Что же такое метаболизм? Нарушение обмена веществ: причины. Причины ускорения и замедления

Обязательным условием существования любого живого организма является постоянное поступление и выведение конечных продуктов распада.

Что такое обмен веществ в биологии

Обмен веществ, или метаболизм, - это особый набор химических реакций, которые протекают в любом живом организме для поддержания его деятельности и жизни. Такие реакции дают организму возможность развиваться, расти и размножаться, при этом сохраняя свою структуру и отвечая на раздражители окружающей среды.

Обмен веществ принято разделять на два этапа: катаболизм и анаболизм. На первой стадии все сложные вещества расщепляются и становятся более простыми. На втором же вместе с затратами энергии синтезируются нуклеиновые кислоты, липиды и белки.

Самую важную роль в процессе метаболизма играют ферменты, которые являются активными Они способны снизить энергию активации физической реакции и регулировать обменные пути.

Метаболические цепи и компоненты абсолютно идентичны для многих видов, что является доказательством единства происхождения всех живых существ. Такое сходство показывает сравнительно раннее появление эволюции в истории развития организмов.

Классификация по типу обмена веществ

Что такое обмен веществ в биологии, подробно описано в данной статье. Все живые организмы, существующие на планете Земля, можно разделить на восемь групп, руководствуясь при этом источником углерода, энергии и окисляемого субстрата.

Живые организмы в качестве источника питания могут использовать энергию химических реакций или света. В качестве окисляемого субстрата могут быть как органические, так и Источником углерода является углекислый газ или органика.

Существуют такие микроорганизмы, которые, находясь в разных условия существования, используют метаболизм разного типа. Это зависит от влажности, освещения и других факторов.

Могут характеризоваться тем, что один и тот же организм может иметь клетки с разным типом метаболических процессов.

Катаболизм

Биология обмен веществ и энергии рассматривает через такое понятие, как "катаболизм". Данным термином называют во время которых крупные частицы жиров, аминокислот и углеводов расщепляются. Во время катаболизма появляются простые молекулы, участвующие в реакциях биосинтеза. Именно благодаря данным процессам организм способен мобилизовать энергию, превращая ее в доступную форму.

У организмов, которые живут благодаря фотосинтезу (цианобактерии и растения), реакция переноса электрона не высвобождает энергию, а накапливает, благодаря солнечному свету.

У животных реакции катаболизма связаны с расщеплением сложных элементов до более простых. Такими веществами являются нитраты и кислород.

Катаболизм у животных делится на три этапа:

  1. Расщепление сложных веществ до более простых.
  2. Расщепление простых молекул до еще более простых.
  3. Высвобождение энергии.

Анаболизм

Обмен веществ (биология 8 класса рассматривает данное понятие) характеризуется и анаболизмом - совокупностью метаболических процессов биосинтеза с затратой энергии. Сложные молекулы, которые являются энергетической основой клеточных структур, последовательно образуются из самых простых предшественников.

Сначала синтезируются аминокислоты, нуклеотиды и моносахариды. Затем вышеперечисленные элементы становятся активными формами благодаря энергии АТР. И на последнем этапе все активные мономеры объединяются в сложные структуры, такие как белки, липиды и полисахариды.

Стоит обратить внимание, что не все живые организмы синтезируют активные молекулы. Биология (обмен веществ подробно описан в данной статье) выделяет такие организмы, как автотрофы, хемотрофы и гетеротрофы. Они получают энергию из альтернативных источников.

Энергия, получаемая из солнечного света

Что такое обмен веществ в биологии? Процесс, благодаря которому существует все живое на Земле, и отличающий живые организмы от неживой материи.

Энергией солнечного света питаются некоторые простейшие, растения и цианобактерии. У данных представителей обмен веществ происходит благодаря фотосинтезу - процессу поглощения кислорода и выделению углекислого газа.

Пищеварение

Такие молекулы, как крахмал, белки и целлюлоза, расщепляются еще до того, как они используются клетками. В процессе пищеварения принимают участие особые ферменты, которые расщепляют белки до аминокислот, и полисахариды - до моносахаридов.

Животные могут выделять такие ферменты только из специальных клеток. А вот микроорганизмы такие вещества выделяют в окружающее пространство. Все вещества, которые вырабатываются благодаря внеклеточным ферментам, поступают в организм с помощью «активного транспорта».

Контроль и регуляция

Что такое обмен веществ в биологии, вы можете прочитать в данной статье. Каждый организм характеризуется гомеостазом - постоянством внутренней среды организма. Наличие такого условия очень важно для любого организма. Так как все их окружает среда, которая постоянно меняется, для поддержания оптимальных условий внутри клеток все реакции метаболизма должны правильно и точно регулироваться. Хороший обмен веществ дает возможность живым организмам постоянно контактировать с окружающей средой и отвечать на ее изменения.

Исторические сведения

Что такое обмен веществ в биологии? Определение находится в начале статьи. Понятие «метаболизм» первый раз употребил Теодор Шванн в сороковых годах девятнадцатого века.

Изучением метаболизма ученые занимаются уже несколько веков, и начиналось все с попыток изучить организмы животных. А вот термин «обмен веществ» впервые употребил Ибн-аль-Нафиса, который считал, что все тело постоянно находится в состоянии питания и распада, поэтому для него характерны постоянные изменения.

Урок биологии «Обмен веществ» откроет всю суть данного понятия и опишет примеры, которые помогут увеличить глубину знаний.

Первый контролируемый опыт по изучению обмена веществ был получен Санторио Санторио в 1614 году. Он описывал свое состояние до и после приема пищи, работы, питья воды и сна. Он был первым, кто заметил, что большая часть употребленной пищи утрачивалась во время процесса «незаметного испарения».

В начальных исследованиях обменные реакции были не обнаружены, и ученые считали, что живой тканью управляет живая сила.

В двадцатом веке Эдуард Бухнер ввел понятие ферментов. С этих пор изучение обмена веществ начиналось с изучения клеток. В этот период биохимия стала наукой.

Что такое обмен веществ в биологии? Определение можно дать следующее - это особый набор биохимических реакций, поддерживающих существование организма.

Минералы

В метаболизме очень большую роль играют неорганические вещества. Все органические соединения состоят из большого количества фосфора, кислорода, углерода и азота.

Большинство неорганических соединений позволяют контролировать уровень давления внутри клеток. Также их концентрация положительно влияет на функционирование мышечных и нервных клеток.

(железо и цинк) регулируют активность транспортных белков и ферментов. Все неорганические микроэлементы усваиваются благодаря транспортным белкам и никогда не пребывают в свободном состоянии.

    Метаболизм – это важный пазл в картинке или веха на пути построения схемы похудения или набора мышечной массы. Понимая действие основных процессов биохимии, проще достигнуть поставленных целей, независимо от типа телосложения. Рассмотрим, что это такое – объясним простым языком, не влезая в научные дебри.

    Что такое метаболизм с физиологической точки зрения – объяснение простым языком

    Вновь обратимся к теме пазлов. Если представить организм набором элементов, то метаболизм человека – это механизм, собирающий детали в большую осмысленную картину. Это обмен веществ, комплекс всех биохимических реакций. Любой организм растёт и функционирует благодаря поступлению, трансформации и удалению определённых веществ. Метаболизм регулирует процессы преобразования поступающих извне компонентов. Благодаря встроенному «настройщику» возможна адаптация к внешним факторам. Без основополагающего процесса была бы невозможна жизнь.

    Как связаны метаболизм и масса тела?

    Масса тела зависит от ряда физиологических параметров и количества потребляемых калорий. Существует базовая энергетическая потребность. У каждого человека она индивидуальна. Эту потребность называют – суточной «порцией» энергии (калорий), необходимой для нормального функционирования организма в состоянии покоя.

    Калорийность рассчитывают по формулам – для мужчин и женщин. Мужчинам нужно воспользоваться следующей формулой:

    88.362 + (13.397 * вес/кг) + (4.799 * рост/см) – (5.677 * возраст)

    Женщины используют такую:

    447.593 + (9.247 * вес/кг) + (3.098 * рост/см) – (4.330 * возраст)

    Результат расчётов – своеобразная нулевая отметка. В стремлении похудеть нужно потреблять меньше расчётного числа калорий. Бодибилдерам, напротив, необходимо умножить результат на определённый коэффициент.

