенсивным лазерным излучением имеет высокое стимулирующее воздействие. Улучшается микроциркуляция в тканях, повышается гемодинамика, ускоряются метаболические процессы, возрастает активность ДНК, РНК и каталазы, оптимизируются трофические процессы, стимулируются энергетические возможности тканей и клеток, следствием чего становится повышение зрительных функций.

Для лечения амблиопии, лазерное лечение впервые было применено специалистами МНИИ глазных болезней им. Гельмгольца Аветисовым, Михайлянцем и Пашниным в 1975 году. В данное время созданы приборы лазерной стимуляции, в которых воздействие проводится монохроматическим красным, а также инфракрасным импульсным излучением, как в гелий-неоновых и аргоновых лазерах. При этом, гелий-неоновый лазер считается более эффективным. Стимуляцию сетчатки в нем выполняют монохроматическим источником света, длина волны которого составляет 620-650нм, особенно чувствителен к такому воздействию колбочковый аппарат глаза.

Среди подобных устройств, высоким эффектом обладает лазерная установка стимуляции сетчатки «ЛАСТ-1» (МНППО «Нейрон», Уфа). Лечебный эффект установки обусловлен импульсным воздействием низкоинтенсивного твердотельного лазера с расфокусированным красным пятном и формированием специальной микроструктуры поочередных светлых и темных пятен (спекл-поля).

Широкое распространение получил и лазерный аппарат «Спекл-М », используемый также в диагностических целях при нарушении рефракции.
Из многочисленных сообщений специалистов о положительных результатах при лечении амблиопии разного генеза стимуляции лазером можно сделать вывод о высокой эффективности данного метода.

Важную роль в плеоптическом лечении занимает и светоцветостимуляция. Она подразумевает применение адекватных раздражителей и полихроматического света (белого), а также монохроматического (красного, синего, зеленого, желтого). При этом, воздействуя на центральную зону сетчатки световые фотоны попадают на ее фоторецепторы, стимулируя проходящие в многоуровневых слоях сетчатой оболочки тонкие фотохимические процессы, способствующие активизации работы всего зрительного анализатора: сетчатая оболочка — зритель¬ные пути — мозг.

Сегодня, в лечении амблиопии широко представлены различные методы светоцветостимуляции, на основе которой создана целая плеяда медицинских аппаратов. Особое распространение получили следующие из них:

  • Прибор цветоимпульсной терапии «АСО-1» (Социнновация «СИ», Москва). Стимуляцию сетчатки в нем обеспечивает ритмическое воздействие световых волн, испускаемых вмонтированными в очковую оправу миниатюрными лампочками, имеющими светофильтры желтого, красного, зеленого и синего цветов, что обеспечивает сочетание цвето- и биоритмотерапии;
  • Макулостимулятор «КЭМ-ЦТ» (Офтальмологическая корпорация «Руан», Крым, Севастополь), получивший широкое применение в Украине. Прибор, разработанный проф. Чередниченко В., для лечения амблиопии, применяет способ, предложенный Кэмпбеллом, — стимулирование всех уровней системы зрения путем активации частотно-контрастными импульсами - КЭМ-стимуляция. Эффективность лечения при этом, составляет 60,8% повышения остроты зрения у пациентов с амблиопией правильной фиксации и 39,2% у пациентов, с неправильной. Часть больных после лечения отмечала восстановление центральной фиксации;
  • Паттерн-стимуляция аппаратом «ПС-1» («Медоптика», Москва) - еще один вид светостимуляции при лечении амблиопии. Действие данного прибора основано на активации функций глаза посредством светового потока, сконцентрированного в узком спектре при наблюдении растровой структуры (паттерна);
  • При помощи комплекта игрового «Мозаика ПСР-1 » также проводится паттерн-стимуляция. Комплект включает трубу калейдоскопа и альбом с мозаичными рисунками. Принцип его действия строится на стимуляции органа зрения потоком с резкими сменами света и тени;
  • Успешно применяются и устройства, в которых светостимуляция дополняется тренировкой аккомодации. Яркий пример такого аппарата «Ручеек» («Медоптика», Москва). Или с тренировкой слабых глазодвигательных мышц, как в приборе «Фотомиостимулятор» (ООО «Фосфен», Одесса) и пр.
  • В. Розенберг предложил и воплотил идею создания аппаратов, в которых стимуляция амблиопичного глаза выполняется путем засветов сетчатки разноцветными полиструктурными стимулами или фигурными «слепящими» полями в сочетании с созданием последовательных зрительных образов, которые возникают после таких засветов. Теоретическая часть авторской идеи основывается на том, что главной зрительной функцией является форменное зрение, а не светоощущение. Поэтому адекватный раздражитель, это не свет вообще, а поток света, из которого сформированы изображения различной формы. Такой принцип лечения заложен в приборах «Стимул», «Панорама», «Плеоптокалейдоскоп». По данным из научных источников и результатам клинических испытаний, лечение амблиопии центральной фиксации подобными методами удается повысить остроту зрения у всех пациентов, а при нарушении фиксации можно восстановить центральную фиксацию практически у 60% больных.
  • В современной плеоптике довольно широко применяется электростимуляция. Проводится она посредством воздействия слабым электрическим током, как на сенсорный, так и на нервно-мышечный аппарат органа зрения. Доказано, что электростимуляция способна улучшать регионарный и местный кровоток, а также обменные процессы, активизировать функционально угнетенные элементы, способствовать улучшению проводимости с восстановлением рефлекторной взаимосвязи в зрительном анализаторе с элементами центральной регуляции, что повышает зрительные функции.
  • Многочисленные публикации последних лет выделяют следующие лечебные действия ЭС: увеличение резерва аккомодации, повышение остроты зрения, увеличение цветовой и световой чувствительности, уменьшение абсолютных скотом, расширение полей зрения, исчезновение относительных скотом, улучшение показателей электрочувствительности, электролабильности и электроретинограммы.
  • Широко применяется при лечении амблиопии электростимуляция через веки проводящих зрительных путей— фосфенстимуляция. Сила тока, индивидуально подобранная с помощью прибора, вызывает у больного феномен фосфена (ощущение свечения). В Украине сегодня применяется целое поколение устройств типа «Фосфен». Включая лечебно-диагностические «фосфен-1» и «фосфен-2», а также строго терапевтический - «фосфен-мини», предназначенный для индивидуального использования (ООО «Фосфен», Одесса).
  • Разработчиками из Уфы сконструирован офтальмологический прибор чрезкожной электростимуляции (ЧЭС), получивший название «АйНУР-03».

К примеру, весьма эффективной для современной плеоптики признана электромагнитная стимуляция, проводимая постоянными (ПМП), переменными (ПеМП), а также импульсными (ИмМП) магнитными полями.

Исследования, проводимые в различных сферах медицины, выявили, что магнитные поля могут обладать выраженным противовоспалительным, противоотечным и анальгезирующим действием. Доказано, что магнитотерапия способна увеличивать диаметр капилляров, а также скорость кровотока, улучшать обменные процессы, стимулировать трофику тканей, активировать восстановление нарушенных функций.