    Суть обмена веществ

    Процесс метаболизма представляет собой трансформацию химических веществ. Системы и ткани организма нуждаются в компонентах с низкоуровневой структурой. С пищей мы получаем высокоуровневые составляющие, требующие расщепления.

    Обмен веществ – это два, связанных друг с другом, типа процессов:

    • – расщепление сложных элементов на более простые; в результате распада происходит генерация энергии;
    • – образование из полученных извне компонентов необходимых организму веществ; в результате образуются новые клетки и ткани.

    Схема протекания и чередования процессов очень сложна. Но базовое понимание того и другого важно и для борьбы с лишним весом, и для массонабора.

    Обмен белков

    – это расщепление протеина на аминокислоты. Любой силовой атлет знает, что белок – важнейший компонент для построения и регенерации мышечной ткани. Но, кроме этого, протеин выполняет и другие, не менее важные, функции:

    • распределяет по организму питательные вещества;
    • обеспечивает нормальную работу эндокринной системы;
    • способствует образованию половых гормонов;
    • разгоняет биохимические процессы.

    Белковый метаболизм состоит из таких этапов:

    • поступление белка в организм;
    • денатурация элементов до протеинов первого порядка;
    • расщепление на отдельные аминокислоты;
    • транспортировка аминокислот по организму;
    • строительство тканей (для атлетов это означает в первую очередь построение мышц);
    • новый цикл белкового обмена – на этой стадии происходит метаболизм неиспользованных в строительстве белков;
    • выведение отработанных аминокислот.

    Для полноценного обмена веществ крайне важен аминокислотный комплекс. Само по себе количество белков имеет небольшое значение. Решая спортивные и диетологические задачи, необходимо отслеживать состав компонентов. Особенно это касается вегетарианцев, поскольку в продуктах растительного происхождения отсутствует необходимый набор элементов.

    Обмен жиров

    Жиры – важный источник энергии. При кратковременной физической нагрузке сначала в ход идет энергия , находящаяся в мышцах. При длительной нагрузке энергию организм получает из жиров. Из понимания особенностей напрашивается вывод – для расщепления жировых запасов требуется достаточно продолжительная и мощная работа.

    Большую часть жиров организм старается оставить про запас. В нормальном состоянии только около 5% жиров стабильно выводится обратно. Липидный (жировой) метаболизм разбивается на три стадии:

    • расщепление элементов в желудке и кишечнике
    • промежуточный обмен
    • выделение отработанных продуктов

    Частичная трансформация жиров происходит в желудке. Но там процесс протекает вяло. Основной распад липидов происходит в верхней области тонкого кишечника. Большая заслуга в липидном обмене принадлежит печени. Здесь часть компонентов окисляется, в результате чего генерируется энергия. Другая часть расщепляется до формата транспортабельных составляющих и поступает в кровь.

    Обмен углеводов

    Главная роль определяется энергетической ценностью последних. Обменные процессы этих компонентов составляют около 60% всего энергообмена организма. Без углеводов невозможна полноценная физическая работа. Вот почему для продуктивного тренинга основу рациона должны составлять «топливные» элементы. На базовом уровне углеводы представляют собой глюкозу. В мускулатуре и печени она накапливается в виде гликогена.

    Важное понятие, связанное с углеводным обменом – (ГИ). Он отражает скорость усвоения углеводов организмом и повышения сахара в крови. Шкала ГИ разбита на 100 единиц, где 0 говорит о безуглеводных продуктах, а 100 – о продуктах, насыщенных этим компонентом.

    Исходя из этого, продукты делятся на простые и сложные. Первые – с высоким ГИ, вторые – с низким. Понимать отличие между теми и другими очень важно. очень быстро расщепляются до глюкозы. Благодаря этому уже через считанные минуты организм получает порцию энергии. Минус в том, что хватает энергетического всплеска на 30-50 мин. При употреблении большого количества быстрых углеводов:

    • имеет место слабость, вялость;
    • откладываются жировые запасы;
    • наносится вред поджелудочной железе.

    Расщепляются долго. Но и отдача от них ощущается до 4-х часов. В основе рациона должны быть элементы именно этого типа.

    Продукты с низким ГИ:

    Продукты со средним ГИ:

    Продукты с высоким ГИ:

    Обмен воды и минеральных веществ

    Большая часть организма – вода. Значение метаболизма в этом контексте приобретает ярко выраженный оттенок. Мозг состоит из воды на 85%, кровь – на 80%, мышцы – на 75%, кости – на 25%, жировая ткань – на 20%.

    Удаляется вода:

    • через лёгкие – 300 мл/сутки (в среднем);
    • через кожу – 500 мл;
    • с мочой – 1700 мл.

    Отношение потребляемой жидкости к выделяемой называют . Если потребление меньше вывода, в организме происходит сбой систем. Норма потребления воды в сутки – 3 л. Этого количества достаточно для обеспечения хорошей продуктивности и самочувствия.

    С водой из организма вымываются и минералы. По этой причине желательно дополнять обычную воду минеральной. Это один из самых простых путей восполнить дефицит необходимых элементов. Рекомендуется с помощью диетолога рассчитать норму солей и минералов и составить рацион на основе этих расчётов.

    Причины и последствия сбоев метаболизма

    Метаболизм – это сложный и хрупкий процесс. Если на одном из этапов анаболизма или катаболизма происходит сбой, сыпется вся биохимическая «конструкция». Проблемы с обменом веществ провоцируются:

    • наследственностью;
    • неправильным образом жизни;
    • различными заболеваниями;
    • проживанием в зоне с плохой экологией.

    Главная причина сбоев – наплевательское отношение к своему организму. Обильное количество вредной пищи – бич современности. Неправильное питание и малоподвижность ведут к В итоге масса людей страдают ожирением со всеми вытекающими.

    Среди симптомов, намекающих на то, что следует заняться регуляцией метаболизма:

    • повышенная или пониженная масса тела;
    • хроническая усталость;
    • визуальные проблемы с кожей;
    • ломкость волос и ногтей;
    • повышенная раздражительность и др.

    Бороться с последствиями сбоев обмена веществ можно и нужно. Но на мгновенный эффект рассчитывать глупо. Поэтому лучше себя не запускать. А если всё же это случилось, нужно обратиться к специалистам и запастись терпением.

    Уровень метаболизма в зависимости от пола, возраста, питания

    Скорость обмена веществ зависит не только от генетических факторов и образа жизни, но и от пола и возраста. Уровень тестостерона у мужчин гораздо выше. Благодаря этому представители сильного пола склонны к набору мышечной массы. А мускулатура нуждается в энергии. Поэтому базовый обмен веществ у мужчин выше – организм потребляет больше калорий.

    Женщины, наоборот, более склонны к отложению жировых запасов. Причина кроется в большом количестве женских половых гормонов – эстрогенов. Женщины вынуждены более тщательно следить за своими фигурами, поскольку выход за рамки здорового образа жизни тут же откликается увеличением веса.

    В обоих случаях есть масса исключений. Многие мужчины легко набирают лишний вес, тогда как множество женщин стабильны в этом плане, даже регулярно переедая. Всё потому, что обилие факторов, влияющих на уровень метаболизма, крепко переплетены. Но в целом пол играет огромную роль.

    У большинства людей базальный обмен веществ меняется с возрастом. Это легко заметить, понаблюдав за изменениями своей формы или формы знакомых. Не пытаясь противостоять времени, после 30-40 лет, а то и раньше, многие люди начинают расплываться. Это присуще и эктоморфам. В молодости им с трудом удаётся поправиться даже на килограмм. С возрастом килограммы приходят сами. Пусть и не в таком количестве, как у мезо- и эндоморфов.

    Как сопротивляться переменам? Стать адептом ЗОЖ – грамотно питаться и давать телу физическую нагрузку. Считайте калории, исходя из индивидуальных потребностей (формулы в помощь), занимайтесь спортом, и метаболизм будет в норме. Если, конечно, нет проблем иного рода.

    А как питаться правильно? Уделять большое внимание продуктам, благодаря которым функции метаболизма в организме выполняются корректно. Рацион должен быть богат:

    • грубой овощной клетчаткой – морковью, капустой, и т. п.;
    • фруктами;
    • зеленью;
    • постным мясом;
    • морепродуктами.

    Рекомендуется питаться часто и дробно, не пренебрегать завтраком, учитывать сочетаемость продуктов. Лучше всего или подробно изучить вопрос, или обратиться за помощью к специалисту. Поскольку организм работает с тем, что ему дали, на нормальный метаболизм можно рассчитывать только в том случае, если рацион составлен с учётом индивидуальных потребностей.

Метаболизм (от греческого: μεταβολή metabolē, «изменение») – это ряд химических превращений в клетках живых организмов, необходимых для поддержания жизни. Тремя основными целями метаболизма являются превращение пищи / топлива в энергию для запуска клеточных процессов, превращение пищи / топлива в строительные блоки для белков, липидов, нуклеиновых кислот и некоторых углеводов, а также устранение азотистых шлаков. Эти ферментативные реакции позволяют организму расти и размножаться, сохранять свои структуры и реагировать на окружающую среду. Слово «метаболизм» может также относиться к сумме всех химических реакций, происходящих в живых организмах, включая пищеварение и транспортировку веществ в различные клетки и между ними, в этом случае множество реакций внутри клеток называется промежуточным метаболизмом. Метаболизм обычно делится на две категории: катаболизм, расщепление органического вещества, например, с помощью клеточного дыхания, и анаболизм, создание компонентов клеток, таких как белки и нуклеиновые кислоты. Как правило, при расщеплении энергия высвобождается, а при наращивании потребляется.

Химические реакции обмена веществ организованы в метаболических путях, в которых одно химическое соединение трансформируется через ряд шагов в другое соединение, при помощи последовательности ферментов. Ферменты имеют решающее значение для обмена веществ, поскольку они позволяют организмам осуществлять желаемые реакции, которые требуют затрат энергии, которые не будут происходить сами по себе, путем присоединения их к спонтанным реакциям, которые высвобождают энергию. Ферменты действуют как катализаторы, которые позволяют реакциям протекать более быстрыми темпами. Ферменты также позволяют регулировать метаболические пути в ответ на изменения в окружающей среде клетки или на сигналы от других клеток. Метаболическая система конкретного организма определяет, какие вещества для него будут питательными, а какие – ядовитыми. Например, некоторые прокариоты используют сероводород в качестве питательного вещества, но этот газ является ядовитым для животных. Скорость метаболизма влияет на то, сколько пищи потребует организм, а также на то, насколько он будет способен получить эту пищу. Отличительной чертой метаболизма является сходство основных метаболических путей и компонентов между даже совершенно разными видами. Например, множество карбоновых кислот, которые более всего известны как промежуточные соединения в цикле Кребса, присутствуют во всех известных организмах. Они были обнаружены у таких разнообразных видов, как одноклеточные бактерии кишечной палочки и гигантские многоклеточные организмы, такие как слоны. Эти поразительные сходства в метаболических путях, вероятно, связаны с их ранним появлением в эволюционной истории, и их сохранением из-за их эффективности.

Основные биохимические вещества

Большинство структур, которые составляют животных, растений и микробов, состоят из трех основных классов молекул: аминокислоты, углеводы и липиды (часто называемые жирами). Так как эти молекулы имеют жизненно важное значение для жизни, метаболические реакции либо сосредотачиваются на производстве этих молекул в процессе строительства клеток и тканей, либо на их расщеплении и использовании в качестве источника энергии, в процессе их переваривания. Эти биохимические вещества могут соединяться друг с другом, образуя полимеры, такие как ДНК и белки, необходимые для жизни макромолекулы.

Аминокислоты и белки

Белки состоят из аминокислот, расположенных в линейной цепи, соединенные между собой пептидными связями. Многие белки представляют собой ферменты, которые катализируют химические реакции в обмене веществ. Другие белки имеют структурные или механические функции, такие, как белки, которые формируют цитоскелет, систему, которая поддерживает форму клетки. Белки также играют важную роль в клеточной сигнализации, иммунных реакциях, клеточной адгезии, активном транспорте через мембраны, и клеточном цикле. Аминокислоты также способствуют клеточному метаболизму энергии, обеспечивая источник углерода для вхождения в цикл лимонной кислоты (цикл трикарбоновых кислот), особенно когда основного источника энергии, такого как глюкоза, недостаточно, или когда клетки подвергаются метаболическому стрессу.

Липиды

Липиды являются наиболее разнообразной группой биохимических веществ. Их основные структурные виды использования – как часть биологических мембран, как внутренних, так и внешних, таких как клеточные мембраны, или в качестве источника энергии. Липиды обычно определяются как гидрофобные или амфипатические биологические молекулы, но они растворяются в органических растворителях, таких как бензол или хлороформ. Жиры – это большая группа соединений, которые содержат жирные кислоты и глицерин; молекула глицерина, присоединенная к трем сложных эфирам жирных кислот, называется триацилглицеридом. Существует несколько вариаций этой базовой структуры, в том числе альтернативные скелеты, такие как сфингозин у сфинголипидов, и гидрофильные группы, такие как фосфат, у фосфолипидов. Стероиды, такие как холестерин, являются еще одним важным классом липидов .

Углеводы

Углеводы являются альдегидами или кетонами, с большим количеством присоединенных гидроксильных групп, которые могут существовать в виде прямых цепей или колец. Углеводы являются наиболее распространенными биологическими молекулами, и выполняют множество функций, таких как хранение и транспортировка энергии (крахмал, гликоген) и структурных компонентов (целлюлоза у растений, хитин у животных). Базовые единицы углеводов называются моносахаридами и включают галактозу, фруктозу и, самое главное, глюкозу. Моносахариды могут быть связаны друг с другом, образуя полисахариды.

Нуклеотиды

Две нуклеиновые кислоты, ДНК и РНК, представляют собой полимеры нуклеотидов. Каждый нуклеотид состоит из фосфата, прикрепленного к рибозной или дезоксирибозной сахарной группе, которая присоединена к азотистому основанию. Нуклеиновые кислоты имеют решающее значение для хранения и использования генетической информации и ее интерпретации через процессы транскрипции и биосинтеза белка. Эта информация защищена механизмами репарации ДНК и распространяется через репликацию ДНК. Многие вирусы имеют РНК-геном, такие как ВИЧ, который использует обратную транскрипцию для создания шаблона ДНК из своего вирусного РНК-генома. РНК в рибозимах, таких как сплайсосомы и рибосомы, аналогична ферментам, так как она может катализировать химические реакции. Отдельные нуклеозиды создаются путем присоединения к нуклеиновому основанию рибозного сахара. Эти основания являются гетероциклическими кольцами, содержащими азот, и классифицируются как пурины или пиримидины. Нуклеотиды также выступают в качестве коферментов в метаболических реакциях переноса групп.

Коферменты

Метаболизм включает в себя широкий спектр химических реакций, но большинство этих реакций входит в несколько основных типов реакций, которые включают перенос функциональных групп атомов и их связей в молекулах. Эти химические реакции позволяют клеткам использовать небольшой набор метаболических промежуточных продуктов для того, чтобы перемещать химические группы между различными реакциями. Эти промежуточные вещества в реакциях переноса групп называются коферментами. Каждый класс реакций переноса групп осуществляется конкретным коферментом, который является субстратом для ряда ферментов, которые производят его, а также для ряда ферментов, потребляющих его. Поэтому эти коферменты непрерывно производится, потребляются, а затем используются повторно. Одним из центральных коферментов является аденозинтрифосфат (АТФ), универсальный источник энергии для клеток. Этот нуклеотид используется для передачи химической энергии между различными химическими реакциями. В клетках существует лишь небольшое количество АТФ, но, так как он непрерывно регенерируется, человеческое тело может использовать такое количество АТФ в день, которое составляет приблизительно его собственный вес. АТФ выступает в качестве «моста» между катаболизмом и анаболизмом. Катаболизм разрушает молекулы, а анаболизм собирает их вместе. Катаболические реакции создают АТФ, а анаболические реакции потребляют его. АТФ также служит в качестве носителя фосфатных групп в реакциях фосфорилирования. Витамин представляет собой органическое соединение, необходимое в небольших количествах, которое не может быть произведено в клетках. В питании человека, большинство витаминов функционируют в качестве коферментов после модификации; например, все водорастворимые витамины фосфорилируются или соединяются с нуклеотидами, когда они используются в клетках. Никотинамид-аденин-динуклеотид (НАД +), производное витамина B3 (ниацина), является важным коферментом, который действует как акцептор водорода. Сотни отдельных видов дегидрогеназ удаляют электроны от их субстратов и восстанавливают НАД + в НАДH. Эта восстановленная форма кофермента является субстратом для любой из редуктаз в клетке, которые должны восстановить свои субстраты. Никотинамидадениндинуклеотид существует в двух родственных формах в клетке, НАДH и НАДФН. НАД + / НАДН форма является более важной в катаболических реакциях, в то время как НАДФ + / НАДФН используется в анаболических реакциях.