Ряд публикаций сообщает об особой эффективности электромагнитной стимуляции в лечении амблиопии. Принцип электромагнитной стимуляции лежит в основе следующих приборов:

1. «МС-4» («Медоптика», Москва) - светомагнитная стимуляция.
2. «БИО-МАС» (ГУМНТК «Микрохирургия глаза», Москва) - стимуляция бегущим магнитным полем.
3. «ЦМС-11» (Москва, «Медоптика») - цветомагнитная стимуляция
4. «АТОС» и приставка «АМБЛИО-1» - электромагнитная стимуляция.

В современной плеоптике нередко применение и иные методы для стимуляции зрительного анализатора, такие как:

  • Вибростимуляция или вибромассаж, который считается эффективным способом физиотерапевтического воздействия на орган зрения. Осуществляется он посредством офтальмологического вибротерапевтического устройства, которое проводит механические колебания с акустической частотой через закрытые веки.
  • Рефлексостимуляция или рефлексотерапия, используемая при некоторых функциональных заболеваниях, включая лечение амблиопии.

Лечебное воздействие рефлексотерапии строится на восстановлении в структурах мозга динамического равновесия процессов возбуждения и торможения. Поскольку амблиопия - это одна из разновидностей функциональных патологий высших отделов ЦНС, для лечения ее, применение рефлексотерапии показано. Осуществляют рефлексотерапию путем воздействия на акупунктурные точки, локализованные в биологически активных областях параорбитальной зоны. Воздействия на эти точки проводятся в виде массажа, электрических, термических, электромагнитных и световых местных воздействий источником инфракрасного и красного излучения.

Проведение рефлексотерапии при амблиопии, а также иных заболеваниях органа зрения осуществляют посредством современных приборов. К примеру, в НИИ глазных болезней и тканевой терапии АМН им. В. П. Филатова в Одессе, сконструирован прибор «фосфенэлектропунктура», который обладает комбинированным действием, сочетающим электропунктуру и традиционную фосфен-электростимуляцию биологически активных зон параорбитальной области (ООО «Фосфен», Одесса).

Уфимское научно-производственное предприятие «Нейрон» выпустило устройство контролируемой рефлексотерапии орбитальных акупунктурных точек «КРОТА», в котором терапевтическое воздействие на биологически активные точки осуществляется инфракрасным лучом, который проникает через кожу в ткани на глубину области расположения зон акупунктуры.

С каждым годом в плеоптике упрочняются позиции компьютерных методов стимуляции при лечении всех видов амблиопии.

Современная компьютерная техника позволяет развивать и совершенствовать ставшие уже традиционными методики лечения данной патологии. Компьютер дает возможность достигать постепенного усложнения стимулов, которые являются адекватными раздражителями различных каналов, а также уровней зрительного анализатора. Богатейший арсенал компьютерной графики способен предоставить безграничные возможности для создания лечебных программ, в которых обеспечивается автоматическое управление процессами с точной регистрацией результатов каждого сеанса. Компьютерные программы предусматривают проведение лечебный сеансов в форме игры с активным участием больного, что значительно повышает заинтересованность последнего и сокращает сроки лечения.

Результаты использования компьютерный программ в восстановлении зрительныгх функций при лечении амблиопии, показывают совпадение данных, полученных в различных лечебных учреждениях. Установлено, что их применение при дисбинокулярной, рефракционной или анизометропической амблиопии любых степеней повышает эффективность лечения вдвое, по сравнению с традиционными методами плеоптики.

Сегодня для лечения амблиопии созданы и успешно применяются большое количество компьютерных программ.

К примеру, утилита «EYE» («АИ»), созданная в Московском НИИГБ им. Гельмгольца и РМАПО, содержит игровые упражнения «Погоня» и «Тир».

Постепенное изменение размеров и цвета стимулов в данных упражнениях способствует активизации рецепторов центральной ямки сетчатки, при этом, яркие вспышки света оказывают растормаживающее действие на ретино-кортикальные комплексы амблиопичного глаза, что улучшает или нормализует зрительную фиксацию, пространственную локализацию и повышает остроту зрения.

В программе для компьютера «Крестики» поле для игры выглядит словно шахматная доска, клетки на которой уменьшаются в процессе упражнения и меняют окраску. Ребенок в поисках «крестика» посредством «мыши» должен перемещать по полю кружок, цвета внутри которого также заменяются оппонентными.

Разглядывание с различными частотами, размерами клеток и цветом инвертирующегося шахматного поля, оказывает стимулирующее воздействие на нейроны различных уровней зрительного анализатора, что обеспечивает его растормаживание и повышение остроты зрения.

В компьютерной игре «Паучок» активация рецептивных полей сетчатки происходит при рассматривании спирально и радиально расположенных решеток, складывающихся в узор плетеной паутины, для ловли мух. Узор меняет цвета, становясь то черно-белым, то красным, то зеленым, то синим, что соответствует трем цветовым подтипам колбочек сетчатки. Он используется на разных фонах (темном и светлом), оказывая стимулирующее действие на темновые и световые каналы, включая нейроны, отвечающие за ориентацию и восприятие движения, а также межнейронные связи. В лечебном процессе импульс к активизации получают: центральное зрение, аккомодация и конвергенция.

Программа «Рельеф» («Медоптика», Москва,) помогает в лечении амблиопии правильной фиксации. Она состоит из паттерн-стимулирующих упражнений, с воздействием изображений, имеющих резкие перепады света и тени (паттерны).

Компьютерная программа «Контур» в составе программного обеспечения «Окулист», применяемом в диагностике, лечении и профилактике болезней глаз (ООО «Астроинформ СПЕ», Москва), нашла применение в терапии амблиопии, как метод восстановления правильной фиксации, а также повышения остроты зрения с формированием бинокулярной функции. Упражнения представляет собой комплекс проприоцептивные и зрительных тренировок. Здесь, пациенту предлагается серия усложняющихся рисунков, которые необходимо обводить, дорисовывать и закрашивать, посредством виртуального «пера». Нагрузку на глаз дозируют изменениями контраста, а также толщины линий рисунка, наносимых «пером».

Лечебно-коррекционная утилита «Цветок» - это часть программного обеспечения «Академик», для применения в офтальмологии, тифлопедагогике и коррекционной педагогике.

Программа «Цветок» направлена на лечение всех степеней амблиопии. Она предлагает пациенту серии однотипных, но усложняющихся упражнений, задача которых - поиск заданного символа (коим выступает одиночная буква) среди нескольких символов, нанесенных на лепестки цветка. По сложности своей, упражнения подразделяются на уровни. После завершения упражнений самого сложного третьего уровня на экран выводится таблица результатов тренировки.

Весьма ценным в лечении особо тяжелые форм амблиопии, сопровождающих врожденные органические патологии глаз, можно считать аппаратный комплекс программ «Амблиокор» («Ин Витро», Санкт- Петербург).