Минералы и кофакторы

Неорганические элементы играют важную роль в обмене веществ; некоторые из них содержатся в организме в изобилии (например, натрий и калий), в то время как другие действуют в минимальных концентрациях. Около 99% массы млекопитающего состоит из углерода, азота, кальция, натрия, хлора, калия, водорода, фосфора, кислорода и серы. Органические соединения (белки, липиды и углеводы) содержат большую часть углерода и азота; большая часть кислорода и водорода присутствует в воде. Содержащиеся в изобилии неорганические элементы действуют как ионные электролиты. Наиболее важными ионами являются натрий, калий, кальций, магний, хлорид, фосфат и органический бикарбонат-ион. Поддержание точных ионных градиентов в клеточных мембранах поддерживает осмотическое давление и рН. Ионы также имеют важное значение для функционирования нервов и мышц, поскольку потенциалы действия в этих тканях образуются путем обмена электролитов между внеклеточной жидкостью и клеточной жидкостью, цитозолью. Электролиты входят и выходят из клеток с помощью белков в клеточной мембране, называемыми ионными каналами. Например, сокращение мышц зависит от перемещения кальция, натрия и калия через ионные каналы в клеточной мембране и Т-канальцах. Переходные металлы, как правило, присутствуют в организмах в качестве микроэлементов, при этом цинк и железо содержатся в организме в наибольших концентрациях. Эти металлы используются в некоторых белках в качестве кофакторов и имеют важное значение для активности ферментов, таких как каталаза и белки-переносчики кислорода, такие как гемоглобин. Металлические кофакторы тесно связаны со специфическими участками в белках; хотя ферментные кофакторы могут быть модифицированы во время катализа, они всегда возвращаются в исходное состояние к концу катализируемой реакции. Металлические микроэлементы усваиваются в организмах при помощи специфических транспортеров и связываются с запасными белками, такими как ферритин или металлотионеин, когда не используются.

Катаболизм

Катаболизм – это множество метаболических процессов, которые расщепляют крупные молекулы. Эти процессы включают в себя расщепление и окисление молекул пищи. Цель катаболических реакций состоит в обеспечении энергией и компонентами, необходимыми в ходе анаболических реакций. Точный характер этих катаболических реакций отличается у разных организмов. Организмы могут быть классифицированы на основе их источников энергии и углерода (их первичных пищевых групп). Органические молекулы используются в качестве источника энергии органотрофами, в то время как литотрофы используют неорганические субстраты, и фототрофы используют солнечный свет в виде химической энергии. Тем не менее, все эти различные формы метаболизма зависят от окислительно-восстановительных реакций, которые включают перенос электронов от восстановленных молекул-доноров, таких как органические молекулы, вода, аммиак, сероводород или ионы железа, к акцепторным молекулам, таким как кислород, нитрат или сульфат. У животных, эти реакции включают сложные органические молекулы, которые расщепляются на более простые молекулы, такие как углекислый газ и вода. У фотосинтезирующих организмов, таких как растения и цианобактерии, эти реакции переноса электрона не высвобождают энергию, но используются как способ хранения энергии, поглощаемой из солнечного света. Наиболее распространенные катаболические реакции у животных могут быть разделены на три основные стадии. В первой стадии, большие органические молекулы, такие как белки, полисахариды или липиды, расщепляются на более мелкие компоненты за пределами клетки. Далее, эти небольшие молекулы захватываются клетками и преобразуются в еще более мелкие молекулы, обычно в ацетил-кофермент А (ацетил-КоА), который высвобождает некоторое количество энергии. И, наконец, ацетильная группа на КоА окисляется до воды и углекислого газа в цикле лимонной кислоты и цепи переноса электронов, высвобождая энергию, которая хранится за счет восстановления кофермента никотинамидадениндинуклеотида (НАД +) в НАДH.

Переваривание

Макромолекулы, такие как крахмал, целлюлоза или белки, не могут быстро захватываться клетками и должны быть расщеплены на более мелкие единицы, прежде чем они могут быть использованы в метаболизме клеток. Несколько общих классов ферментов переваривают эти полимеры. Эти пищеварительные ферменты включают протеазы, которые перерабатывают белки в аминокислоты, а также гликозид гидролазы, которые перерабатывают полисахариды в простые сахара, известные как моносахариды. Микробы просто выделяют пищеварительные ферменты в окружающую среду, в то время как животные выделяют эти ферменты только из специализированных клеток в своих кишках. Аминокислоты или сахара, высвобожденные этими внеклеточными ферментами, затем перекачивается в клетки с помощью активных транспортных белков.

Энергия из органических соединений

Углеводный катаболизм – это распад углеводов на более мелкие единицы. Углеводы, как правило, принимаются в клетки, когда они перевариваются в моносахариды. Попадая в организм, основным маршрутом расщепления является гликолиз, в ходе которого сахара, такие как глюкоза и фруктоза, превращаются в пируват и генерируется АТФ. Пируват – это промежуточное соединение в нескольких метаболических путях, но большая часть пирувата превращается в ацетил-КоА и участвует в цикле лимонной кислоты. Хотя некоторая часть АТФ генерируется в цикле лимонной кислоты, наиболее важным продуктом является НАДН, который производится из НАД +, когда ацетил-СоА окисляется. В ходе этого окисления в качестве побочного продукта высвобождается углекислый газ. В анаэробных условиях, гликолиз производит лактат, через фермент лактатдегидрогеназы, повторно окисляя НАДH в НАД + для повторного использования в гликолизе. Альтернативным путем для расщепления глюкозы является пентозофосфатный путь, который восстанавливает кофермент НАДФН и производит пентозы, такие как рибоза, сахарный компонент нуклеиновых кислот. Жиры катаболизируются в ходе гидролиза до свободных жирных кислот и глицерина. Глицерин входит в гликолиз и жирные кислоты расщепляются путем бета-окисления, высвобождая ацетил-КоА, который затем участвует в цикле лимонной кислоты. Жирные кислоты выделяют при окислении больше энергии, чем углеводы, потому что углеводы содержат больше кислорода в своих структурах. Стероиды также расщепляются некоторыми бактериями в процессе, подобном бета-окислению, и этот процесс расщепления связан с высвобождением значительного количества ацетил-КоА, пропионил-КоА и пирувата, которые могут быть использованы клеткой для получения энергии. M. tuberculosis может также вырасти на липидном холестерине в качестве единственного источника углерода, и гены, участвующие в пути использования холестерина (ов), были утверждены в качестве важных при различных стадиях жизненного цикла инфекции микобактерий туберкулеза . Аминокислоты либо используются для синтеза белков и других биомолекул, или окисляются до мочевины и диоксида углерода в качестве источника энергии. Путь окисления начинается с удаления аминогруппы при помощи трансаминазы. Аминогруппа входит в цикл мочевины, оставляя деаминированный скелет углерода в форме кетокислоты. Некоторые из этих кетокислот являются промежуточными продуктами в цикле лимонной кислоты, например, дезаминирование глутамата приводит к образованию α-кетоглютарата. Глюкогенные аминокислоты также могут быть преобразованы в глюкозу через глюконеогенез.

Энергетические преобразования

Окислительное фосфорилирование

В ходе окислительного фосфорилирования, электроны удаляются из органических молекул в таких областях, как цикл протагоновой кислоты, и переносятся в кислород, а выделяемая при этом энергия используется для производства АТФ. Это делается у эукариот серией белков в мембранах митохондрий, называемой цепью переноса электронов. У прокариот, эти белки находятся во внутренней мембране клетки. Эти белки используют энергию, выделяемую от проходящих электронов от восстановленных молекул, таких как НАДН, в кислород, чтобы перекачивать протоны через мембрану. Выкачивание протонов из митохондрий создает разность концентрации протонов через мембрану, и генерирует электрохимический градиент. Это вызывает движение протонов обратно в митохондрии через основание фермента, называемого АТФ-синтаза. Поток протонов заставляет субъединицу вращаться, в результате чего активный участок домена синтазы изменяет форму и фосфорилирует АДФ, превращая его в АТФ.