Метод лечения в нем основан на саморегуляции и адаптивном биоуправлении при обратной биосвязи по замкнутому кругу (сетчатая оболочка — кортикальные зрительные центры — монитор компьютера), где управляющим звеном выступают корковые биоэлектрические процессы, а управляемым звеном — сетчатка глаза. При этом, ухудшение восприятия выключает экран, улучшение — включает.

Так как ребенок, в ходе упражнений, стремится увидеть максимально много, происходит закрепление тех уровней корковых центров, которые обеспечивают наилучшее качество зрения. При этом, пациент способен воспроизводить на экране изображения посредством восстановления достигнутой в процессе тренинга степени биоэлектрической активности корковых отделов зрительного анализатора.

Основой программного аутотренинга «Амблиокор» является условно-рефлекторная методика восстановления функций нервные клеток различных уровней зрительного анализатора.
Новейшие компьютерные технологии позволили специалистам создать более совершенные компьютерные версии уже имеющихся программ лечения амблиопии: «Крестики-2», «Тир-2», «Льдинка», «Краб». Особенностями их стали: упражнения в процессе мультимедийной игры, необычные зрительные стимулы, сопровождение зрительных стимулов с звуком и движениями рук, автоматические подстройки параметров на интеллектуальном уровне.

Эффект лечения обеспечивает индивидуальный характер стимуляции, мощное избирательное воздействие и восстановление связей зрительной с прочими сенсорными системами.

Уже имеются данные о возможности применения компьютерного комплекса стереограмм для лечения дисбинокулярной амблиопии.

Поиск новых, более прогрессивных и эффективных технологий лечения амблиопии продолжается. Внимание офтальмологов в последние годы все больше привлекает возможность включения в лечебный процесс медикаментозных средств для повышения результативности плеоптического лечения. Подобная возможность впервые была озвучена проф. Э. Аветисовым, еще в 1967 году. Когда, он применил в лечении дисбинокулярной амблиопии раствор бром-кофеиновой смеси, воздействующий на корковые процессы «возбуждение - торможение».

Сегодня эффективность плеоптического лечения достигается применением офтальмологами медикаментозных препаратов, улучшающих гемодинамику, а также метаболические, трофические, нейротрансмиссионные процессы сетчатки, зрительного нерва и прочих структурах зрительного анализатора.

Поступает информация и о положительных результатах использования в комплексе плеоптического лечения ноотропных препаратов: пирацетама, инстенона, ноотропила, инстенона комбинированного с аветином; милдроната, визобаланса, пикамилона, накома, фезама.

Комплекс плеоптического лечения обязательно должен включать тренировку аккомодации. Аккомодационная способность при амблиопии, как правило, бывает снижена и ее укрепление дает повышение остроты зрения без коррекции.

Клинические наблюдения многих специалистов показывают, что лучшие результаты плеоптического лечения амблиопии обеспечивают комплексы из нескольких методик различной стимуляции.

Это объясняется узкой направленностью различных методов на конкретную сторону патологического процесса. Комплексное же применение разных методов обеспечивает влияние на весь зрительный анализатор, что и дает больший эффект лечения амблиопичного глаза, выражающегося в восстановлении правильной фиксации с повышением остроты зрения.

Современная плеоптика располагает весьма значительным арсеналом методов стимулирующих лечение амблиопии. Их комплексное применение обеспечивает нормализацию, а также улучшение зрительных функций у подавляющего большинства больных.

Сегодня не потерял своего значения и метод окклюзии - выключения из процесса зрения лучше видящего глаза. Он так и остался наиболее простым и доступным, особенно у самых маленьких детей. Данный метод получил некоторое усовершенствование благодаря применению полупрозрачного окклюдора, предложенного В. Сердюченко, который дает пациенту возможность частично использовать лучший глаз. Для неполной окклюзии используют также окклюзионные пленки, при помощи которых возможно снизить остроту зрения лучше видящего глаза.
Однако проблема плеоптического лечения амблиопии далека от окончательного решения. Ряд пациентов с ранней тяжелой амблиопией в настоящее время зачастую не получают адекватной помощи. Ведь лечение такой патологии представляет нелегкую задачу, которая требует больших усилий, временных затрат и не всегда в завершении имеет оптимальный результат. Поэтому, весьма важным представляется ранняя диагностика амблиогенной патологии с профилактикой амблиопии. Поиски и разработки новых, все более совершенных и эффективных техник плеоптического лечения амблиопии продолжаются.

Благодаря зрительному аппарату (глазу) и мозгу человек способен различать и воспринимать цвета окружающего его мира. Довольно нелегко сделать анализ эмоционального воздействия цвета, по сравнению с физиологическими процессами, появляющимися в результате световосприятия. Однако большое количество людей предпочитает определённые цвета и полагает, что цвет оказывает непосредственное воздействие на настроение. Трудно объяснить то, что многие люди находят сложным жить и работать в помещениях, где цветовое оформление кажется неудачным. Как известно, все цвета разделяют на тяжелые и лёгкие, сильные и слабые, успокаивающие и возбуждающие.

Строение человеческого глаза

Опытами ученых сегодня доказано, что у многих людей существует похожее мнение относительно условного веса цветов. Например, по их мнению, красный является самым тяжёлым, за ним следует оранжевый, потом синий и зелёный, затем - жёлтый и белый.

Строение человеческого глаза достаточно сложное:

склера;
сосудистая оболочка;
зрительный нерв;
сетчатка;
стекловидное тело;
ресничный поясок;
хрусталик;
передняя камера глаза, наполненная жидкостью;
зрачок;
радужная оболочка;
роговица.

Когда человек наблюдает объект, то отраженный свет сначала попадает на его роговицу, затем проходит через переднюю камеру, и отверстие в радужной оболочке (зрачок). Свет попадает на сетчатку глаза, но прежде он проходит через хрусталик, который может изменять свою кривизну, и стекловидное тело, где появляется уменьшенное зеркально-шарообразное изображение видимого объекта.
Для того, чтобы полосы на французском флаге казались одинаковой ширины на судах их делают в пропорции 33:30:37

На сетчатке глаза расположены два вида светочувствительных клеток (фоторецепторов), которые при освещении изменяют все световые сигналы. Они также называются колбочками и палочками.

Их существует около 7 млн, и они распределены по всей поверхности сетчатки, за исключением слепого пятна и имеют малую светочувствительность. Кроме того, колбочки подразделяются на три вида, это чувствительные к красному свету, зелёному и синему, соответственно реагирующие лишь на синюю, зелёную и красную часть видимых оттенков. Если же передаются остальные цвета, например жёлтый, то возбуждаются два рецептора (красно- и зелёночувствительный). При таком значительном возбуждении всех трёх рецепторов появляется ощущение белого, а при слабом возбуждении напротив - серого цвета. Если возбуждения трёх рецепторов отсутствуют, то возникает ощущение чёрного цвета.

Можно привести также следующий пример. Поверхность объекта, имеющего красный цвет, при интенсивном освещении белым светом, поглощает синие и зелёные лучи, и отражает красные, а также зелёные. Именно благодаря разнообразию возможностей смешения световых лучей различных длин спектра, появляется такое многообразие цветовых тонов, из которых глаз отличает примерно 2 млн. Вот так колбочки обеспечивают глаз человека восприятием цвета.