Энергия из неорганических соединений

Хемолитотрофия – тип метаболизма у прокариот, при котором энергия производится путем окисления неорганических соединений. Эти организмы могут использовать водород, восстановленные соединения серы (такие как сульфид, сероводород и тиосульфат), двухвалентное железо (FeII) или аммиак в качестве источников восстановительной способности, и они получают энергию от окисления этих соединений с акцепторами электронов, такими как кислород или нитриты. Эти микробные процессы играют важную роль в глобальных биогеохимических циклах, таких как ацетогенез, нитрификация и денитрификация, и имеют решающее значение для плодородия почв.

Энергия света

Энергия солнечного света используется растениями, цианобактериями, пурпурными бактериями, зелеными серными бактериями и некоторыми простейшими. Этот процесс часто связан с превращением двуокиси углерода в органические соединения, как часть фотосинтеза. Системы захвата энергии и фиксации углерода, однако, могут работать отдельно у прокариот, так как пурпурные бактерии и зеленые серные бактерии могут использовать солнечный свет в качестве источника энергии, во время переключения между фиксацией углерода и ферментацией органических соединений. У многих организмов, захват солнечной энергии аналогичен по принципу с окислительным фосфорилированием, так как включает в себя хранение энергии в виде градиента концентрации протонов. Эта движущая сила протонов затем приводит к синтезу АТФ. Электроны, необходимые для работы этой электрон-транспортной цепи, происходят из белков, собирающих свет, называемых фотосинтезирующими реакционными центрами или родопсинами. Реакционные центры делятся на два типа в зависимости от типа фотосинтетического пигмента, при этом большинство фотосинтезирующих бактерий имеют только один тип, в то время как растения и цианобактерии имеют два. У растений, водорослей и цианобактерий, фотосистема II использует энергию света для удаления электронов из воды, выделяя кислород в качестве побочного продукта. Электроны затем перемещаются в комплекс цитохрома b6f, который использует их энергию для перекачки протонов через мембрану тилакоидов в хлоропластах. Эти протоны движутся обратно через мембрану, по мере того, как они управляют АТФ-синтазой, как и раньше. Электроны затем проходят через фотосистему I и затем могут либо быть использованы для восстановления кофермента НАДФ +, для использования в цикле Кальвина, или быть переработаны для дальнейшего поколения АТФ.

Анаболизм

Анаболизм – это множество конструктивных метаболических процессов, в которых энергия, выделяемая катаболизмом, используется для синтеза сложных молекул. В общем, сложные молекулы, которые составляют клеточные структуры, строятся из небольших и простых предшественников. Анаболизм включает в себя три основных этапа. Во-первых, производство прекурсоров, таких как аминокислоты, моносахариды, изопреноиды и нуклеотиды, во-вторых, их активация в химически активные формы с использованием энергии от АТФ, и в-третьих, сборка этих предшественников в сложные молекулы, такие как белки, полисахариды, липиды и нуклеиновые кислоты. Разные организмы могут построить разное количество молекул в клетках. Автотрофы, такие как растения, могут строить сложные органические молекулы в клетках, такие как полисахариды и белки, из простых молекул, таких как углекислый газ и вода. Гетеротрофные организмы, с другой стороны, требуют источник более сложных веществ, таких как моносахариды и аминокислоты, чтобы произвести эти сложные молекулы. Организмы могут быть дополнительно классифицированы по основным источникам их энергии: фотоавтотрофы и фотогетеротрофы получают энергию от света, в то время как хемоавтотрофы и хемогетеротрофы получают энергию от неорганических реакций окисления.

Фиксация углерода

Фотосинтез – это синтез углеводов из солнечного света и углекислого газа (CO2). У растений, цианобактерий и водорослей, кислородный фотосинтез расщепляет воду, при этом кислород выделяется в качестве побочного продукта. Этот процесс использует АТФ и НАДФН, вырабатываемые фотосинтетическими реакционными центрами, как описано выше, для превращения СО2 в глицерат 3-фосфат, который затем может быть превращен в глюкозу. Эта реакция углерод-фиксации осуществляется с помощью фермента Рубиско как часть цикла Кельвина-Бенсона. У растений встречается три типа фотосинтеза, С3 фиксация углерода, C4 фиксация углерода и фотосинтез САМ. Они отличаются по маршруту, который использует двуокись углерода для цикла Кальвина, при этом C3 растения фиксируют CO2 непосредственно, в то время как C4 и CAM фотосинтез включает СО2 сначала в другие соединения, в качестве приспособлений для борьбы с интенсивным солнечным светом и сухими условиями. У фотосинтезирующих прокариот, механизмы фиксации углерода более разнообразны. Здесь, диоксид углерода может быть закреплен с помощью цикла Кельвина-Бенсона, обратного цикла лимонной кислоты, или карбоксилирования ацетил-КоА. Прокариотические хемоавтотрофы также фиксируют СО2 через цикл Кельвина-Бенсона, но используют энергию из неорганических соединений, чтобы провести реакцию.

Углеводы и гликаны

При углеводном анаболизме, простые органические кислоты могут быть превращены в моносахариды, такие как глюкоза, а затем использоваться для сборки полисахаридов, таких как крахмал. Генерирование глюкозы из таких соединений, как пируват, лактат, глицерин, глицерат 3-фосфат и аминокислоты, называется глюконеогенезом. Глюконеогенез преобразует пируват в глюкозо-6-фосфат через ряд промежуточных продуктов, многие из которых наблюдаются при гликолизе. Однако, этот путь не является просто гликолизом, протекающим в обратном направлении, поскольку несколько шагов катализируются не-гликолитическими ферментами. Это важно, поскольку это позволяет отдельно регулировать образование и расщепление глюкозы, а также предотвращает одновременное протекание обоих путей в футильном цикле. Хотя жир является распространенным способом хранения энергии, у позвоночных животных, таких как люди, жирные кислоты, содержащиеся в этих хранилищах, не могут быть преобразованы в глюкозу через глюконеогенез, так как эти организмы не могут преобразовать ацетил-КоА в пируват; растения, в отличие от животных, имеют необходимые для этого ферментативные механизмы. В результате, после длительного голодания, позвоночным необходимо производить кетоновые тела из жирных кислот, чтобы заменить глюкозу в тканях, таких как мозг, который не может метаболизировать жирные кислоты. У других организмов, таких как растения и бактерии, эта метаболическая задача решается с помощью глиоксилатного цикла, который обходит стадии декарбоксилирования в цикле лимонной кислоты и способствует превращению ацетил-КоА в оксалоацетат, где он может быть использован для производства глюкозы. Полисахариды и гликаны производятся путем последовательного добавления моносахаридов гликозилтрансферазой от реактивного донора сахара-фосфата, такого как уридиндифосфатглюкоза (УДФ-глюкоза) к акцептору гидроксильной группы на растущем полисахариде. Поскольку любая из гидроксильных групп на кольце субстрата может быть акцептором, производимые полисахариды могут иметь прямые или разветвленные структуры. Производимые полисахариды могут иметь структурные или метаболические функции сами по себе, или быть переданы липидам и белкам с помощью ферментов, называемых олигосахарилтрансферазы.

Жирные кислоты, изопреноиды и стероиды

Жирные кислоты производятся синтазами жирных кислот, которые полимеризуют, а затем восстанавливают единицы ацетил-КоА-редуктазы. Эти ацильные цепи в жирных кислотах удлиняются при помощи цикла реакций, которые добавляют ацильную группу, восстанавливают её до спирта, обезвоживают его в алкеновую группу, а затем вновь восстанавливают его в алкановую группу. Ферменты биосинтеза жирных кислот делятся на две группы: у животных и грибов все эти реакции синтазы жирных кислот осуществляются одним многофункциональным белком типа I, в то время как в пластидах растений и бактерий отдельные ферменты типа II выполняют каждый шаг в пути. Терпены и изопреноиды представляют большой класс липидов, которые включают каротиноиды и формируют самый большой класс растительных натуральных продуктов. Эти соединения создаются путем сборки и модификации единиц изопрена, пожертвованных от реактивных предшественников изопентенил пирофосфата и диметилаллилового пирофосфата. Эти предшественники могут производиться по-разному. У животных и у архебактерий, мевалонатный путь производит эти соединения из ацетил-КоА, в то время как у растений и бактерий, не-мевалонатный путь использует пируват и глицеральдегид-3-фосфат в качестве субстратов. Одной из важных реакции, использующих эти активированные изопреновые доноры, является биосинтез стероидов. Здесь единицы изопрена объединяются вместе, производя сквален, а затем сформировывают набор колец, производя ланостерол. Ланостерол затем может быть преобразован в другие стероиды, такие как холестерин и эргостерол.