На чёрном фоне цвета кажутся интенсивнее, по сравнению со светлым.

Палочки наоборот, имеют намного большую чувствительность, чем колбочки, а также чувствительны к синезелёной части видимого спектра. В сетчатке глаза расположено около 130 млн. палочек, которые в основном не передают цвета, а работают при небольших освещённостях, выступая аппаратом сумеречного зрения.

Цвет способен изменять представление человека о настоящих размерах предметов, а те цвета, которые кажутся тяжёлыми, заметно уменьшают такие размеры. Например, французский флаг, состоящий из трёх цветов, включает синюю, красную, белую вертикальные полосы одинаковой ширины. В свою очередь, на морских судах соотношение таких полос меняют в пропорции 33:30:37 для того, чтобы на большом расстоянии они казались равнозначными.

Огромное значение на усиление или ослабление восприятия глазом контрастных цветов имеют такие параметры как расстояние и освещение. Таким образом, чем больше расстояние между глазом человека и контрастной парой цветов, тем наименее активно они кажутся нам. Фон, на котором находится предмет определённого цвета, также воздействует на усиление и ослабление контрастов. То есть на чёрном фоне они кажутся интенсивнее, по сравнению с любым светлым.

Мы обычно не задумываемся о том, что есть свет. А между тем именно эти волны несут в себе большое количество энергии, которая используется нашим организмом. Нехватка света в нашей жизни не может не отразиться отрицательно для нашего организма. Не даром сейчас становится всё более популярным лечение, основанное на воздействие этих электромагнитных излучений (цветотерапия, хромотерапия, ауро-сома, цветовая диета, графохромотерапия и многое другое).

Что такое свет и цвет?

Свет - это электромагнитное излучение с длиной волны от 440 до 700 нм. Человеческий глаз воспринимает часть солнечного света и охватывает излучение с длиной волны от 0,38 до 0,78 микрон.

Световой спектр состоит из лучей очень насыщенного цвета. Свет распространяется со скоростью 186 000 миль в секунду (300 млн. километров в секунду).

Цвет - основной признак, по которому различаются лучи света, то есть это отдельные участки световой шкалы. Восприятие цвета формируется в результате того, что глаз, получив раздражение от электромагнитных колебаний, передаёт его в высшие отделы головного мозга человека. Цветовые ощущения имеют двойственную природу: они отражают свойства, с одной стороны, внешнего мира, а с другой - нашей нервной системы.

Минимальные значения соответствуют синей части спектра, а максимальные - красной части спектра. Зелёный цвет - находится в самой середине этой шкалы. В цифровом выражении цвета можно определить следующим образом:
красный - 0,78-9,63 микрон;
оранжевый - 0,63-0,6 микрон;
жёлтый - 0,6-0,57 микрон;
зелёный - 0,57-0,49; микрон
голубой - 0,49-0,46 микрон;
синий - 0,46-0,43 микрон;
фиолетовый - 0,43-0,38 микрон.

Белый свет - это сумма всех волн видимого спектра.

За пределами этого диапазона находятся ультрафиолетовые (УФ) и инфракрасные (ИК) световые волны, их человек зрительно уже не воспринимает, хотя они оказывают очень сильное воздействие на организм.

Характеристики цвета

Насыщенность - это интенсивность цвета.
Яркость - это количество световых лучей, отражённых поверхностью данного цвета.
Яркость определяется освещением, то есть количеством отражённого светового потока.
Для цветов характерно свойство перемешиваться между собой и тем самым давать новые оттенки.

На усиление или ослабление восприятия человеком контрастных цветов влияют расстояние и освещение. Чем больше расстояние между контрастной парой цветов и глазом, тем менее активно они выглядят и наоборот. Окружающий фон так же влияет на усиление или ослабление контрастов: на чёрном фоне они сильнее, чем на любом светлом.

Все цвета делятся на следующие группы

Первичные цвета: красный, жёлтый и синий.
Вторичные цвета, которые образовываются посредством соединения между собой первичных цветов: красный + жёлтый = Оранжевый, жёлтый + синий = зелёный. Красный + синий = фиолетовый. Красный + жёлтый + синий = коричневый.
Третичные цвета - это те цвета, которые были получены посредством смешения вторичных цветов: оранжевый + зелёный = жёлто-коричневый. Оранжевый + фиолетовый = красно-коричневый. Зелёный + фиолетовый = сине-коричневый.

Польза цвета и света

Чтобы восстановить здоровье, нужно передать в организм соответствующую информацию. Эта информация закодирована в цветовых волнах. Одной из главных причин большого числа, так называемых, болезней цивилизации - гипертонии, высокого уровня холестерина, депрессии, остеопороза, диабета и т. д. может быть назван недостаток естественного света.

Меняя длину световых волн, можно передавать клеткам именно ту информацию, которая необходима для восстановления их жизнедеятельности. Цветотерапия и направлена на то, чтобы организм получил не хватающую ему цветовую энергию.

Ученые до сих пор не пришли к единому мнению о том, как свет проникает в тело человека и воздействует на него.

Действуя на радужку глаза, цвет возбуждает определённые рецепторы. Те, кто хоть однажды проходил диагностику по радужной оболочке глаза, знает, что по ней можно «прочитать» болезнь любого из органов. Оно и понятно, ведь «радужка» рефлекторно связана со всеми внутренними органами и, разумеется, с мозгом. Отсюда нетрудно догадаться, что тот или иной цвет, действуя на радужную оболочку глаза, тем самым рефлекторно воздействует и на жизнедеятельность органов нашего тела.

Возможно, свет проникает через сетчатку глаза и стимулирует гипофиз, который в свою очередь стимулирует тот или иной орган. Но тогда не понятно, почему полезен такой метод как цветопунктура отдельных секторов человеческого тела.

Вероятно, наше тело способно чувствовать эти излучения с помощью рецепторов кожного покрова. Это подтверждает наука радионика - согласно этому учению вибрации света вызывают вибрации в нашем организме. Свет вибрирует во время движения, наше тело начинает вибрировать во время энергетического излучения. Это движение можно увидеть на фотографиях Кирлиана, с помощью которых можно запечатлеть ауру.

Возможно, эти вибрации начинают воздействовать на мозг, стимулируя его и заставляя вырабатывать гормоны. В последствии эти гормоны попадают в кровь и начинают воздействовать на внутренние органы человека.

Так как все цвета различны по своей структуре, то не трудно догадаться, что и воздействие каждого отдельного цвета будет различным. Цвета разделяют на сильные и слабые, успокаивающие и возбуждающие, даже на тяжёлые и легкие. Красный был признан самым тяжёлым, за ним шли равные по весу цвета: оранжевый, синий и зелёный, затем - жёлтый и последним - белый.

Общее влияние цвета на физическое и психическое состояние человека

На протяжении многих столетий у людей по всему миру складывалась определённая ассоциация определённым цветом. Например, римляне и египтяне соотносили чёрный цвет с печалью и скорбью, белый цвет - с чистотой, однако в Китае и Японии белый цвет - символ скорби, а вот у населения Южной Африки цветом печали был красный, в Бирме напротив, печаль ассоциировалась с жёлтым, а в Иране - с синим.