Белки

Нуклеотидный синтез

Нуклеотиды производятся из аминокислот, углекислого газа и муравьиной кислоты в пути, который требует большого количества метаболической энергии. Следовательно, большинство организмов имеют эффективные системы, чтобы спасать предварительно образованные нуклеотиды. Пурины синтезируются как нуклеозиды (основания при рибозе). И аденин, и гуанин производятся из предшественника нуклеозид-инозин-монофосфата, который синтезируется с использованием атомов из аминокислот глицина, глутамина и аспарагиновой кислоты, а также формиата, переданного от кофермента тетрагидрофолата. Пиримидины, с другой стороны, синтезируются из базового оротата, который образуется из глутамина и аспартата.

Ксенобиотики и окислительно-восстановительный метаболизм

Все организмы постоянно подвергаются воздействию соединений, которые они не могут использовать в качестве пищевых продуктов и которые могут нанести вред, если они накапливаются в клетках, так как они не имеют метаболических функций. Эти потенциально вредные соединения называются ксенобиотиками. Ксенобиотики, такие как синтетические наркотики, природные яды и антибиотики, детоксифицируются рядом ферментов, метаболизирующих ксенобиотики. В организме человека, эти ферменты включают оксидазы цитохрома P450, УДФ-глюкуронилтрансферазы и глутатион S-трансферазы. Эта система ферментов действует в три этапа, во-первых, окисляя ксенобиотики (фаза I), а затем конъюгируя водорастворимые группы на молекуле (фаза II). Модифицированный водорастворимый ксенобиотик затем может быть откачан из клеток и в многоклеточных организмах может дополнительно метаболизироваться перед тем, как он будет выведен из организма (фаза III). В экологии, эти реакции особенно важны в микробной биодеградации загрязняющих веществ и биоремедиации загрязненных земель и разливов нефти. Многие из этих микробных реакций наблюдаются у многоклеточных организмов, но, в связи с невероятным разнообразием видов микробов, эти организмы могут иметь дело с намного более широким спектром ксенобиотиков, чем многоклеточные организмы, а также могут расщеплять даже стойкие органические загрязнители, такие как хлорорганические соединения. Связанная с этим проблема для аэробных организмов – окислительный стресс. Здесь, процессы, включающие окислительное фосфорилирование и образование дисульфидных связей в процессе сворачивания белков, производят активные формы кислорода, такие как перекись водорода. Эти повреждающие оксиданты удаляются при помощи антиоксидантных метаболитов, таких как глутатион, и ферментами, такими как каталазы и пероксидазы.

Термодинамика живых организмов

Живые организмы должны подчиняться законам термодинамики, которые описывают передачу тепла и работу. Второй закон термодинамики гласит, что в любой замкнутой системе количество энтропии (расстройство) не может уменьшаться. Хотя удивительная сложность живых организмов, как представляется, противоречит этому закону, жизнь возможна, так как все организмы являются открытыми системами, которые обмениваются веществом и энергией с окружающей средой. Таким образом, живые системы не находятся в равновесии, а являются диссипативными системами, которые поддерживают их состояние высокой сложности, вызывая большее увеличение энтропии их среды. Метаболизм клетки достигает этого путем сочетания спонтанных процессов катаболизма в не-спонтанных процессах анаболизма. В терминах термодинамики, метаболизм поддерживает порядок путем создания расстройства.

Регулирование и контроль

По мере того как среда большинства организмов постоянно изменяется, реакции обмена веществ должны точно регулироваться, чтобы поддерживать постоянный набор условий внутри клеток, состояние, называемое гомеостазом. Метаболическая регуляция позволяет также организмам реагировать на сигналы и активно взаимодействовать со своим окружением. Два тесно связанных понятия имеют важное значение для понимания того, как контролируются метаболические пути. Во-первых, регуляция фермента в пути, по мере того как его активность увеличивается и уменьшается в ответ на сигналы. Во-вторых, контроль этим ферментом – эффект, который эти изменения оказывают на общий уровень пути (поток через путь). Например, фермент может показать большие изменения в активности (т.е. строго регулируется), но если эти изменения оказывают незначительное влияние на поток метаболического пути, то этот фермент не участвует в контроле пути. Существует несколько уровней регуляции метаболизма. При внутренней регуляции, метаболический путь саморегулируется, реагируя на изменения в уровнях субстратов или продуктов; например, уменьшение количества продукта может увеличить поток через пути компенсации. Этот тип регулирования часто включает в себя аллостерическое регулирование активности нескольких ферментов в пути. Внешняя регуляция включает в себя клетку в многоклеточном организме, изменяя его метаболизм в ответ на сигналы от других клеток. Эти сигналы, как правило, имеют форму растворимых мессенджеров, таких как гормоны и факторы роста, и обнаруживаются специфическими рецепторами на поверхности клетки. Затем эти сигналы передаются внутрь клетки с помощью вторичных систем мессенджеров, которые часто участвуют в фосфорилировании белков. Очень хорошим примером внешнего регулирования является регулирование метаболизма глюкозы гормоном инсулином. Инсулин вырабатывается в ответ на увеличение уровня глюкозы в крови. Связывание гормона с рецепторами инсулина на клетках затем активирует каскад протеинкиназ, которые заставляют клетки принимать глюкозу и преобразовывать её в молекулы хранения данных, таких как жирные кислоты и гликоген. Метаболизм гликогена контролируется активностью фосфорилазы, ферментом, который расщепляет гликоген, и гликоген-синтазой, ферментом, который его производит. Эти ферменты взаимно регулируются, при этом фосфорилирование ингибирует гликогенсинтазу, но активирует фосфорилазу. Инсулин провоцирует синтез гликогена путем активации фосфатазы белка и производит снижение фосфорилирования этих ферментов.

Эволюция

Исследование и манипуляции

Классически, метаболизм изучается в редукционистском подходе, ориентированном на один путь метаболизма. Особенно ценным является использование радиоактивных меток в целом организме, тканях и на клеточном уровне, что определяет пути от предшественников до конечных продуктов путем выявления радиоактивно меченых промежуточных и других продуктов. Ферменты, которые катализируют эти химические реакции, могут затем быть очищены и исследована их кинетика и реакция на ингибиторы. Параллельный подход заключается в определении малых молекул в клетке или тканях; полный набор этих молекул называется метаболомом. В целом, эти исследования дают хорошее представление о структуре и функции простых метаболических путей, но недостаточны при применении к более сложным системам, таким как метаболизм целой клетки. Теперь стало возможным использовать эти геномные данные для восстановления полных сетей биохимических реакций и производства более целостных математических моделей, которые могут объяснить и предсказать их поведение. Эти модели особенно эффективны, когда используются для интеграции пути и метаболических данных, полученных с помощью классических методов с данными по экспрессии генов протеомических исследований и исследований микрочипов ДНК. С использованием этих методов, в настоящее время создается модель человеческого метаболизма, которая будет направлять будущие открытия новых лекарств и биохимические исследования. Эти модели в настоящее время используются в сетевом анализе, для классификации заболеваний человека по группам, которые имеют общие белки или метаболиты. Бактериальные метаболические сети являются ярким примером «бантиковой» организации, архитектуры, способной вводить широкий спектр питательных веществ и производить большое разнообразие продуктов и сложных макромолекул с помощью относительно небольшого числа промежуточных веществ. Основным технологическим применением этой информации является метаболическая инженерия. Здесь, организмы, такие как дрожжи, растения или бактерии, генетически модифицируются, что делает их более полезными в области биотехнологии и способствует производству лекарственных препаратов, таких как антибиотики, или промышленных химических веществ, таких как 1,3-пропандиол и шикимовая кислота. Эти генетические модификации обычно направлены на снижение количества энергии, используемой для получения продукта, повышение размера выработки и сокращение производства отходов.