Влияние цвета на человека достаточно индивидуально, и зависит также от определённого опыта, например от метода подбора цвета определённых торжеств или же повседневной работы.

В зависимости от времени воздействия на человека, либо количества занимаемой цветом площади, он вызывает положительные или отрицательные эмоции, и влияет на его психику. Глаз человека способен распознавать 1,5 миллиона цветов и оттенков, а цвета воспринимаются даже кожей, воздействуют и на людей, лишённых зрения. В процессе исследований, проведённых учёными в Вене, имели место испытания с завязанными глазами. Людей ввели в комнату с красными стенами, после чего их пульс увеличился, затем их поместили в помещение с жёлтыми стенами, причём пульс резко нормализовался, а в комнате с синими стенами, он заметно понизился. Кроме того, заметное воздействие на цветовосприятии и снижении цветовой чувствительности оказывает возраст и пол человека. До 20-25 восприятие возрастает, а после 25 уменьшается по отношению к определённым оттенкам.

Исследования, имевшие место в американских университетах доказали, что основные цвета, преобладающие в детской комнате, могут воздействовать на изменение давления у детей, снижать или повышать их агрессивность, причем у зрячих и незрячих. Можно сделать соответствующий вывод, что цвета могут оказывать негативное и позитивное воздействие на человека.

Восприятие цветов и оттенков можно сравнить с музыкантом, настраивающим свой инструмент. Все оттенки способны вызывать в душе человека неуловимые отклики и настроения, поэтому он и ищет резонанс колебаний цветовых волн с внутренними отголосками своей души.

Ученые разных стран мира утверждают, что красный цвет помогает вырабатыванию красных телец в печени, а также помогает скорейшему выведению ядов из организма человека. Полагают, что красный цвет способен уничтожать различные вирусы и значительно снижает воспаления в организме. Зачастую в специальной литературе встречается мысль о том, что любому органу человека присущи вибрации определённых цветов. Разноцветную окраску внутренностей человека можно встретить на древних китайских рисунках, иллюстрирующих методы восточной медицины.

Кроме того, цвета не только влияют на настроение и психическое состояние человека, но и приводят к некоторым физиологическим отклонениям в организме. Например, в помещении с красными или оранжевыми обоями заметно учащается пульс и повышается температура. В процессе окраски помещений выбор цвета обычно предполагает очень неожиданный эффект. Нам известен такой случай, когда хозяин ресторана, хотевший улучшить аппетит у посетителей, приказал покрасить стены в красный цвет. После чего аппетит гостей улучшился, однако чрезвычайно увеличилось количество разбитой посуды и число драк и происшествий.

Известно также, что цветом можно вылечить даже многие серьезные заболевания. К примеру, во многих банях и саунах благодаря определенному оборудованию существует возможность принимать целебные цветовые ванны.

Цветовое зрение (синонимы: цветоощущение, цветоразличение, хроматопсия) - способность человека различать цвет видимых объектов.

В основе цветового восприятия лежит свойство света вызывать определенное зрительное ощущение в соответствии со спектральным составом отражаемого или испускаемого излучения. Видимая часть спектра светового излучения образована волнами различной длины, которые воспринимаются глазом в виде семи основных цветов, выделяемых в зависимости от длины волны света в три группы. Длинноволновое световое излучение вызывает ощущение красного и оранжевого цвета, средневолновое - желтого и зеленого, коротковолновое - голубого, синего и фиолетового. Цвета разделяют на хроматические и ахроматические. Хроматические цвета обладают тремя основными качествами: цветовым тоном, который зависит от длины волны светового излучения; насыщенностью, зависящей от доли основного цветового тона и примесей других цветовых тонов; яркостью цвета, т.е. степенью близости его к белому цвету. Различное сочетание этих качеств дает большое разнообразие оттенков хроматического цвета. Ахроматические цвета (белый, серый, черный) различаются лишь яркостью. При смешении двух спектральных цветов с разной длиной волны образуется результирующий цвет. Каждый из спектральных цветов имеет дополнительный цвет, при смешении с которым образуется ахроматический цвет - белый или серый. Многообразие цветовых тонов и оттенков может быть получено оптическим смешением всего трех основных цветов - красного, зеленого и синего. Количество цветов и их оттенков, воспринимаемых глазом человека, необычайно велико и составляет несколько тысяч.

Цвет оказывает воздействие на общее психофизиологическое состояние человека и в известной мере влияет на его трудоспособность. Наиболее благоприятное влияние на зрение оказывают малонасыщенные цвета средней части видимого спектра (желто-зелено-голубые), так называемые оптимальные цвета. Для цветовой сигнализации используют, наоборот, насыщенные (предохранительные) цвета.

Физиология Ц. з. недостаточно изучена. Из предложенных гипотез и теорий наибольшее распространение получила трехкомпонентная теория, основные положения которой впервые были высказаны М.В. Ломоносовым в 1756 г., а в дальнейшем развиты Юнгом (Т. Young, 1802) и Гельмгольцем (Н. L.F. Helmholtz, 1866) и подтверждены данными современных морфофизиологических и электрофизиологических исследований. Согласно этой теории в сетчатке глаза имеется три вида воспринимающих рецепторов, расположенных в колбочковом аппарате сетчатки, каждый из которых возбуждается преимущественно одним из основных цветов - красным, зеленым или синим, однако в определенной степени реагирует и на другие цвета. Изолированное возбуждение одного вида рецепторов вызывает ощущение основного цвета. При равном раздражении всех трех видов рецепторов возникает ощущение белого цвета. В глазу происходит первичный анализ спектра излучения рассматриваемых предметов с раздельной оценкой участия в них красной, зеленой и синей областей спектра. В коре головного мозга происходит окончательный анализ и синтез светового воздействия. В соответствии с трехкомпонентной теорией Ц. з. нормальное цветоощущение называется нормальной трихромазией, и лица с нормальным Ц. з. - нормальными трихроматами.

Одной из характеристик цветового зрения является порог цветоощущения - способность глаза воспринимать цветовой раздражитель определенной яркости. На восприятие цвета оказывает влияние сила цветового раздражителя и цветовой контраст. Для цветоразличения имеет значение яркость окружающего фона. Черный фон усиливает яркость цветных полей, но в то же время несколько ослабляет цвет. На цветовосприятие объектов существенно влияет также цветность окружающего фона. Фигуры одного и того же цвета на желтом и синем фоне выглядят по-разному (явление одновременного цветового контраста). Последовательный цветовой контраст проявляется в видении дополнительного цвета после воздействия на глаз основного. Например, после рассматривания зеленого абажура лампы белая бумага вначале кажется красноватой. При длительном воздействии цвета на глаз отмечается снижение цветовой чувствительности сетчатки (цветовое утомление) вплоть до такого состояния, когда два разных цвета воспринимаются как одинаковые. Это явление наблюдается у лиц с нормальным Ц. з. и является физиологическим,

однако при поражении желтого пятна сетчатки, невритах и атрофии зрительного нерва явления цветового утомления наступают быстрее.