История

Термин «метаболизм» происходит от греческого Μεταβολισμός – «Metabolismos», означающего «изменение», или «переворот». Первые документированные ссылки на метаболизм были сделаны Ибн аль-Нафисом в его работе, датируемой 1260 годом нашей эры под названием Al-Risalah al-Kamiliyyah fil Siera al-Nabawiyyah (Трактат Камиля о биографии Пророка), которая включала следующую фразу «и тело, и его части находятся в постоянном состоянии растворения и питания, поэтому они неизбежно претерпевают постоянные изменения». История научного изучения метаболизма охватывает несколько веков и переходит от изучения целых животных в ранних исследованиях к рассмотрению отдельных метаболических реакций в современной биохимии. Первые контролируемые эксперименты о метаболизме человека были опубликованы Санторио в 1614 году в его книге Ars de statica Medicina. Он описывал, как он взвешивал себя до и после еды, сна, работы, секса, поста, питья и хождения в туалет. Он обнаружил, что большая часть пищи, которую он принимал, терялась в ходе процесса, который он назвал «неощутимым потоотделением». В этих ранних исследованиях, механизмы этих процессов обмена веществ не были выявлены, и считалось, что жизненная сила оживляет живую ткань. В 19-м веке, при изучении ферментации сахара в спирт дрожжами, Луи Пастер пришел к выводу, что брожение катализировалось веществами в клетках дрожжей, которые он назвал «ферментами». Он писал, что «спиртовое брожение соотносится с жизнью и организацией дрожжевых клеток, а не со смертью или гниением клеток». Это открытие, наряду с работой Фридриха Вёлера в 1828 году о химическом синтезе мочевины, отличается тем, что является первым органическим соединением, полученным из полностью неорганических предшественников. Это доказало, что органические соединения и химические реакции в клетках не отличаются в принципе от любой другой части химии. Открытие ферментов в начале 20-го века Эдуардом Бюхнером отделило изучение химических реакций обмена веществ от биологического исследования клеток, а также отметило рождение биохимии. Биохимические знания быстро увеличивались на протяжении первой половины 20 века. Одним из самых плодовитых среди биохимиков того времени был Ганс Кребс, который сделал огромный вклад в изучение обмена веществ.

Что такое метаболизм, понять несложно, так как к здоровому обмену веществ нас приобщают с детства родители, воспитатели, доктора. То есть практически все, кроме бабушки, которая желает закормить тебя насмерть пирогами и . В данном примере добрая бабушка стимулирует нарушение обмена веществ, но вряд ли бабушка станет главным источником проблем. Об этом, а также о том, как ускорить метаболизм для похудения, рассказываем в подробностях.

Интернет и пресса полны дискуссий на тему, работают ли добавки для ускорения обмена веществ, а если работают, то как отличить ценную добавку от бесполезного дорогостоящего мусора. Здесь самое место честно заявить, что обильный рацион и большие физические нагрузки являются не только простейшим, но и единственно надежным методом заставить организм быстрее тратить энергию. Физические упражнения - лучший ответ на вопрос, как ускорить обмен веществ.


Как ускорить метаболизм для похудения?

Пищевые добавки и уловки, строго говоря, метаболизм ускорить не в состоянии, но ряд продуктов (обычный кофе, к примеру) могут стимулировать нервную систему и вынуждать организм растрачивать больше энергии. Такой же принцип действия у жиросжигателей.

Представь себе три вида метаболизма: основной, пищеварительный и активный. Базовый и пищеварительный отвечают за жизнедеятельность организма: усвоение пищи, мышление, зрение, кровообращение, теплообмен, рост, регенерацию и так далее - на них тратится около 80% всей поступающей в организм энергии! Активный метаболизм (то есть энергия физических нагрузок) отнимает лишь 20%.

Все это время в твоем теле протекают два процесса обмена веществ: катаболизм и анаболизм.

Катаболизм - это разрушение и разборка элементов, попадающих в организм. Например, расщепление белка на аминокислоты, поступающие вместе с едой. Данная реакция сопровождается выделением энергии, теми самыми калориями и килокалориями, которые дотошно подсчитывают сторонники здорового образа жизни.

Анаболизм - обратный катаболизму процесс синтеза. Он необходим, когда требуется взять уже расщепленные аминокислоты и сделать из них материал для постройки мышц. Рост человека, заживление ран - это все результат анаболизма.

Поэтому с математической точки зрения прирост тела (мышц, жира и всего остального) - это разница между катаболизмом и анаболизмом. Вся энергия, которые ты не успеешь растратить, уйдет в первую очередь в жир и кое-что по мелочи в другие закоулки тела, будь то мышцы или печень.


Ускорение метаболизма - серьезный шаг в деле похудения, но многие такой шаг делают неправильно. Например, резко увеличивают физические нагрузки, параллельно столь же резко ограничив рацион. Ведь организм будет получать мало калорий, метаболизм замедлится и жир никуда не денется, даже может активно отложиться на животе и в области пояса.

Подобная стратегия также нарушит гормональный баланс: человек начнет испытывать голод, стресс, сонливость, упадок настроения и сексуального влечения. Такой ускоренный метаболизм нам не нужен!

Как разогнать метаболизм с умом и без скверных последствий?

Силовые тренировки и спорт вкупе с усилением питания не только сделают тебя крепышом, но и разгонят некогда замедленный метаболизм. Что любопытно, получаемые спортивным организмом калории будут активнее тратиться не только на сам спорт, но и на все остальные функции твоего тела, включая пищевой и базовый метаболизмы! То есть чем более активной и прожорливой машиной ты станешь, тем сильнее будет разогнан твой обмен веществ.

Тело также изменит рутинную процедуру усвоения простых углеводов, теперь простые углеводы будут направляться в первую очередь к мышцам. А вот жировые прослойки начнут голодать и постепенно рассасываться.

Из сказанного несложно сделать вывод: ускоренный обмен веществ сам по себе не является ценностью - это инструмент, который прекрасен лишь в сочетании с регулярными физическими и спортивными нагрузками.

Если в твоей жизни физическому спорту уделяется не много времени, если теплая компьютерная мышь и мягкое кресло автомобиля затмевают остальные ценности, забудь о том, как улучшить метаболизм. Человек малоподвижный вынужден по старинке - диетами и только диетами.


Врожденный хороший и плохой метаболизм

Разбираясь с вопросом, как улучшить обмен веществ, люди постоянно сталкиваются с феноменом врожденного хорошего и врожденного плохого метаболизма. В любой компании найдется человек, который в один присест съедает тортик и свиную рульку, но при этом остается тощим как жердь. Вот про него все и шепчутся с завистью - дескать, хороший метаболизм от родителей получил. А вот у его коллеги, лыжника и поклонника диет, мгновенно растет пузо от одной сырой морковки. Он несчастный и жертва плохого метаболизма.

Научные исследования показали, что замедленный обмен веществ случается при ряде редких заболеваний, сопровождаемых гормональным расстройством. В первую очередь врачи вспоминают гипотиреоз - состояние нехватки гормонов щитовидной железы.

Что касается тощих людей, то к ним надо внимательнее присмотреться: многие из них хоть и не спортсмены, но крайне подвижные, «разогнанные» люди, к тому же разборчивые в рационе и графике питания, пусть даже подсознательно. Худые люди зачастую худы просто потому, что привыкли быть тощими с раннего детства и инстинктивно держат себя в привычной форме. Возможно, у них еще крепкие нервы, спокойная работа и хороший сон, потому у них не бывает избыточного аппетита на нервной почве.

И психологи, и физиологи уверяют, что в основной массе случаев то, что мы считаем врожденным ускоренным метаболизмом и худобой, - следствие воспитания, а не генетики. Ну и психологически мы таких людей не всегда воспринимаем верно: нам кажется, что они все время что-то жрут, хотя на самом деле практикуют здоровое дробное питание, а это порождает у окружающих иллюзию обжоры.

От главного же закона, сформулированного в начале статьи (прирост массы - это катаболизм минус анаболизм), даже им не спрятаться.


Нарушение обмена веществ

Гормональные сбои, неправильное питание и обойма болезней приводят к нарушениям обмена веществ. Чаще всего это выражается в появлении излишка подкожного жира из-за сбоев в цикле переработки жиров. Но это чисто внешний эффект, внутри же происходят процессы еще менее приятные, как-то: повышение уровня холестерина, сердечно сосудистые аномалии и т.п. Отеки, нездоровый цвет кожи, больные волосы - все перечисленное является следствием нарушения метаболизма.

Хорошая новость: в большинстве случаев от всего этого можно избавиться диетой. Но, чтобы убедиться, что тебе не потребуется врачебная помощь, что надо сделать? Правильно, к этой врачебной помощи обратиться!