Нарушения Ц. з. могут быть врожденными и приобретенными. Врожденные расстройства цветового зрения наблюдаются чаще у мужчин. Они, как правило, стабильны и проявляются понижением чувствительности преимущественно к красному или зеленому цвету. В группу лиц с начальными нарушениями цветового зрения относят и тех, кто различает все главные цвета спектра, но имеет пониженную цветовую чувствительность, т.е. повышенные пороги цветоощущения. Согласно классификации Криса - Нагеля, все врожденные расстройства Ц. з. включают три вида нарушений; аномальную трихромазию, дихромазию и монохромазию. При аномальной трихромазии, которая встречается наиболее часто, наблюдается ослабление восприятия основных цветов: красного - протаномалия, зеленого - дейтераномалия, синего - тританомалия. Дихромазия характеризуется более глубоким нарушением Ц. з., при котором полностью отсутствует восприятие одного из трех цветив: красного (протанопия), зеленого (дейтеранопия) или синего (тританопия). Монохромазия (ахромазия, ахроматопсия) означает отсутствие цветового зрения или цветовую слепоту, при которой сохраняется лишь черно-белое восприятие. Все врожденные расстройства Ц. з. принято называть дальтонизмом, по имени английского ученого Дальтона (J. Dalton), страдавшего нарушением восприятия красного цвета и описавшего это явление. Врожденные нарушения Ц. з. не сопровождаются расстройством других зрительных функций и выявляются лишь при специальном исследовании.

Приобретенные расстройства Ц. з. встречаются при заболеваниях сетчатки, зрительного нерва или ц.н.с.; они могут наблюдаться в одном или обоих глазах, обычно сопровождаются нарушением восприятия трех основных цветов сочетаются с другими расстройствами зрительных функций. Приобретенные расстройства Ц. з. могут проявляться также в виде ксантопсии , эритропсии и цианопсии (восприятие предметов в синем цвете, наблюдающееся после удаления хрусталика при катаракте).

В отличие от врожденных нарушений, имеющих постоянный характер, приобретенные расстройства Ц. з. исчезают с устранением их причины.

Исследование Ц. з. проводят преимущественно лицам, профессия которых требует нормального цветоощущения, например занятых на транспорте, в некоторых отраслях промышленности, военнослужащих отдельных родов войск. С этой целью применяют две группы методов - пигментные с использованием цветных (пигментных) таблиц и различных тест-объектов, например кусочков картона разного цвета, и спектральные (с помощью аномалоскопов). Принцип исследования по таблицам основан на различении среди фоновых кружочков одного цвета цифр или фигур, составленных из кружков той же яркости, но другого цвета. Лица с расстройством Ц. з., различающие в отличие от трихроматов, объекты только по яркости, не могут определить предъявляемые им фигурные или цифровые изображения (рис. ). Из цветных таблиц наибольшее распространение получили полихроматические таблицы Рабкина, основная группа которых предназначена для дифференциальной диагностики форм и степени врожденных расстройств Ц. з. и отличия их от приобретенных. Существует также контрольная группа таблиц - для уточнения диагноза в сложных случаях.

При выявлении нарушений Ц. з. используют также стооттеночный тест Фарнсуорта - Мензелла, основанный на плохом различении цвета протанопами, дейтеранопами и тританопами в определенных участках цветового круга. От испытуемого требуется расположить в порядке оттенков ряд кусочков картона разного цвета в виде цветового круга; при нарушении Ц. з. кусочки картона располагаются неправильно, т.е. не в том порядке, в каком они должны следовать друг за другом. Тест обладает высокой чувствительностью и дает информацию о типе нарушения цветового зрения. Используется также упрощенный тест, в котором используют всего 15 цветных тест-объектов.

Более тонким методом диагностики расстройств Ц. з. является аномалоскопия - исследование с помощью специального прибора аномалоскопа. Принцип работы прибора основан на трехкомпонентности Ц. з. Сущность метода заключается в уравнении цвета двухцветных тестовых полей,

Цветоощущение (цветовая чувствительность, цветовое восприятие) - способность зрения воспринимать и преобразовывать световое излучение определённого спектрального состава в ощущение различных цветовых оттенков и тонов, формируя целостное субъективное ощущение («хроматичность», «цветность», колорит).

Цвет характеризуется тремя качествами:

  • цветовым тоном, который является основным признаком цвета и зависит от длины световой волны;
  • насыщенностью, определяемой долей основного тона среди примесей другого цвета;
  • яркостью, или светлотой, которая проявляется степенью близости к белому цвету (степень разведения белым цветом).

Человеческий глаз замечает изменения цвета только в случае превышения так называемого цветового порога (минимального изменения цвета, заметного глазом).

Физическая сущность света и цвета

Светом или световым излучением называются видимые электромагнитные колебания.

Световые излучения подразделяются на сложные и простые .

Белый солнечный свет - сложное излучение, которое состоит из простых цветных составляющих – монохроматических (одноцветных) излучений. Цвета монохроматических излучений называют спектральными.

Если луч белого цвета разложить с помощью призмы в спектр, то можно увидеть ряд непрерывно изменяющихся цветов: темно-синий, синий, голубой, сине-зеленый, желто-зеленый, желтый, оранжевый, красный.

Цвет излучения определяется длиной волны. Весь видимый спектр излучений расположен в диапазоне длин волн от 380 до 720 нм (1 нм = 10 -9 м, т.е. одной миллиардной доли метра).

Всю видимую часть спектра можно разделить на три зоны

  • Излучением длиной волны от 380 до 490 нм называется синей зоной спектра;
  • от 490 до 570 нм - зеленой;
  • от 580 до 720 нм - красной.

Различные предметы человек видит окрашенными в разные цвета потому, что монохроматические излучения отражаются от них по-разному, в разных соотношениях.

Все цвета делятся на ахроматические и хроматические

  • Ахроматические (бесцветные) - это серые цвета различной светлоты, белый и черный цвета. Ахроматические цвета характеризуются светлотой.
  • Все остальные цвета – хроматические (цветные): синий, зеленый, красный, желтый и т.д. Хроматические цвета характеризуются цветовым тоном, светлотой и насыщенностью.

Цветовой тон - это субъективная характеристика цвета, которая зависит не только от спектрального состава излучений, попавших в глаз наблюдателя, но и от психологических особенностей индивидуального восприятия.

Светлота субъективно характеризует яркость цвета.

Яркость определяет силу света, излучаемую или отражаемую с единицы поверхности в перпендикулярном к ней направлении (единица яркости – кандела на метр, кд/м).

Насыщенность субъективно характеризует интенсивность ощущения цветового тона.
Поскольку в возникновении зрительного ощущения цвета участвует не только источник излучения и окрашенный предмет, но и глаз и мозг наблюдателя, то следует рассмотреть некоторые основные сведения о физической сущности процесса цветового зрения.

Восприятие цвета глазом

Известно, что глаз по устройству представляет собой подобие фотоаппарата, в котором сетчатка играет роль светочувствительного слоя. Излучения различного спектрального состава регистрируются нервными клетками сетчатки (рецепторами).