Многие считают, что обмен веществ и скорость переваривания пищи - синонимы, но это неправильно. Даем верное определение метаболизму и разбираемся, от чего зависит его скорость и к чему могут привести неполадки и сбои.

Обмен веществ (его также называют метаболизмом) - это основа жизненно важных процессов, происходящих в организме. Под метаболизмом понимают все биохимические процессы, происходящие внутри клеток. Тело постоянно заботится о себе, используя (или откладывая в резервные депо) полученные питательные вещества, витамины, минералы и микроэлементы для обеспечения всех функций организма.

Для обмена веществ, управляемого в том числе эндокринологической и нервной системами, огромное значение имеют гормоны и энзимы (ферменты). Традиционно самым важным органом в метаболизме считается печень.

Для того, чтобы выполнять все свои функции, организму нужна энергия, которую он черпает из белков, жиров и углеводов, получаемых вместе с едой. Поэтому процесс усвоения пищи можно считать одним из необходимых условий для метаболизма.

Обмен веществ происходит автоматически. Именно это дает возможность клеткам, органам и тканям самостоятельно восстанавливаться после влияния определенных внешних факторов или же внутренних сбоев.

В чем суть метаболизма?

Метаболизм – это изменение, превращение, переработка химических веществ, а также энергии. Этот процесс состоит из 2 основных, связанных между собой стадий:

  • Катаболизм (от греческого слова «разрушение»). Катаболизм предусматривает распад сложных органических веществ, поступивших в организм, до более простых. Это особый энергетический обмен, происходящий во время окисления или же распада определенного химического или органического вещества. В результате в организме происходит выброс энергии (большая ее часть рассеивается в виде тепла, оставшаяся позже используется в анаболических реакциях и при образовании АТФ);
  • Анаболизм (от греческого слова «подъем»). Во время данной фазы происходит образование важных для организма веществ – аминокислот, сахара и белка. Для этого пластического обмена необходимы большие затраты энергии.

Говоря простым языком, катаболизм и анаболизм – это два равноправных процесса в обмене веществ, последовательно и циклично сменяющих друг друга.

Что влияет на скорость обменных процессов

Одна из возможных причин медленного обмена веществ - генетический дефект. Существует предположение, что скорость процесса сжигания энергии зависит не только от возраста (об этом мы расскажем ниже) и строения тела, но и от наличия определенного индивидуального гена.

В 2013 году было проведено исследование, в ходе которого выяснилось, что причиной медленного обмена веществ может быть мутация KSR2 - гена, отвечающего за метаболизм. Если в нем имеется дефект, то у его носителя или носительницы отмечается не только повышенный аппетит, но и более медленный (по сравнению со здоровыми людьми), основной обмен (прим. ред.: под основным обменом подразумевают минимальное количество энергии, которое нужно организму утром для нормальной жизнедеятельности в положении лежа и состоянии бодрствования до первого приема пищи ). Однако учитывая тот факт, что данный генетический дефект имеется менее чем у 1% взрослых людей и менее чем у 2% детей с избыточным весом, данную гипотезу трудно назвать единственно верной.

С гораздо большей уверенностью ученые говорят о том, что скорость метаболизма зависит от пола человека.

Так, голландские исследователи выяснили, что у мужчин действительно более активный обмен веществ, чем у женщин. Они объясняют данное явление тем, что мужчины обычно обладают большей мышечной массой, кости у них тяжелее, а процент жира в организме меньше, поэтому что в состоянии покоя (речь про основной обмен), что при движении они потребляют большее количество энергии.

Также метаболизм замедляется с возрастом, и винить в этом стоит гормоны. Так, чем старше женщина, тем меньше эстрогена производит ее организм: это становится причиной появления (или увеличения уже имеющихся) жировых отложений в области живота. У мужчин снижается уровень тестостерона, что приводит к уменьшению мышечной массы. Кроме того - и на сей раз мы говорим о людях обоих полов - со временем тело начинает вырабатывать все меньше гормона роста соматотропина, призванного в том числе стимулировать расщепление жира.

Ответьте на 5 вопросов, чтобы узнать, насколько быстр ваш метаболизм!

Часто ли вам бывает жарко? Людям с хорошим обменом веществ, как правило, чаще бывает жарко, чем людям с плохим (медленным) метаболизмом, они гораздо меньше мерзнут. Если у вас не начался предклимактерический период, то положительный ответ на этот вопрос можно считать одним из признаков того, что ваш метаболизм в порядке.

Как быстро вы поправляетесь? Если вы склонны к быстрому набору веса, то можно предположить, что ваш обмен веществ функционирует не совсем правильно. При правильном метаболизме полученная энергия тратится практически сразу, а не откладывается в виде жира в депо.

Часто ли вы ощущаете бодрость и прилив сил? Люди с замедленным обменом веществ часто чувствуют себя уставшими и разбитыми.

Быстро ли вы перевариваете пищу? Люди с хорошим метаболизмом обычно могут похвастаться хорошим пищеварением. Частые запоры зачастую являются сигналом, что с обменом веществ что-то не так.

Как часто и много вы едите? Вы часто испытываете чувство голода и много едите? Хороший аппетит обычно указывает на то, что пища быстро усваивается организмом, и это признак быстрого метаболизма. Но, конечно же, это не повод отказаться от правильного питания и активного образа жизни.

Отметим, что слишком быстрый обмен веществ, о котором мечтают многие, тоже чреват проблемами: он может привести к бессоннице, нервозности, дефициту веса и даже проблемам с сердцем и сосудами.

Как наладить обмены при помощи питания?

Существует достаточно много продуктов питания, которые способны благотворно повлиять на обмен веществ, например:

  • богатые грубой клетчаткой овощи (свекла, сельдерей, капуста, морковь);
  • постное мясо (филе курицы без кожи, телятина);
  • зеленый чай, цитрусовые фрукты, имбирь;
  • богатая фосфором рыба (особенно морская);
  • экзотические фрукты (авокадо, кокосы, бананы);
  • зелень (укроп, петрушка, базилик).


Проверьте, не совершаете ли вы ошибки в пищевом поведении, которые ведут к ненужному замедлению метаболизма!

Ошибка №1. В вашем рационе слишком мало полезных жиров

Увлекаетесь продуктами с маркировкой light? Обязательно следите за тем, чтобы потреблять достаточное количество ненасыщенных жирных кислот, которые содержатся в том же лососе или авокадо. Они также помогают удерживать уровень инсулина в пределах нормы и не позволяют обмену веществ замедляться.

Ошибка №2. В вашем рационе много полуфабрикатов и готовой еды

Внимательно изучите этикетки, скорее всего, вы обнаружите, что сахар входит в состав даже тех продуктов, где его быть вовсе не должно. Именно он отвечает за скачки глюкозы в крови. Не устраивайте организму пищевые американские горки. Ведь тело расценивает подобные перепады как сигнал, что пора запасти побольше жира.\

Ошибка №3. Вы часто игнорируете приступы голода и пропускаете приемы пищи

Важно не только то, что вы едите, но и когда вы это делаете (питаться нужно регулярно и в одно и то же время). Тот, кто ждет, пока желудок не начнут скручивать голодные спазмы (или вообще игнорирует сигналы организма), рискует отрицательно повлиять на скорость обмена веществ. Ничего хорошего в этом случае ждать нельзя. По крайней мере, зверские приступы голода по вечерам, которых не избежать, в категорию «хорошее» точно не попадают.

Причины и следствия сбоев обмена веществ

Среди причин сбоя обменных процессов можно назвать патологические изменения в работе надпочечников, гипофиза и щитовидной железы.

Кроме этого, к предпосылкам сбоев относят несоблюдение рациона питания (сухая пища, частое переедание, болезненная увлеченность жесткими диетами), а также плохую наследственность.

Существует целый ряд внешних признаков, по которым можно самостоятельно научиться распознавать проблемы катаболизма и анаболизма:

  1. недостаточная или чрезмерная масса тела;
  2. соматическая усталость и отечность верхних и нижних конечностей;
  3. ослабленные ногтевые пластины и ломкие волосы;
  4. кожные высыпания, прыщи, шелушение, бледность или покраснение кожных покровов.

Если метаболизм отличный, то тело будет стройным, волосы и ногти - крепкими, кожа - без косметических дефектов, а самочувствие - хорошим.