Рецепторы, обеспечивающие цветовое зрение, подразделяются на три типа. Каждый тип рецепторов по-разному поглощает излучение трех основных зон спектра - синей, зеленой и красной, т.е. обладает различной спектральной чувствительностью. Если на сетчатку глаза попадает излучение синей зоны, то оно будет воспринято только одним типом рецепторов, которые и передадут информацию о мощности этого излучения в мозг наблюдателя. В результате возникнет ощущение синего цвета. Аналогично будет протекать процесс и в случае попадания на сетчатку глаза излучений зеленой и красной зон спектра. При одновременном возбуждении рецепторов двух или трех типов будет возникать цветовое ощущение, зависящее от соотношения мощностей излучения различных зон спектра.

При одновременном возбуждении рецепторов, регистрирующих излучения, например, синей и зеленой зон спектра, может возникнуть световое ощущение, от темно-синего до желто-зеленого. Ощущение в большей степени синих оттенков цвета будет возникать в случае большей мощности излучений синей зоны, а зеленых оттенков - в случае большей мощности излучения зеленой зоне спектра. Равные по мощности излучения синей и зеленой зон вызовут ощущение голубого цвета, зеленый и красной зон - ощущение желтого цвета, красной и синей зон - ощущение пурпурного цвета. Голубой, пурпурный и желтый цвета называются в связи с этим двухзональными. Равные по мощности излучения всех трех зон спектра вызывают ощущение серого цвета различной светлоты, который превращается в белый цвет при достаточной мощности излучений.

Аддитивный синтез света

Это процесс получения различных цветов за счет смешивания (сложения) излучений трех основных зон спектра - синего, зеленого и красного.

Эти цвета называются основными или первичными излучениями адаптивного синтеза.

Различные цвета могут быть получены этим способом, например, на белом экране с помощью трех проекторов со светофильтрами синего (Blue), зеленого (Green) и красного (Red) цветов. На участках экрана, освещаемых одновременно из разных проекторов могут быть получены любые цвета. Изменение цвета достигается при этом изменением соотношения мощности основных излучений. Сложение излучений происходит вне глаза наблюдателя. Это одна из разновидностей аддитивного синтеза.

Еще одна разновидность аддитивного синтеза - пространственное смещение. Пространственное смещение основано на том, что глаз не различает отдельно расположенных мелких разноцветных элементов изображения. Таких, например, как растровые точки. Но вместе с тем мелкие элементы изображения перемещаются по сетчатке глаза, поэтому на одни и те же рецепторы последовательно воздействует различное излучение соседних разноокрашенных растровых точек. В связи с тем, что глаз не различает быстрой смены излучений, он воспринимает их как цвет смеси.

Субтрактивный синтез цвета

Это процесс получения цветов за счет поглощения (вычитания) излучений из белого цвета.

В субтрактивном синтезе новый цвет получают с помощью красочных слоев: голубого (Cyan), пурпурного (Magenta) и желтого (Yellow). Это основные или первичные цвета субтрактивного синтеза. Голубая краска поглощает (вычитает из белого) красные излучения, пурпурная - зеленые, а желтая - синие.

Для того, чтобы субтрактивным способом, получить, например, красный цвет нужно на пути белого излучения поместить желтый и пурпурный светофильтры. Они будут поглощать (вычитать) соответственно синие и зеленые излучения. Такой же результат будет получен, если на белую бумагу нанести желтую и пурпурные краски. Тогда до белой бумаги дойдет только красное излучение, которое отражается от нее и попадает в глаз наблюдателя.

  • Основные цвета аддитивного синтеза - синий, зеленый и красный и
  • основные цвета субтрактивного синтеза - желтый, пурпурный и голубой образуют пары дополнительных цветов.

Дополнительными называют цвета двух излучений или двух красок, которые в смеси делают ахроматический цвет: Ж + С, П + З, Г + К.

При аддитивном синтезе дополнительные цвета дают серый и белый цвета, так как в сумме представляют излучение всей видимой части спектра, а при субтрактивном синтезе смесь указанных красок дает серый и черный цвета, в виде того, что слои этих красок поглощают излучения всех зон спектра.

Рассмотренные принципы образования цвета лежат и в основе получения цветных изображений в полиграфии. Для получения полиграфических цветных изображений используют так называемые триадные печатные краски: голубую, пурпурную и желтую. Эти краски прозрачны и каждая из них, как уже было указано, вычитает излучение одной из зон спектра.

Однако, из-за неидеальности компонентов субтактивного синтеза при изготовлении печатной продукции используют четвертую дополнительную черную краску.

Из схемы видно, что если наносить на белую бумагу триадные краски в различном сочетании, то можно получить все основные (первичные) цвета как для аддитивного синтеза, так и для субтрактивного. Это обстоятельство доказывает возможность получения цветов необходимых характеристик при изготовлении цветной полиграфической продукции триадными красками.

Изменение характеристик воспроизводимого цвета происходит по-разному, в зависимости от способа печати. В глубокой печати переход от светлых участков изображения к темным осуществляется благодаря изменению толщины красочного слоя, что и позволяет регулировать основные характеристики воспроизводимого цвета. В глубокой печати образование цветов происходит субтрактивно.

В высокой и офсетной печати цвета различных участков изображения передаются растровыми элементами различной площади. Здесь характеристики воспроизводимого цвета регулируются размерами растровых элементов различного цвета. Ранее уже отмечалось, что цвета в этом случае образуются аддитивным синтезом – пространственным смешиванием цветов мелких элементов. Однако, там, где растровые точки различных цветов совпадают друг с другом и краски накладываются одна на другую, новый цвет точек образуется субтрактивным синтезом.

Оценка цвета

Для измерения, передачи и хранения информации о цвете необходима стандартная система измерений. Человеческое зрение может считаться одним из наиболее точных измерительных приборов, но оно не в состоянии ни присваивать цветам определенные числовые значения, ни в точности их запоминать. Большинство людей не осознает, насколько значительно воздействие цвета на их повседневную жизнь. Когда дело доходит до многократного воспроизведения, цвет, кажущийся одному человеку «красным», другим воспринимается как «красновато-оранжевый».

Методы, которыми осуществляется объективная количественная характеристика цвета и цветовых различий, называют колориметрическими методами.

Трехцветная теория зрения позволяет объяснить возникновение ощущений различного цветового тона, светлоты и насыщенности.

Цветовые пространства

Координаты цвета
L (Lightness) - яркость цвета измеряется от 0 до 100%,
a - диапазон цвета по цветовому кругу от зеленого -120 до красного значения +120,
b - диапазон цвета от синего -120 до желтого +120

В 1931 г. Международная комиссия по освещению – CIE (Commission Internationale de L`Eclairage) предложила математически рассчитанное цветовое пространство XYZ, в котором весь видимый человеческим глазом спектр лежал внутри. В качестве базовых была выбрана система реальных цветов (красного, зеленого и синего), а свободный пересчет одних координат в другие позволял проводить различного рода измерения.

Недостатком нового пространства была его неравноконтрастность. Понимая это, ученые проводили дальнейшие исследования, и в 1960 г. Мак-Адам внес некоторые дополнения и изменения в существовавшее цветовое пространство, назвав его UVW (или CIE-60).

Затем в 1964 г. по предложению Г. Вышецкого было введено пространство U*V*W* (CIE-64).
Вопреки ожиданию специалистов предложенная система оказалась недостаточно совершенной. В одних случаях используемые при расчете цветовых координат формулы давали удовлетворительные результаты (в основном при аддитивном синтезе), в других (при субтрактивном синтезе) погрешности оказывались чрезмерными.

Это заставило CIE принять новую равноконтрастную систему. В 1976 г. были устранены все разногласия и на свет появились пространства Luv и Lab, базирующиеся на том же XYZ.

Эти цветовые пространства принимают за основу самостоятельных колориметрических систем CIELuv и CIELab. Считается, что первая система в большей мере отвечает условиям аддитивного синтеза, а вторая - субтрактивного.

В настоящее время цветовое пространство CIELab (CIE-76) служит международным стандартом работы с цветом. Основное преимущество пространства - независимость как от устройств воспроизведения цвета на мониторах, так и от устройств ввода и вывода информации. С помощью стандартов CIE могут быть описаны все цвета, которые воспринимает человеческий глаз.

Количество измеряемого цвета характеризуется тремя числами, показывающими относительные количества смешиваемых излучений. Эти числа называются цветовыми координатами. Все колориметрические методы основаны на трехмерности т.е. на своего рода объемности цвета.

Эти методы дают столь же надежную количественную характеристику цвета, как например измерение температуры или влажности. Отличие состоит лишь в количестве характеризующих значений и их взаимосвязи. Эта взаимосвязь трех основных цветных координат выражается в согласованном изменении при изменении цвета освещения. Поэтому «трехцветные» измерения проводятся в строго определенных условиях при стандартизованном белом освещении.

Таким образом, цвет в колориметрическом понимании однозначно определяется спектральным составом измеряемого излучения, цветовое же ощущение не однозначно определяется спектральным составом излучения, а зависит от условий наблюдения и в частности от цвета освещения.

Физиология рецепторов сетчатки

Восприятие цвета связано с функцией колбочковых клеток сетчатки глаза. Пигменты, содержащиеся в колбочках поглощают часть падающего на них света и отражающее остальную. Если какие-то спектральные компоненты видимого света поглощаются лучше других, то этот предмет мы воспринимаем как окрашенный.

Первичное различение цветов происходит в сетчатке- в палочках и колбочках свет вызывает первичное раздражение, которое превращается в электрические импульсы для окончательного формирования воспринимаемого оттенка в коре головного мозга.

В отличие от палочек, содержащих родопсин, колбочки содержат белок йодопсин. Йодопсин - общее название зрительных пигментов колбочек. Существует три типа йодопсина:

  • хлоролаб («зелёный», GCP),
  • эритролаб («красный», RCP) и
  • цианолаб («синий», BCP).

В настоящее время известно, что светочувствительный пигмент йодопсин находящийся во всех колбочках глаза, включает в себя такие пигменты, как хлоролаб и эритролаб. Оба эти пигмента чувствительны ко всей области видимого спектра, однако первый из них имеет максимум поглощения, соответствующий жёлто-зеленой (максимум поглощения около 540 нм.), а второй жёлто-красной (оранжевой) (максимум поглощения около 570 нм.) частям спектра. Обращает на себя внимание тот факт, что их максимумы поглощения расположены рядом. Это не соответствуют принятым «основным» цветам и не согласуется с основными принципами трёхкомпонентной модели.

Третий, гипотетический пигмент, чувствительный к фиолетово-синей области спектра, заранее получивший название цианолаб, на сегодняшний день так и не найден.

Кроме того, найти какую-либо разницу между колбочками в сетчатке глаза не удалось, не удалось и доказать наличие в каждой колбочке только одного типа пигмента. Более того, было признано, что в колбочке одновременно находятся пигменты хлоролаб и эритролаб.

Неаллельные гены хлоролаба (кодируется генами OPN1MW и OPN1MW2) и эритролаба (кодируется геном OPN1LW) находятся в Х-хромосомах. Эти гены давно хорошо выделены и изучены. Поэтому чаще всего встречаются такие формы дальтонизма, как дейтеронопия (нарушение образования хлоролаба) (6 % мужчин страдают этим заболеванием) и протанопия (нарушение образования эритолаба) (2 % мужчин). При этом некоторые люди, имеющие нарушения восприятия оттенков красного и зелёного, лучше людей с нормальным восприятием цветов воспринимают оттенки других цветов, например, цвета хаки.

Ген цианолаба OPN1SW расположен в седьмой хромосоме, поэтому тританопия (аутосомная форма дальтонизма, при которой нарушено образования цианолаба) - редкое заболевание. Человек, больной тританопией, всё видит в зеленых и красных цветах и не различает предметы в сумерках.

Нелинейная двухкомпонентная теория зрения

По другой модели (нелинейная двухкомпонентная теория зрения С. Ременко), третий «гипотетический» пигмент цианолаб не нужен, приёмником синей части спектра служит палочка. Это объясняется тем, что при яркости освещения достаточной для различения цветов, максимум спектральной чувствительности палочки (благодаря выцветанию содержащегося в ней родопсина) смещается от зелёной области спектра к синей. По этой теории колбочка должна содержать в себе всего два пигмента с рядом расположенными максимами чувствительности: хлоролаб (чувствительный к жёлто-зелёной области спектра) и эритролаб (чувствительный к жёлто-красной части спектра). Эти два пигмента давно найдены и тщательно изучены. При этом колбочка является нелинейным датчиком отношений, выдающем не только информацию о соотношении красного и зелёного цвета, но и выделяющем уровень жёлтого цвета в этой смеси.

Доказательством того, что приёмником синей части спектра в глазу является палочка, может служить и тот факт, что при цветоаномалии третьего типа (тританопия), глаз человека не только не воспринимает синей части спектра, но и не различает предметы в сумерках (куриная слепота), а это указывает именно на отсутствие нормальной работы палочек. Сторонники трёхкомпонентных теорий объяснить, почему всегда, одновременно с прекращением работы синего приёмника, перестают работать и палочки до сих пор не могут.

Кроме того, подтверждением этого механизма является и давно известный Эффект Пуркинье, суть которого заключается в том, что при наступлении сумерек, когда освещённость падает, красные цвета чернеют, а белые кажутся голубоватыми . Ричард Филлипс Фейнман отмечает, что: «это объясняется тем, что палочки видят синий край спектра лучше, чем колбочки, но зато колбочки видят, например, тёмно красный цвет, тогда как палочки его совершенно не могут увидеть».

В ночное время, когда поток фотонов недостаточен для нормальной работы глаза, зрение обеспечивают в основном палочки, поэтому ночью человек не может различать цвета.

На сегодняшний день придти к единому мнению о принципе цветовосприятия глазом пока не удалось.